
83

ISSN 1392-0561. INFORMACIJOS MOKSLAI. 2017 79

Towards the deep, knowledge-based interoperability
of applications

Andrius Valatavičius

Vilniaus universiteto doktorantas
Vilnius University, Doctoral student
El. paštas: andrius.valatavicius@mii.vu.lt

Saulius Gudas

Vilniaus universiteto vyriausiasis
mokslo darbuotojas, daktaras
Vilnius University, Doctor
El. paštas: saulius.gudas@mii.vu.lt

The interoperability of enterprise applications in a dynamic environment is a complex issue. New met-
hodological approaches and solutions are required. The methodological background of our approach
is the internal modeling paradigm integrated with MDA approach. The modified MDA schema includes
the new layer of the domain knowledge discovery, frameworks for internal modeling of enterprises. The
peculiarity of the modified MDA is a focus on the cross-layer transferring of domain causality. The pre-
sented frameworks will help to trace the domain causal dependencies across the layers of the software
system development, and they will aid in determining the influence of domain causality to the integrity
and interoperability of the application. Researchers consider that the dynamic enterprise domain must
be a goal-driven and self-managed system. The management transaction concept uses the internal mo-
deling of the enterprise, which reveals the goal-driven information transformations inside the enterprise
management activity (deep knowledge). This approach is combining the business process modeling and
control theory principles, enterprise architecture modeling and autonomic computing concepts. The Ar-
chiMate enterprise architecture modeling language is used for illustrating the cross-layer transferring
of domain causality. Finally, we developed the architecture of the interoperable enterprise applications
with the autonomic integration component.

Keywords: internal modeling, enterprise management, domain modeling, self-managed system, MDA,
knowledge discovery, interoperability, autonomic computing.

1. Introduction

The interoperability of applications in a
dynamic enterprise environment is a com-
plex issue. In this article, we present the
methodology for maintaining the interoper-
ability of the applications using autonomic
computing and business process models. In
the constant growth of enterprise complex-

ity, more various applications are used in a
single enterprise (e.g., accounting systems,
CRM, ERP, and E-Commerce applications),
data integration and application interop-
erability become pressing problems for
technological advancement. Currently, the
integration of the applications is expensive,
and projects mostly tend to fail (Halevy et

84

et al. 2008) and ontology-based technolo-
gies (Li et al. 2005; Shvaiko et al., 2013).
We notice that the enterprise architecture
frameworks (MODAF, NAF, DoDAF,
TOGAF, GERAM) are a good way to rep-
resent of real-world processes (i.e., capture
the business domain knowledge), and thus
their interfaces with applications layer com-
ponents. Software developers rarely explore
business processes for the application inte-
gration solutions. However, sophisticated
methods of the process integration already
exist (El-Halwagi 2006) – they’re just not
being applied in the application area.

This paper offers the internal mod-
eling paradigm consolidation with the
Model Driven Architecture approach (OMG
MDA). The MDA approach is modified and
presented to illustrate the qualitative dif-
ferences of the software engineering in the
internal modeling paradigm. The theoretical
background of the presented approach is
starting from the regulator theorem (Conant
et al., 1970). We continue with R. Ashby
conclusions 6/18 of the assembly of Black
Boxes and “emergent” properties (Ashby
1957), the definitions of second order cy-
bernetics (Heylighen et al., 2001) and the
autonomic agents and autonomic computing
(Kephart et al. 2003). The main principles of
data integration and engineering solutions
are refined using the ArchiMate enterprise
architecture language (ArchiMate, 2016).
This research would help to work out the
methods to support analysis of the business
domain and enterprise software collabora-
tion processes.

Business domain knowledge, acquired
from all the available sources, can be of
benefit to support the application integra-
tion solutions. Business domain modeling
itself is a complex problem, for which it is
required to solve another complex issue.

al. 2006; Trotta 2003; Valatavicius et al.
2014; van der Bosch et al. 2010). Multiple
conflicts may occur in the data integration
process (Dong et al. 2009). This article
deals with enterprise interoperability and
aims for an integrated information system
design. Five problems of software system
interoperability arise in a dynamic business
environment. First, Applications (i.e., in
number or provider) are changing over time
in a dynamic enterprise domain. Second, it
is usually more than one application in an
organization environment and the number
may vary over time, causing demand for
data migration project development. Third,
there are no common methods to describe
the collaboration among multiple different
dynamic applications. Fourth, when the
software changes (i.e., when it is updated or
switched to software from different manu-
facturers), the business process might also
change adapting to the new requirements
of the environment, then the static business
architecture model becomes invalid. Fifth,
to ensure interoperability, the integration
expert needs to perform the following tasks:
perform the schema alignment (Hophe et al.,
2002; McCann et al., 2005; Peukert et
al., 2012; Rahm et al., 2001; Silverston et al.,
1997); ensure record linkage and data fu-
sion (Dong et al., 2013; Kutsche, 2008);
ensure the orchestration and choreography
of application services and data objects.
In a dynamic environment, business pro-
cesses often need optimizing, akin to the
El-Halwagi examples of business process
integration (El-Halwagi, 2006; Pavlin et
al., 2010).

Various application integration methods
are applied to maintain the interoperability
of enterprise applications. Most researchers
of integration subject use advanced meth-
ods, such as agent technologies (Overeinder

85

Model-driven software development (as-
sociated with MDA, BPMN, DMN), the en-
terprise architecture modeling frameworks
(e.g., ArchiMate, MODAF, NAF) are based
on business domain modeling and are aimed
at the development of the software systems.
The complex software systems are often
implemented using the agent technologies.
For instance, a background for using the
Platform Independent Models (PIM) for
autonomic agents development is presented
in a study by Zinnikus et al. (2008).

The dynamic nature of the business
processes causes many problems with the
already developed enterprise architecture
and business process models, as well as with
the implemented (legacy) applications. The
most common scenario is when changes
in business force to replace the outdated
legacy software by one or multiple new
software items, which are designed for some
specific business process (i.e., bookkeep-
ing software, enterprise resource planning
system or e-commerce software).

Meanwhile, a lack of focus to the com-
plexity of business domain in the informa-
tion systems engineering methods (includ-
ing enterprise modeling, business process
(BP) modeling, enterprise software design)
slow down the enterprise software adjust-
ment to environment changes. In our ap-
proach, a business domain (an enterprise) is
considered as a complex system: a dynamic,
goal-driven and self-managed system, for-
mally defined as an organizational system
(Gudas 2012a; 2012b). The definition of
management transaction is the base of the
internal enterprise model, which acquires
the essential causal dependencies of the
domain – goal-driven information transfor-
mations inside the management transactions
(deep knowledge). The principles of the
second order cybernetics provide the meth-

odological basis for the internal viewpoint
(Heylighen et al. 2001), and they aim to
disclose the internal causal relationships
of the domain. Internal modeling seeks to
construct a white box model of the domain,
while other methods of enterprise and busi-
ness process modeling (DFD, BPMN, IDEF,
ARIS and others) examine the domain us-
ing the external modeling paradigm as a
structure of black boxes, for example, as a
set of workflows (Input, Process, Output)
or as an event-process chain. We applied
the constructive research method, which
is aimed to reveal domain causality and to
determine the impact on the integrity and
interoperability of the application, by ap-
plying the systems analysis, control theory
principles and using enterprise architecture
modeling and autonomic computing con-
cepts. The methodological background of
our approach is the modified MDA schema,
which includes the new layer of the domain
knowledge discovery.

The combination of the disciplines of
control theory, business process modeling,
enterprise architecture modeling and au-
tonomic computing concepts allows us to
reconsider the model-driven development
aspects. Our approach is a consistent real-
ization of the internal modeling paradigm
integrated with an MDA approach. The
presented enterprise modeling frameworks
are focused on acquiring the essential causal
dependencies (deep knowledge), paying
attention to the content of the enterprise
management transactions.

One of the research questions we ask is
whether internal modeling with an MDA
approach helps to determine the influence
of domain causality to the integrity and in-
teroperability of applications. Second, is it
possible to create an architecture of autono-
mous interoperable enterprise applications

86

using only business process models and an
enterprise architecture model?

The preceding discussion implies
that the software systems and enterprise
management activities are aimed to adopt
business environment changes in a similar
way to the classical control system with
a feedback loop. The idea is to adopt the
internal model control principle defined
by the good regulator theorem (Conant
et al., 1970) for enhancing the intelligent
software technologies (e.g., intelligent
agents, autonomic computing components).
According to the good regulator theorem
(Conant et al., 1970), the Internal Model
(IM) is a predefined knowledge structure,
based on the essential properties of the
particular type of domain. Thus, an internal
modeling paradigm entails the usage of an
essential (deep) knowledge of the enterprise
domain. The causal dependencies inside
and between the enterprise management
activities are considered as essential (deep)
knowledge. The internal structure of the
enterprise management activity is defined
as a management transaction (MT) (Gudas
et al. 2016), and, on the detailed level, it
is defined as an elementary management
cycle (EMC) in studies by Gudas (2012a;
2012b). Our paper contributes to the theory
of application interoperability by proposing
an inter-dimension approach of multiple in-
tegration levels (Technical, Semantic/Data
and Organization), which are defined in the
European Interoperability Framework (EIF)
and mentioned in multiple other articles
(EIF 2004; F.B. Vernadat 2007).

This manuscript is structured as follows.
In the first section, we present the techno-
logical background supporting our software
integration approaches processes. We
describe the internal model-based control

system and the core of the good regulator
theorem in Section No. 2. The external and
internal modeling paradigms in the software
engineering are elucidated in Section No. 3.
Section No. 4 includes the modified MDA
schema with two modeling paradigms,
assumptions of the internal modeling
based enterprise software development,
and it illustrates the internal modeling of
enterprise domain using ArchiMate. In the
same section, we discussed the enterprise
management modeling frameworks and
autonomic computing technology. Section
No. 5 is dedicated to the application of the
interoperability problem using an internal
model and describes the architecture of the
enterprise applications with the autonomic
interoperability component. The sixth sec-
tion introduces the prototype of the software
interoperability validation tool. The results
and further work required discussed in the
concluding part.

2. The Core of the Internal
Model-Based Control System
The internal model was defined in 1970 as a
good regulator theorem (Conant et al. 1970).
The regulator theorem is the following idea:
“any regulator (if it conforms to the qualifi-
cations given) must model what it regulates”
(Conant et al. 1970). Internal modeling can
be used for the enhancement of intelligent
software technologies (i.e., utility-based or
intelligent software agents) and serve as a
background of knowledge-based software
systems. The internal model first was ar-
ticulated as the internal model principle of
control theory in 1976 (Francis et al. 1976).
The internal model approach emerged in the
control theory, the problem of the domain of
which is a device, object or an open system
in general (Fig. No. 1). The purpose of the
Internal Model is to supply the closed loop

87

of the Control System with control signals
which maintain the stable behavior. The
Internal Model (IM) is a model of the prob-
lem domain (in this case, IM is the model of
System S). The Internal Model is created in
advance using prior knowledge, i.e., IM is
a predefined model, based on knowledge of
the essential properties of the domain. In oth-
er words, IM is a knowledge-based model
of the controlled system S, integrated within
a Control System. Due to IM, an important,
intelligent feature of prediction occurs in IM
control systems because the control is based
not only on the measurements or evaluation
of the state (Kumar 2012).

Control System and Systems S. Here, u is
a command to control action, y – the mea-
surements (system state attributes), r is
the reference input and d is the disturbance
signal. A second feedback loop is an internal
transfer of information flows (command (u),
system state attributes (y), internal feedback
(d~)) between Controller C and Internal
Model, where d~ is an internal feedback
flow. Internal model control processes the
system state measurements (system attri-
butes (y)) and compares them to Internal
Model output (prediction).

The Control System, with the internal
model, is adaptive to changes in the envi-

Figure No. 1. The internal model-based control system.

System
(S)

Controller
(C)

Internal
Model (IM)

yur

d

d~

Internal Model Control
+

+-

-
+

+

It is important to note that the IM in
control theory (Fig. No. 1) contains a model
of the essential causal dependencies of the
domain inside the Control System (the
perceived causality assuming that IM = S).
These models are based on models created
by MDA approach; therefore, in a dynamic
enterprise environment, we have models
that are always up to date. The content of
the feedback loop between elements of the
system is the transmission and processing
of data (signals) flow, so it should be called
a transaction. It is worth mentioning that
the internal model-based control system
includes more than one feedback loop.
The external feedback loop transfers infor-
mation flows (command (u), disturbance
(d), system state attributes (y)) between

ronment. Therefore, we are convinced that
the adoption of the the internal modeling
approach for the software system interop-
erability looks like a promising and novel
solution. Researchers have already applied
principles of control theory in software
development (i.e., intelligent agent tech-
nologies, autonomic computing), but the
employment of the internal models for
application interoperability are arguably
rarely occurring.

The role of the internal model in control
theory and the role of the domain model in
the knowledge-based software engineer-
ing – both approaches are well compatible
with each other, because they are relevant
to the principle of internal modeling (Fig.
No. 1) (Gudas 2016). In general, the internal

88

modeling focus on the discovering of deep
knowledge of the problem domain, i.e., the
internal modeling is aimed to reveal causal
dependencies of the problem domain.

 Examples of usage of the internal
modeling approach (quality management,
risk management, business process manage-
ment) (Moen et al. 2006; Brache 2002) are
provided in frameworks: Fayol’s business
function model (Fayol 2016); Deming’s
PDCA cycle; Porter’s Value Chain Model
(Porter et al. 1985); Rummler-Brach’s en-
terprise performance management model.

The concepts of control theory have
a need for controlling interactions of
enterprise software components and the
integration of applications. Researchers
apply control theory in multiple fields, e.g.,
intelligent agents, autonomic computing
(Kephart et al. 2003), reactive software
applications (Winter et al. 1998), adaptive
systems (Mareels et al. 1996) and comput-
ing systems (Abdelzaher et al. 2008).

Considering the internal model (IM) as
a knowledge model of the problem domain
inside the control system used to maintain
the stable behavior. IM is also considered
as a white-box of the problem domain (A
Controlled system S in Fig. No. 1), which
specifies the essential elements and their
dependencies of the problem domain (laws
of behavior inside a domain).

Analysis of the role of the internal model
(IM) in control systems allows concluding
that the adaptation of the internal model
(IM) in the context of software systems de-
velopment is a relevant topic for enhancing
intelligent technologies.

The architecture of the intelligent
software components with the internal
model (e.g., intelligent agents or autonomic
components) in Fig. No. 2 is relevant to
the structure of the internal model control
system (Fig. No. 1). The similarity of real
world RW process control systems and the
intelligent software systems is evident if
both systems include the internal models of
the subject domain. The internal model in
relation to MDA processes models is cre-
ated using MDA approach in M in Internal
Model of Domain in the IMC-based item of
each software system (Fig. No. 2).

3. Two Modeling Paradigms in
Model-Driven Software Enginee-
ring
At present in software engineering external
modeling paradigm is prevailing, because of
black box approach modeling usage in vari-
ous SDLC phases. In science and engineer-
ing, a black box is a device or systems which
the inputs and outputs without any knowl-
edge of its internal structure and processes.

 Figure No. 2. The architecture of a software component with the internal model.

Subject
Domain (S)

IM Controler
(Performance

element)

Internal Model
of Domain

(M)

Duplicate of
Control flow

(c)

Reference input
(r)

Estimated effect of
disturbance

IMC-based item of Software System

Output
(y)

Effectors

Sensors
Percepts

Actions

State
attributes

(a)

Feedback
flow (d)

Measurements of
subject domain

Control flow (c)

89

Enterprise information system (soft-
ware) engineering methods include business
domain modeling languages (e.g., BPMN,
DMN, UPDM, UEML), enterprise architec-
ture frameworks (e.g., DoDAF, MODAF,
ARIS) and software design languages (e.g.,
UML, SysML, UPDM). These languages
and frameworks are used to construct the
project models required by the correspond-
ing SDLC phase, which is essentially an
assembly (hierarchy) of black boxes (Input,
Output) with the identifier (name). It is
important to note that such methods do not
seek to reveal the domain causation; it is
enough to describe the externally monitored
interactions.

The business process modeling, busi-
ness activity modeling are the source of
knowledge for software development solu-
tions, and, arguably, integration experts can
use those for supporting the interoperability
of business management applications (e.g.,
ERP, CRM, E-commerce, accounting sys-
tems, collaborative software).

The concept of “an internal model” is
covering a range of models, which are de-
veloped using prior knowledge of problem
domain, i.e., an internal model is relevant

to the grey-box and white-box models.
Multiple domains apply to the Internal
models, i.e., in medicine and biology theo-
ries of visual perception, brain functioning,
and the motor control system of the body
(Francis et al. 1976) underlie an ability to
control the unknown and underdetermined
changes in the environment. Important is
the usage of the Internal models in the busi-
ness management domain (e.g., risk man-
agement, capital management), whereas
this domain is an organizational system,
the same type of complex systems as well
as in enterprise software engineering. The
necessity of the internal modeling for
acquiring a deep knowledge is confirmed
by the R. Ashby conclusions 6/18 of the
assembly of black boxes and “emergent”
properties (Ashby 1957, 110): “Thus an
assembly of Black Boxes, in these condi-
tions, will show no ‘emergent’ properties;
i.e. no properties that could not have been
predicted from knowledge of the parts and
their couplings.”

The level of awareness of the real-world
domain (i.e., the level of a prior knowledge)
is increasing when moving from black-box
models toward a grey-box and, finally, a
white-box model (Fig. No. 4). The signifi-

Figure No. 3. The significance of the white-box/grey-box models is a depth
of insight into the problem domain.

Black-box
models White-box modelsGrey-box models

Level of insight into real world domain (a complex system) -
Level of awareness

Input –
process –

output
models

Deep knowledge:
Causal

dependencies,
Laws,

Consistent
patterns,

...

Prior Knowledge:
Equations,

Business rules,
...

Internal modelling

Maximum
(knowledge

of causation)
Minimum
(external

observation)

External modelling

90

cance of internal models is the depth of in-
sight into the complex systems (problem do-
main). The depth of knowledge is increased
sequentially in the transition from the
grey-box models to the white-box models (a
white-box concept marks a maximum level
of insight). The internal modeling paradigm
introduced in the model-driven software
engineering with the intention to enhance
the knowledge-based software development
methods. In relation to MDA, its modeling
techniques can be considered as gray box
modeling in our specific scenario, and that
still gives us additional information for the
interoperability solutions on application
structure and about the interrelations of the
application via business process modeling.
The better the MDA models are, the deeper
the knowledge there is, and the better the
Internal model controller performs with the
autonomic functions.

4. External and Internal Modeling
in the Enterprise Software
Engineering

4.1. Model-Driven Development and
Two Modeling Paradigms
The usage of the internal modeling in the
MDA for intelligent software development
and deep knowledge discovery (the elicita-
tion of the internal model of the enterprise)
are two corelated issues.

Fig. No. 5 illustrates the role of the
internal model in the MDA approach. We
accept that transitions between two layers of
MDA are possible only because of a role of
IM: a higher-level IM is used to control the
transformation between layers, and to get a
content of the mode on the lower layer. The
role of the internal models IM(1) – IM(4) in
the transformations between MDA layers is
twofold. Primarily, the internal models are

a part of the “awareness” of the staff (e.g.,
the business analyst, the architect) used
for the development of solutions on the
corresponding layer. Second, in the case of
software-based mapping between the MDA
layers, the internal models could serve as
key elements of intelligent (or autonomic)
software components (agents).

The additional layer of Real World
(RW) domain is added to depict the domain
knowledge elicitation step. The mapping
of the RW domain to CIM layer models is
defined as domain knowledge discovery
(knowledge elicitation, Fig. No. 5). Domain
modeling reveals that the adequacy of the
follow-up project solution directly depends
on the “deepness” of domain modeling, i.e.,
it depends on the capabilities of the knowl-
edge elicitation methods. The CIM layer
content adequacy to RW domain properties
(the validity of CIM content) depends on
the modeling paradigm, as discussed above.
So, the advantage is on the side of the in-
ternal modeling paradigm-based methods.
For instance, the OMG reference for CIM
layer modeling is BPMN, which represents
an external paradigm based language: the
BPMN diagrams are (input, output) descrip-
tions of real-world processes (black boxes)
and can’t be called specifications of domain
causality. Meanwhile, the new OMG speci-
fication DMN (Decision Modeling Nota-
tion) is an example of language, based on
the internal modeling paradigm. DMN is a
new step in RW domain gray box modeling,
because it is focused on the domain internal
dependencies – business rules modeling
(Kardoš et al. 2010).

Some workflow modeling methodolo-
gies attempt to model the domain causality,
i.e., internal dependencies modeling, e.g.,
the ActionWorkflow Approach, Workflow
Management (communication-based work-

91

flows, Winograd et al. 1987; Medina-Mora
et al. 1992), and the transactional workflows
(Georgakopoulos et al. 1995).

An example of the internal domain
modeling from the functional perspective
is that the domain modeling method de-
veloped by Osis (2004). The Functioning
Cycle in the mentioned study (Osis 2004)
is a key construct of the domain, a form of
cause-and-effect relations modeling for the
software engineering needs.

 Some enterprise software development
methodologies are based on the domain-re-
lated theory (e.g., meta-models, ontologies).
Some are aimed to capture deep knowledge
while exploring the domain meta-models:
UEML – the Unified Enterprise Modeling
Language (Vernadat 2002), EEML – the
Extended Enterprise Modeling Language
(Krogstie 2005); enterprise domain ontolo-
gies (Zachman et al. 1987; Dietz 2006).

The modified MDA approach in Fig.
No. 4 includes two modeling paradigms:
external and internal. The external modeling
paradigm is explored by traditional software

development methods, when software
development begins on a CIM layer using
BPMN (e.g., IDEF, DFD) to represent the
external observations of domain activities,
i.e., to omit the domain knowledge dis-
covery (based on some theory of domain).
The internal modeling paradigm is theoreti-
cally based on the good regulator theorem
(Conant et al. 1970; Francis et al., 1976).
Further, this manuscript presents the inter-
nal modeling based technique to maintain
the interoperability of applications. Internal
modeling can be a basis for the enhance-
ment of the knowledge-based software
development methods.

4.2 Assumptions of the Development
of Internal Modeling Based Enterpri-
se Software
This approach of internal modeling in en-
terprise software engineering is based on
the assumptions as follow:

Assumption No. 1. The knowledge-
based software development methods
should be deep knowledge-oriented, i.e.,

Figure No. 4. The modified MDA schema includes two modeling paradigms.

RW knowledge
discovery layer

CIM layer

PIM layer

PSM layer

Software layer

Computational-independent
model (CIM)

Real World domain

White boxesGrey boxes

Platform-independent
model (PIM)

PSM: Platform-specific
(detailed) system model

Internal modeling paradigm

Business
analyst

Code

Architect/
Designer

Developer/
Tester

External modeling
paradigm

Black boxes

IM(2)

IM(1)

IM(3)

IM(4)

Developer/
Tester

CIM >> PIM
transformation

PIM >> PSM
transformation

PSM >> Code
transformation

Domain knowledge discovery methods

IM – internal models

RW >> CIM
mapping

92

based on the domain causal dependencies
discovery, and this is the internal modeling
paradigm.

Assumpt ion No. 2 . The modified
MDA approach (Fig. No. 4) includes the
knowledge discovery layer, and is defined
as the sequence of cross-layer transforma-
tions based on the internal model control
principle:

IM(1) à IM(2) à IM(3) à IM(4), (1)

here IM(1) is a domain knowledge model
(DKM), IM(2) is an enterprise/business
process model (CIM), IM(3) is a software
system architecture (PIM), IM(4) is a de-
tailed software system model (PSM).

Assumpt ion No. 3 . The essential
features of the real world domain, which
accumulate in the internal model IM(1),
must remain in the lower layers of MDA,
i.e., they should transfer (transform and
remain) in the internal models IM(2), IM(3)
and IM(4). The extended model of the MDA
approach (Fig. No. 4) includes two model-
ing paradigms: external and internal model-
ing (see Fig. No. 1). Thus arises the second
dimension in the MDA, which evaluates
the validity (accuracy) of modeling, i.e.,
the depth of the obtained knowledge on the
CIM, PIM and PSM layers. The matter of
using the internal modeling paradigm is to
acquire the essential (deep) knowledge of
the subject domain for software develop-
ment needs, while paying attention to the
specifics of a domain. In some software
technologies (e.g., intelligent agents), the
domain knowledge model has been in-
cluded: the condition-action rules, utility
functions, performance elements.

There are two questions concerning
the validity (relevance, completeness, ac-
curacy) of IM in the engineering methods
of the enterprise software system:

1)	 Does the IM includes or does not
contain any deep knowledge of the do-
main? The question is of the degree of
relevance of IM content against causal
dependencies of the real world domain:
is IM an external model (a black box),
or is IM an internal model (a gray box
or a white box model) of the domain
causality.

2)	 Is there enough of IM content for the
needs of the software development met-
hod? The question is of the relevance of
IM content against the particular metho-
dology and the methods of the enterprise
software development approach.
▫▫ Arguments for Assumption No. 1

The assumption one is proven by the
analysis of the qualitative differences of the
internal modeling and external modeling
of the enterprise domain in (Gudas, 2016),
(Gudas et al., 2016). We focus the internal
modeling paradigm on the deep knowledge
seeking to reveal the consistent patterns and
dependencies (laws) within the problem
domain. Therefore the internal modeling
is critical for advancing knowledge-based
modeling methods. An enterprise domain
perceived as a type of complex systems -
an organizational system, a self-managed
system with hierarchical structure, goal-
driven activities, that transform the data and
knowledge and are directed to produce the
output of the system. Such understanding
of domain properties is in line with the 2nd
order-cybernetics viewpoint (Heylighen et
al. 2001).

Fig. No. 5 depicts the key elements of
the enterprise meta-model described in stud-
ies by Gudas (2016; 2012a). Our approach
works in with the condition that enterprise
management activity, in a real world, is a
self-managed system. The management
transaction (MT) defines causal depen-

93

dencies inside the enterprise management
activity, namely, a feedback loop between
management function (Fi) and enterprise
process (Pj). The management transaction
(MT) is a control view-based content of an
enterprise management activity on level 1
in Fig. No. 5a (Gudas 2016). Therefore,
an internal model of MT is the elemen-
tary management cycle (EMC), which is
depicted on level 2 and must also be as a
self-managed system. The general internal
structure of EMC (Fig. No. 5a) is discussed
in the abovementioned studies (Gudas 2016;
Gudas 2012a).

An example of the management transac-
tion (MTij) in Porter’s Value Chain Model
(VCM) is an interaction between primary
activity (manufacturing process Pj) and
support activity (management function Fi).
Fig. No. 5b depicts an example of EMC(i,j),
which, adopted for enterprise software en-
gineering needs, is in the BPMN notation.
The elements of the EMC (i,j) contains the
process (Pj), the goal (G), and the manage-
ment function (Fi). They, in turn, comprise
the goal-driven information transformation
steps (IN, DP, DM, and RE), the informa-

tion flows (Flow1, .., Flow5), the impact of
goal (information flow S), and a feedback
loop with the process (Pj). So, an example
of any deep knowledge of the enterprise
domain are these two components – the
management transaction (MT) and the
Elementary Management Cycle (EMC) –
both considered as a self-managed system
(Gudas 2016).

▫▫ Arguments for Assumption No. 2
The second assumption is that the soft-

ware development as a sequence of internal
models mappings IM(1) à IM(2) à IM(3) à
IM(4) could be proven using the enterprise
architecture development methods. The en-
terprise architecture (EA) frameworks (e.g.,
DoDAF, MODAF, NAF) usually include
few modeling layers (so called views or
viewpoints) as follows: motivation/strategy
view (corresponds to IM1), operation view
(corresponds to IM2), system view and
service view (corresponds to IM3). The
enterprise architecture (EA) development
process is based on the mappings between
these EA views. Fig. No. 6 presents the
OMG MDA approach alignment with the
ArchiMate meta model (fragment).

Figure No. 5. The knowledge components of the enterprise domain:
a) The conceptual representation of a management transaction (MT) at level 1)

and an elementary management cycle (EMC) at level 2).

Management
Transaction (MT)

Enterprise
management goal

 Gw

Enterprise process
Pj

Enterprise
management

function Fi

Information
flow A

Information
flow V

Material
flow

Material
flow

OutputInput

LEVEL 1

Enterprise
management goal

(Gw)

Function 1
 (Step 1)

Function 2
(Step 2)

Function n
(Step n)

Function n-1
(Step n-1)

Enterprise Process
Pj(Gw)

Management
information A

Management
information C

Management
information M

Management
information N

Management
information V

Output
(Material flow)

Input
(Material flow)

Management function Fi(Gw)

LEVEL 2

94

Figure No. 6. The knowledge components of an enterprise domain:
b) Adopted for enterprise software engineering MT and EMC frameworks (BPMN notation).

En
te

rp
ris

e
Go

al
s

En
te

rp
ris

e
M

an
ag

em
en

t
Fu

nc
tio

ns

En
te

pr
ise

Pr

oc
es

se
s

Enterprise goal
(G)

 A:
State attributes

Management
function (F)

Process (P)

Impact S
 to F

Impact S
to P

V: Controls

 Input (I1) Output (O1)

Impact S
to A

Impact S
 to V

En

te
rp

ris
e

M
an

ag
em

en
t F

un
ct

io
ns

En
te

rp
ris

e
Pr

oc
es

se
s

En
te

rp
ris

e
Go

al
s

Process (P)

Impact
of goal (S)

Flow5:
V - controls

Step1: IN –
interpre-

tation

Step2: DP
– data

processing

Flow2

Step3: DM –
decision
making

Flow3

Impact of goal (S)
Step4: RE -
realization

Flow4

Impact of
goal (S)

Internal steps of
management
function (F)

Flow1:
A -State

attributes

Goal (G)

Input (I1)

Output (O1)

Impact of goal (S)

The ArchiMate framework is one of
the examples of the external modeling ap-
proach (ArchiMate 2016), because here,
the key concepts are modeled in layers
(e.g., business, application, technology,
strategy, and motivation), and cross-layer
transformations are based on the mappings
of concept to concept. The alignment of the
MDA approach (OMG) and ArchiMate in
Fig. No. 6 reveal some typical properties of
the external modeling:
•	 Considering IM1: Domain knowledge

model is not specified explicitly in the
MDA approach. Assumably, the CIM
level includes the elicitation of domain
knowledge. However, a domain know-
ledge discovery is an important issue for
ensuring system quality; so, it should
be specified explicitly. The ArchiMate
framework includes RW domain know-
ledge (IM1), whereas motivation and
strategy elements (e.g., goals, drivers,
requirements, capabilities) are repre-
senting the needs of stakeholder: the
motivation element Goal realized by the
strategy element Requirement, which
adjusts through the Capability element.
However, the mapping of IM1 to IM2

is carried out through only one concept
of Capability to the concept of Business
Service (or Business Process or Business
Function or Business Interaction).
IM2 corresponds to CIM in MDA, and

to the Business layer model in ArchiMate.
Both are focused on the business require-
ments (business logic and rules). However,
properties of CIM are not predefined (or
constrained) by the meta-model. Therefore,
each domain modeling method is appropri-
ate. The recommended one is BPMN, and
now even DMN (since 2016). Meta-model
predefines IM2 in ArchiMate. Although,
it is a concept map, which based on the
experience (has no theoretical justifica-
tion). Considering IM2 in both cases (for
MDA and ArchiMate) it can be asserted
that a real world domain not perceived as a
complex system, i.e., IM2 is not intended
to capture the causal dependencies of the
domain. So, in both cases, IM2 can be seen
as a black-box model (an external modeling
paradigm).
•	 Considering IM3: Internal Model (IM3)

corresponds to PIM in MDA approach.
IM3 belongs to the application layer in
ArchiMate framework and meta-model

95

defines it. IM3 is a kind of a concept
map, based on the experience (has no
theoretical justification).

•	 Considering transformation IM2 to IM3:
MDA defines the transformation CIM
to PIM as a generalized requirement -
the CIM constructs should be traceable
to the PIM, and PSM constructs that
implement them (and vice-versa). In
ArchiMate the transformation IM2 to
IM3 is predefined in the meta-model by
cross-layer associations of key concepts
(Fig. No. 7). In both cases, the mapping
of IM2 to IM3 is seen as a mapping
between concepts (entities, or objects).
So, the transformation IM2 to IM3 is
not defined here as the mapping between
complex structures, when it includes
transference of systems regularities.

▫▫ Arguments for assumption 3
The third assumption is that the trans-

ferring of the essential features of the RW
domain on the lower layers of modeling is
proven by the comparison of IM1, IM2, and
IM3 internal structures (Fig. No. 8).

First of all, the relevance of the domain
knowledge discovery method to the type
of the domain is an issue. This issue is a
fundamental issue of the domain modeling,
which determines the relevance (validity) of
IM1 against the RW domain: are the causal
dependencies captured in IM1 enough for
research purposes or not? From the inter-
nal modeling perspective, a theoretical
background (domain theory) is required
for recognizing essential features of the
domain by domain analyst (presented as
IM1-Control in Fig. No. 8).

Figure No. 7. The OMG MDA approach alignment with the ArchiMate framework.

MDA:
CIM Layer

ArchiMate:
Motivation
and
Strategy Layers

ArchiMate:
Application Layer

Domain model

Active Structure
Elements

Stakeholder

ArchiMate:
Business Layer

MDA:
PIM Layer

IM1
(Real World

Domain Knowledge Model)

Motivation Elements

Capability Resource

Requirement

Course of Action

DriverGoal Assesment

Business Service

 Internal Behavior Elements

Process Function Business Object Business Actor Business RoleInteraction

Business Analyst

CIM elements

Architect / Designer

Business process model

PIM
elements

Outcome

Strategy Elements

Principle

Mapping: IM1 to IM2

Associated with

Tracing: IM2 to IM1

Application ServiceApplication
Function Application Process Application

Component IM3
(ArchiMate: System Architecture Model)

 (PIM - Platform Independent Model)

Internal Structure elements

IM2
(ArchiMate: Business Model)

(CIM - Computational independent model)

Tracing: IM3 to IM2
Transformation: IM2 to IM3

96

The second issue focuses on the internal
modeling requirements for the MDA cross-
layers interactions. The internal modeling
paradigm using in the modified MDA (Fig.
No. 4) requires maintaining the essential
feature of the IMC system discussed above
(Fig. No. 1). Namely, the IMC system
consists of two components: Controller
(C), which forms a control solution, and
the Internal Model (IM), which is the inner
knowledge of the IMC and is correlated
with the content of a particular layer.

In the present case, the mapping of
captured RW knowledge (IM1) to the lower
layer (IM2) is under control of IM2-Control
component. The mapping IM1 to IM2 is
performed by a business analyst or soft-
ware tool in a way when substantial causal
dependencies (fixed in IM1) transferred to

the lower layer model IM2. It is evident that
the output of the IM2-Control is IM2. The
content of IM2 depends on the input (IM1),
and on the internal knowledge model IM2*
of the IM2-Control component, required to
control IM1 mapping to IM2. We notice that
a business analyst or software tool should
perform a transformation of IM2 to IM3.
The content of IM3 depends on the input
(IM2) and on the internal knowledge model
IM3* of the IM3-Control component, which
is required to control the mapping of IM2
to IM3.

The third issue: whether there are struc-
ture and content within IM2-Control and
whether IM3-Control is comprehensive
enough to handle the transformations of
IM1 to IM2 and IM2 to IM3. This issue
directly correlates with the relevance of

Fig. No. 8. The internal modeling paradigm is illustrated using a modified MDA schema.

CIM Layer

(Includes Motivation
and Strategy Layers of
ArchiMate)

(Application Layer
of ArchiMate)

IM1
 (r)

Domain theory

Domain analyst

Domain
Knowledge
Discovery Layer

(Business Layer of
ArchiMate)

PIM Layer

IM1 – Real World Domain Knowledge Model
(RW is perceived as a self-managed system)

Motivation and Strategy Elements

Capability Resource

 IM1-Control

Business Service*

 Internal Behavior Elements

Business
Object

Business
Actor

Business
Role

IM2 – Internal model of enterprise
(Enterprise is defined as a self-managed system)

(CIM - Computational independent model)

IM2-Control
(Business Analyst)

Instructions (u)

IM3-Control
(Architect / Designer)

IM2
 (r)

Specifications (u)

Application ServiceApplication Function Application Process Application Component

IM3 – Enterprise software system architecture model
(ESS is specified as an autonomic system)

 (PIM - Platform Independent Model)

Domain causality description

Internal Structure elements

Management functional dependencies

Business management transactions

Elementary Management Cycle
Process Management function

Autonomic Component

State of IM2
(y)

State of IM3
(y)

97

domain knowledge discovery method and
traceability (top-down and vice-versa) of
the essential features of the domain between
the layers. Furthermore, the internal model
control system includes two feedback loops
to ensure a self-management capability (see
Fig. No. 1). An external feedback cycle is
between the system (S) and IMC system,
and the second (internal) feedback cycle is
inside IMC between the Controller (C) and
the Internal Model (IM).

Consequently, the cross-layer trans-
formations (IM1 to IM2, IM2 to IM3, and
IM3 to IM4) in Fig. No. 4 are under the
control of the IM-Control components
(IM1-Control, IM2-Control, and IM3-
Control). The external feedback cycles are
between the relevant IM-Control and IM of
the lower level, i.e., between IM2-Control
and IM2, and IM3-Control and IM3. The
second (internal) feedback cycle is inside
the IM-Control blocks. An example of the
implementation of the internal model IM3*
of the IM3-Control system is a framework
of the autonomic computing component
presented in Fig. No. 10.

An analysis of the cross-layer depen-
dency between IM3 and IM4 (i.e. mapping
PIM to PSM in Fig. No. 8) is out of the
scope of this article.

The assumption three about the transfer-
ring of the essential features of the RW do-
main on the lower layers of modeling proven
by the modified MDA schema in Fig. No. 8.
Here an enterprise domain is perceived as
a self-managed system in the context of
second-order cybernetics (Glanville et. Al.
2002). Enterprise management activities
are specified using management functional
dependency, management transaction (MT),
and elementary management cycle (EMC)
concepts introduced in (Gudas, 2016), (Gu-
das, 2012a). The principle of the Internal

Model Control (Fig. No. 1) is explored for
cross-layer mapping control (Fig. No. 8).
The cross-layer mapping is defined as the
transformation of the complex structures,
assuring the traceability of the causal depen-
dencies (i.e., regularities fixed on the upper
layer) between the layers, starting from IM1.
The causality of RW domain is captured in
IM1 and transferred and transformed for its
intended purpose on the lower layers of the
framework. For instance, the similarities of
the internal architecture of MT and EMC
frameworks (IM2) are reflected in the auto-
nomic computing conceptual model (IM3)
depicted in Fig. No. 10.

Examples in Fig. No. 7 and Fig. No. 8
highlight the qualitative differences of the
two modeling paradigms:
•	 In the case of external modeling, RW

domain perceived as the needs of the
domain (stakeholder), which specified
as an empirical concept map (IM1).
However, in this way, RW domain
knowledge becomes fragmented and
relies on the experience of the business
analyst, because the use of a set of the
key concepts (e.g., requirements, capa-
bilities) is not sufficient to capture RW
causality (i.e., deep knowledge). The
cross-layer relationships are based on
the mapping concept to concept, but not
on the transference of systems regulari-
ties by mapping structure to structure.

•	 In the case of internal modeling, RW do-
main is perceived as a complex system
on the domain-related theoretical basis;
in this way, a complex system captures
the essential (deep) knowledge of the
domain and specifies as IM1; then, it
transmits through all layers due to the
IMC-based cross-layer transformations.
By setting up the internal modeling

paradigm in the modified MDA scheme for

98

the enterprise domain (Fig. No. 8), it was
established that:
•	 Fig. No. 6 presents the method of enter-

prise management knowledge discovery
and provides a view of what is captured
in IM1 – the essential content of man-
agement activities: enterprise goals,
management information, data, data/
knowledge transformations.

•	 The knowledge transfer between lay-
ers (a cross-layer mapping) is iterative,
includes a feedback flow (y), and that
corresponds with the principle of the in-
ternal model control system (Fig. No. 1).

•	 On a CIM layer, an internal model IM(2)
is considered as a complex system (self-
managed, goal-driven). The conceptu-
alization of IM2 by using management
transaction (MT) and EMC frameworks
(Fig. No. 6) is relevant to capture the
essential features of the domain.

•	 On a PIM layer, an internal model IM(3)
is illustrated through the generalized
architecture of the intelligent agent (Fig.
No. 3) and the autonomic computing
component (Fig. No. 10).

collaborate, and act independently with a
degree of automatism.

Software agents allow delegation of
tasks to the agents. We want to delegate
integration and interoperability tasks to
agents. For this purpose, the agent must
understand domain environment and have
an internal model of this environment.
There are multiple types of agents: Simple
reflex agents, model “ based reflex agents,
goal “ based agents, utility based agents,
and learning agents. Agents can also be
reactive and proactive. There are few types
of intelligent agents such as collaborative
agents, interface agents, mobile agents,
information/internet agents, reactive
agents, hybrid agents, smart agents (Geor-
gakarakou et al.). We are only focusing
on the intelligent agents with the internal
model (IM) of the environment as follows:
Goal-based agents, Utility-based agents,
learning agents. These agents are usually
classified to be hybrid agents, smart agents,
and believable agents.

The capabilities of the intelligent agents
(Fig. No. 9) are classified as follows:

Fig. No. 9. The capabilities of the intelligent agent’s types.

The intelligent agents and autonomic
computing components are major tech-
nologies, used for the implementation of
the internal modeling paradigm.

4.3. Capabilities of the Intelligent
Agents
Autonomic computing components mostly
are implemented using agent technologies
(Kephart et al., 2003). Multiple autonomic
managers of the software systems can learn,

1. Monitors states of data processing in
applications;

2. Reacts to the specific state of data pro-
cessing if necessary;

3. Understands data structure in each con-
nected application (application environ-
ment);

4. Understands/perceives application pro-
cesses (when and which data to use);

5. Uses utility functions to check structure
changes proactively;

99

6. Creativity: determines and fixes problems
in different applications;

7. Learning ability: has internal simulation/
testing abilities, is able to optimize one’s
behavior;
The conceptual structure of the intelli-

gent agents meets the generalized structure
of the software component with the internal
model (Fig. No. 3). All types of the intel-
ligent agents include a domain model (en-
vironment model) as a set of rules needed
to follow under certain conditions. The
internal model of different intelligent agents
captures the various knowledge items of
the domain:
•	 Th IM of the model-based reflex agent

includes a state of the world, a set of
actions, a set of condition-action rules;

•	 The IM of the goal-based agent includes
a state of the world, a set of actions,
goals, decision-making element;

•	 The IM of the utility-based agent inclu-
des a state of the world, utility function,
a set of actions, decision making ele-
ment;

•	 The IM of the learning agent includes a
state of the world, a learning sub-system,
a performance element.
The capabilities (1–7) of the intelligent

agents are corelated with the complexity of
the internal model (IM) of the agent type.
As a rule, the content of an IM of the in-
telligent agents is determined empirically;
based on the experience of stakeholders
(analysts, designers, and programmers), as
a rule, it does not explore the fundamental
theories of some particular domain type.
Only the theoretical knowledge of a par-
ticular domain type is explored, and the
resulting IM encapsulates causal dependen-
cies and could be classified as a gray box
or a white box.

4.4. Autonomic Computing
Components
Autonomic computing systems are aimed
to overcome growing software manage-
ment complexity by introducing self-man-
agement capabilities (Kephart et al. 2003).
The autonomic computing approach is an
example of applying control theory con-
cepts in software applications. It is already
known that control theory-based approaches
can be useful in a dynamic environment for
the development of software to monitor and
manage the behavior of system elements
(Gaudin et al. 2011). Autonomic computing
technologies exhibit four “self-manage-
ment” characteristics (Kephart et al. 2003).
First, self-configuration (able to configure
its parameters) (Peukert et al. 2012; Feinerer
2007). Second, self-optimization (ability
to reach optimal functioning). Third, self-
healing (ability to restore work after distur-
bances). Finally, self-protection (ability to
avoid disturbances/stay secure) (Heubscher
et al. 2008; Parashar et al. 2005).

The elements of the autonomic comput-
ing component are as follows: the Monitor
(M), Analyze (A), Plan (P), Execute (E) and
Knowledge model. The Knowledge Model
encapsulates knowledge of the situation
and environment: rules, constraints, poli-
cies, and facts (Kephart et al. 2003). The
content of the Knowledge model helps the
elements M, A, P and E to recognize states
and eventually respond to changes.

Fig. No. 10 depicts a version of the au-
tonomic manager specialized for enterprise
management; it is developed using the in-
ternal modeling paradigm and the enterprise
management frameworks discussed above.
This autonomic manager includes the
knowledge model KM, which is the result
of cross-layer transitions starting from the
internal model of enterprise domain (IM1)

100

(Fig. No. 6). So, by using our approach, we
obtain the following results: the autonomic
manager on the application layer (Fig.
No. 10) and the enterprise management
frameworks (MT and EMC, in Fig. No. 6)
on the business layer are similar conceptual
structures of the self-managed systems, but
on the different layers of modeling.

The ArchiMate model exchange format
(MEFF) was used for transforming IM
(business layer) to KM (application layer)
(The Open Group, ArchiMate® Model
Exchange File Format 2015). Using MEFF,
the business model reduces to a set of rules
understandable for the autonomic manager.

Autonomic managers (AM) may form a
hierarchical structure: a lower level AM(i)
is controlled by upper-level AM(i-1) and
so on.

The architecture of the enterprise
management system with the autonomic
manager (AM) in Fig. No. 10 reveals that
conceptualizations in Fig. Nos. 6 and 10 are
in line with each other, and this is a valida-
tion of the third assumption. The conceptual
structure of the enterprise management
framework (elements of EMC) matches the
components of the autonomic manager con-
tains eight matching components. Interpre-
tation (IN) matches the component Moni-

Fig. No. 10. Enterprise Architecture with autonomic manager based
on the internal modeling paradigm.

Autonomic Manager AM(i)

Execute
(Ei)

Plan
(Pi)

Monitor
(Mi)

Analyse
(Ai)

Software component touchpoint

Data /Message (Sj)

Data / Message (Ni)

Data /Message (Vj)

Autonomic software component SC(j)

Sensors (j) Effectors (j)

Sensors (i)

Data / Message
(Li)Data /Message

(Mi)

Effectors (i)

Management Functional Dependency (MFD)
Business Management Transaction (MT)

(see Fig. 6)
(Capability)

Layer 1

Layer 2

Layer 3

ArchiMate Application
Layer: autonomic

components, software
agents,

Knowledge
(KMi)

(MDA CIM layer)

MDA PIM layer

(MDA PSM layer)

RW Knowledge
Discovery

layer

(ArchiMate Business
 Layer)

Real World Domain Knowledge Model (IM1)

Internal Model of Enterprise (IM2)

Internal Behavior Elements
Elementary Management Cycle (EMC) (see Fig. 6)

(Business Service)

Internal Structure Elements
(Business Objects, Business Actor, Business Role)

 Software layer

Layer 4
Autonomic software component SC(n)

...

(...)
(ArchiMate

Motivation&Strategy
 Layer)

Enterprise
management layer

 Autonomic
components layer

101

tor (M), Data Processing (DP) matches the
component Analyze (A), Decision Making
(DM) matches the component Plan (P), the
Realization of decision (RE) corresponds
to the component Execute (E), respectively.
The autonomic manager AMi on the layer
three focus on the control of the software
components SC(j) on layer 4 (i.e., it could
be the enterprise applications (e.g. CRM,
E-Commerce). A control loop for control
of software component SC(j) comprises
Monitor (Mi), Analyze (Ai), Plan (Pi), and
Execute (Ei) components and the data/
message flows Sj, Li, Ni, Mi, and Vi. The
feedback (information flows Ki) between
knowledge component (KMi) and other
elements of the autonomic manager (AM(i))
ensures a self-management capabilities
(Fig. No. 10). The feedback information
flows Ki, from components M, A, P, E to
KMi, contain information of the previous
task’s execution on event logs (start, stop
and error logs).

Enterprise management applications
controlled by the autonomic manager over
web services or direct data connections to
the database. Sensors in Fig. No. 10 are web
services or direct data access points that al-
low data extraction (using Get operations).
Effectors are web services or direct data
access points that allow data input (using
Set operations) (Fig. No. 10). An autonomic
manager retrieves data through data flow
Vi (Get operation) and pushes data through
data flow Si. The component Monitor (Mi)
follows the content of domain knowledge
captured in the Knowledge component
(KMi). The business layer data and knowl-
edge items obtained through data/knowl-
edge flows (Vi, Si). The result of monitor-
ing is a message Ji passed by component
Monitor (Mi) to component Analyse (Ai).
The autonomic manager-based architecture

of the interoperable enterprise applications
presented in the next section.

5. Approach to Application Intero-
perability using the Internal Model

5.1. The Problem of Applications
Interoperability

In this section, the issue of interoper-
ability of applications is discussed in
more detail. In the real world enterprise
scenario, a specific software system (a set
of applications and databases, mainframes,
workstations, data) supports some business
processes (e.g., customer registering, manu-
facturing, selling, shipping). The applica-
tion requires a feedback loop, determined
for the mutual interaction scenario of some
business process (Fig. No. 11). An example
of the business activity scenario: a sort of
a manufacturing plant uses devices with
sensors to observe manufacturing processes,
product testing, and packing processes. The
software system of each manufacturing fa-
cility has the multiple interfaces to receive
data from the sensors. Our approach is
different from other interoperability meth-
ods, because, in this paper, we research a
dimension that slices through three distinct
interoperability levels (Technical, Seman-
tic/Data and Organization); these levels are
clearly defined in the European Interoper-
ability Framework (EIF) and mentioned
in multiple other articles (EIF 2004; F.B.
Vernadat 2007).

In a dynamic enterprise environment,
applications might be changed and adapted
following the business requirements chang-
es, so the business process model should
be modified as well. Consider a case of
business changes, where a new generation
device (collecting robot or some other new
device) is installed (Fig. No. 11). A new ap-

102

plication (depicted in Fig. No. 11 as a pair
(F(new), P(new)) has different interfaces
or slightly different data formats that have
not been registered in the plant database
before. The challenge is that the new device
can cause changes in the business process
flow, and efficiency problems can appear.
For instance, additional work will be re-
quired to integrate with the legacy software
if a new device is not able to adapt itself
correctly. The manufacturing staff (users)
and programmers have to work together to
modify interfaces of the existing software
systems due to that new installation, ensur-
ing full interoperability among the new and
old software systems.

as follows: to find the issue – to understand
the issue – to fix the issue.

The integration of the new installations
and the existing software systems is the
issue. Fig. No. 12 presents the architecture
of the autonomic integration system. It is
developed using as a background the modi-
fied MDA (Fig. No. 8), the knowledge com-
ponents of enterprise domain (Fig. No. 6)
and autonomous computing components
(Kephart et al. 2003).

Fig. No. 11 presents the system with
the interoperability component. Looking to
the enterprise system from the perspective
of the internal modeling based MDD (the
modified MDA scheme in Fig. No. 8), we

Figure No. 11. Interoperability in the enterprise system.

a) Legacy system (a lack of interoperability capability)

b) System with interoperability component

Application
layer

Business
layer

Application
layer

Business
layer

P1 P(new) P2 P2

F1 F(new) F2 F3

P1 P2 P2

F1

Integrated
F(new)

F2 F3

Direct
management

Indirect
management
(via autonomic
component)

Process flow

If an existing (legacy) software system is
not flexible enough to handle with changes
(Fig. No. 11a – a lack of interoperability
capability), additional efforts are required
for the software system integration when
the changes occurred. The legacy applica-
tions would not be able to communicate
without introducing a new device to all the
existing software systems of the enterprise.
A typical case of the required efforts to
ensure the integrity of the software system
of any organization is the work put in to
restore business and software integration.
Restoring integration is an iterative process

found out that two-way communication
between the business layer and application
layer is required. The cross-layer feedback
loop ensures system integrity and is deter-
mined using knowledge models (IM2 and
IM3 in Fig. No. 8).

The new application Integrated F(new)
is an autonomic component (application
layer in Fig. No. 11b), which is able for
self-integration with existing (legacy) ap-
plications due to the internal knowledge
(captured in KMi, see Fig. No. 10). In this
case, due to such functionality of the self-
integration of the Integrated F(new), there is

103

no need for changes in the existing business
processes (Business layer in Fig. No. 11b).

5.2. State of the Art in Application
Interoperability Solutions
There are a lot of different types of the
enterprise application interactions in the
dynamic environment (e.g. Customer entry
to the application, order placement). To
maintain the application interoperability is
complicated if data structures or the web
service composition are not available.

Method to find the best solution for
designing the interoperability of enterprise
applications is described in (Galasso et al.
2016). The important point is that based
on accurate and relevant business process
model the measurement of interoperability
performance. Presented in (Galasso et al.,
2016) methods are focused on the evalua-
tion of the complexity of interoperability
projects and choices of the best interop-
erability solution based on the business
process modeling.

In dealing with the applications in-
teroperability problem, Papazoglou et al.
(2008) declare a need for service-oriented
computing, known as SOC. However, they
do not mention problems of application
communication difficulties (between web
services or schema alignment) (McCann et
al. 2005), record linkage, data fusion (Dong
et al. 2013), application communication
orchestration or choreography.

Dervice-oriented architecture (SOA) is
used to define communication of the web
services (Krafzig et al. 2005; Michlmayr et
al. 2007). However, the web service itself
does not communicate with other systems
without medium application. Middleware
integration application defines how and
when data migrate and perform migration
actions from one web service to another.

B. Benatalah et al. (Benatallah et al. 2005)
analyzed the requirements of the special
adapters to web services to integrate enter-
prise applications. However, the authors do
not mention how to solve interoperability
issues in a dynamic enterprise environment
when the application structure changes.

Neither Lankhorst (Lankhorst 2013)
nor Open Group (Georgakarakou et al.)
provided a detailed description of the ap-
plication collaboration. In the Open Group
documentation, it seems that a collaboration
element can only be collaborating with the
components of the same application but not
with the elements of different applications.

In a common case, the applications
do not have direct access to use the inner
components of other applications and thus
are not able to ensure interoperability on
the component level (without external
impact). When examining the SOA API
interface specifications, we can determine
the interface data structures and their types,
but the data attributes matching can not
be identified. Furthermore, the SOA API
interface specifications not determine the
sequence of actions (which should define
the flow of integration with each applica-
tion). However, business process model
helps to discover such sequence. Since
it is impossible to obtain an internal data
structure of other application, the alterna-
tive is to use the detailed (deep knowledge)
captured by the domain model. Only using
a deep knowledge would allow determining
the integration actions and the sequence of
actions.

The modified MDA (Fig. No. 8) based
approach to the autonomic integration was
developed using the knowledge components
of enterprise domain (Fig. No. 6) and au-
tonomous computing components (Kephart
et al., 2003). This applications interoper-

104

ability solution based on the deep domain
knowledge model. Fig. No. 12 depicts the
architecture of the interoperable enterprise
applications. Considering the internal mod-
eling perspective applied at the each layer
of modified MDA (Fig. No. 8), the internal
models (IM2, IM3, IM4) preserve the map-
pings of the essential dependencies of the
particular RW domain, which are captured
at the top layer (knowledge discovery layer)
and fixed as IM1.

5.3. The Architecture of the Interope-
rable Enterprise Applications
The architecture of the interoperable enter-
prise applications presented in Fig. No. 12.
The key element of the solution is a middle-
ware called the autonomic interoperability
application. Autonomic interoperability
application acts as a medium between mul-
tiple legacy applications Application 1, …,
Application n (Fig. No. 12).

The enterprise model IM2 (MDA CIM,
or ArchiMate business layer in Fig. No. 8)

describes enterprise management activities
and enterprise environment. The most im-
portant part of the enterprise model IM2 is
the business activity sequence (workflow)
of the management transaction, specified
in detail by an elementary management
cycle (Fig. No. 8). IM2 is content of the
knowledge element KM2 of the autonomic
interoperability application. Business pro-
cess flow rules might also be derived from
WSDL file of web service (Valatavicius et
al. 2014). Also, the data might duplicate in
the different applications of a single enter-
prise, the data structures, and fields naming
can be heterogeneous (that require changing
format) (Bernstein et al. 2011)).

What is more complicated, the appli-
cation data management process can be
different, and this is the reason why the
business process model is so important
for retracing the sequence of data manage-
ment events. Therefore, business modeling
language should describe what data and in
what order transferred between applica-

Fig. No. 12. The architecture of the interoperable enterprise applications.

Application n Application 1

Autonomic Interoperability Application
Sensors Effectors

Knowledge (KM3)

Interface n Interface 1

SensorsEffectorsSensorsEffectors

Data OUTData IN

Monitor() Execute()

Data OutData IN

Analyze() Plan()Data

Enterprise model analysis application
Knowledge (KM2)

Domain knowledge analysis application

Knowledge (KM1)

Autonomic components layer
(MDA PIM layer)

Data Data

105

tions. The collaboration element should
use application interfaces, not application
components. The modeling languages (e.g.,
UML, BPMN, ArchiMate) discussed in the
previous chapter have limited capabilities
for the specification of the application col-
laboration element.

The relation between the business pro-
cess model and application management
process is explained by creating an internal
model of relationships between them. The
internal model should remain as a ruleset
in the knowledge elements (KMi) of each
autonomic component. The architecture of
the interoperable enterprise applications
is depicted in Fig. No. 12, and it includes
the autonomic interoperability application
(AIA). AIA monitors other application
interfaces (two or more) for data records
changes using web service interfaces. AIA
transfers the modified data copies to other
applications. The required business process
flow is identified by AIA using the knowl-
edge elements (KMi).

The autonomic computing element
stems from IBM autonomic computing
methodology (Jackob et al. 2004). The

knowledge element must contain basic
rules and policies to have self-management
capabilities. To record the state of the inte-
grated applications in a dynamic business
environment, the autonomic component
has to monitor sensors placed in managed
applications.

The presented in Fig. No. 12 autonomic
application can collaborate with other ap-
plications related with the same domain or
can require an additional input (knowledge).

6. The Prototype of the Software
Interoperability Validation

The prototype version for testing of enter-
prise application integration solutions is
under development (the screenshot in Fig.
No. 13). Currently, the prototype calculates
the number of the records in applications for
each integration method. If the difference is
zero (=0) the specified application compo-
nent is interoperable, if the difference is not
zero (> 0), it is not interoperable.

However, this prototype does not cover
some issues of schema matching. For the
experimental verification of proposed

Fig. No. 13. Screenshot of the prototype for software interoperability validation.

106

solution of the autonomic interoperability
component with the internal model (Fig.
No. 12), we prepared a simple ArchiMate
business layer model that covers processes
of the fictional organization (Fig. No. 14).
This model covers only a very tiny part
of the processes (i.e., only the registration
of clients, customers or suppliers). The
business model depicted in Fig. No. 14 is
extracted using the model exchange format
of the Dublin Core schema version 1.1. Fig.
No. 14 presents specifications extracted
from this document as part of knowledge
content required for the autonomic com-
puting element KM3. KM3 stores the real-
world knowledge (Fig. No. 14) in a Model
Exchange File Format (MEFF).

On an experimental basis, we can say
that:

•	 By using native code integration solu-
tions (i.e., c# interoperability solution),
the complex logic required for interope-
rability application middleware can be
achieved, but all manageability efforts
belong to the programmer. Integration
specialist or interoperability adminis-
trator should manually implement every
new adaptation to the environment.

•	 The development of the interoperabi-
lity solution is easier with enterprise
application integration (EAI) due to a
graphical designer. Here, the scheme
of all application components is visu-
alized and can be mapped easily. The
manageability level is higher than using
native code.
In Fig. No. 15a, we present the chore-

ography of one-way interoperability of two

Fig. No. 14. Business architecture layer covering registration of clients and
its conversion to the MEFF format.

107

different software components: the applica-
tion’s “SuiteCRM” component “Contacts”
is integrated with the “Prestashop” com-
ponent “Customer.” In Fig. No. 16b, there
is a specification of the Map element that
describes the mapping of attributes (fields)
of two different components in the various
applications. The more fields corresponding
to one of the other, the better the chances
that the components are interoperable. In
other words, these components are repre-
sentations of the same entity of the real
world. Choreography (Fig. No. 15a) is
fully dependent on the business architecture
(Fig. No. 14) and its elements “Migrate to
CRM,” “Migrate to E-Shop” dictates the
execution order of components described
in Fig. No. 14.

By the links between the component
fields depicted in Fig. No. 15b, it can be
concluded that the “Suite CRM” component
“Contacts” is semantically interoperable
with the “Prestashop” component “Custom-
ers.” In our prototype, validation indicates
when the difference of record count is zero
(=0). For instance, with a new record in

Contacts (CRM) created a new record for
the same entity should appear in Customers
(E-Shop), and the difference of record count
is zero (=0) showing the interoperability
succeeded.

Our research is still in progress, and we
need to continue working on the autonomic
interoperability component usage in the
dynamic business environment.

Conclusions
The scientific contribution of our approach
is a new viewpoint toward the interoperabil-
ity of applications. Our research suggests
that to achieve higher levels of autonomy,
every smart system should encapsulate a
deep knowledge of a target domain. By
integrating the internal modeling paradigm
with MDA approach and using this method
to the development of interoperability solu-
tions, we seek to create more autonomous
software systems in the enterprise environ-
ment. The review of the modeling method-
ologies reveals the relationships between
the business domain modeling paradigms,

Fig. No. 15. Choreography (a) and schema matching (b) in “Talend Open Studio
for Data Integration” (EAI).

108

enterprise architecture modeling, software
architecture modeling.

Our research shows that autonomic ap-
plication interoperability can be achieved
using IBM’s autonomic computing ap-
proach together with a deep knowledge
of the real world domain (i.e., the inter-
nal model), but the challenge is in the
understanding how these models can be
integrated together. Moreover, our research
reveals the main perceived causality of the
target domain at the enterprise architecture
modeling and current implementation of
applications in business. From our research,
it is clear that the software engineering
target domain is an enterprise – a complex
organizational system. Other findings state
that functional management dependencies
of the management activities are the es-
sential knowledge in the business domain
required for business software engineering.
In practice, no model of enterprise architec-
ture and business models are used before
designing and developing interoperability
between multiple applications. Our solution
suggests that the models be created using a
modified MDA approach; enterprise archi-
tecture and business process models can
be used to reach higher levels of autonomy
of interoperable application solutions. The
constructed theoretical background includes
internal modeling paradigm definitions
from second order cybernetics and auto-
nomic computing approach, and it allows
model autonomous integration as well as
interoperability solutions. The relevance of
the domain knowledge discovery method is
currently the main roadblock to continuing
our research and by itself is a fundamental
issue of the domain modeling, which deter-
mines the relevance (validity) of IM against
the RW domain. A theoretical background
(domain theory) requires for recognizing
the essential features of the domain type.

An analysis of the role of the internal
model (IM) in control systems allows for
concluding that the adaptation of the inter-
nal model (IM) in the context of software
systems development is a relevant topic for
enhancing intelligent technologies. The dis-
crepancy of domain complexity and mod-
eling capabilities causes problems of the
enterprise applications development, inte-
gration, and adjustment to the environment
changes. The reason for the deficiency is the
modeling methodology, because enterprise
domain is modeling languages is based
on the external modeling paradigm. Such
models are not focused on the modeling
of the business dynamic (i.e., not focused
on the domain causal dependencies), and
therefore currently are inadequate to support
the development of the intelligent enterprise
software (e.g., autonomous applications).
The prerogative is using the internal model-
ing paradigm.

Our paper contributes to the theory of
application interoperability by proposing
an interdimension approach of multiple
integration levels (organizational, data/
semantical, technical) mentioned in the Eu-
ropean Interoperability Framework (EIF).

The internal modeling paradigm con-
solidation with the model, which is the
driven architecture approach (OMG MDA),
is described and illustrated. The peculiar-
ity of the modified MDA is a focus on the
cross-layer transferring of domain causal-
ity. The internal modeling concentrate on
the discovering of deep knowledge of the
problem domain, i.e., the internal modeling
is aimed to reveal causal dependencies of
the problem domain. The adapting of the
internal modeling approach for enterprise
domain modeling and intelligent software
system development looks promising. The
proposed modified MDA framework is

109

based on the three assumptions as follows.
First, the knowledge-based enterprise
software development methods should
be focused on the modeling of the causal
dependencies of the domain. The second
assumption of the software system develop-
ment definition as the cross-layer mapping
(e.g., motivation, business, application and
technology layers) of the internal models
confirmed by the layered structure of the en-
terprise architecture frameworks. The third
assumption for the transference of essential
features of the real world domain across
the layers is a fundamental condition; it is
shown by the similarity of the knowledge
model CIM layer (MDA) and PIM level
knowledge models. The capabilities of the
intelligent software systems (applications)
strongly depend on the real world domain
causality discovering on the top layer and
the cross-layer transferring of the identified
causal dependencies. The cross-layer rela-
tionships in OMG MDA is a mild statement;
it is characterized as the mapping of models
(CIM to PIM, PIM to PSM). The cross-layer
transferring of the deep knowledge in the
context of the internal modeling paradigm
(as well as the good regulator theorem)
requires stricter definition.

In the case of external modeling, a real
world domain is perceived in terms of cer-
tain stakeholder needs, which are revealed
and specified as a concept map (IM1). In
this way, real world domain knowledge is
fragmented, only a few key concepts (e.g.,
the requirements and capabilities) are the
background for the next stage of develop-
ment. We discovered that the contents of all
other layers depend on the main concepts
of the upper layer, i.e., that they depend
more on the experience of an analyst and
the selected modeling method. So, by con-
sidering the internal modeling perspective,

each layer of the modified MDA (Fig. No.
8) contains the transformed necessary de-
pendencies of the domain (IM2, IM3 and
IM4, respectively), which are captured and
fixed as IM1 at the top layer (knowledge
discovery layer).

We were able to find similarities be-
tweem the internal model of enterprise
domain (IM2), enterprise architecture
model (IM3), and the autonomic computing
component architecture. The similarities
are namely the general internal structure
(internal models) of these different types
of systems; in particular, the similarities of
the internal transactions (feedback loops),
including the information and knowledge,
flows in the feedback loops.

This internal modeling paradigm is con-
solidated with the model that is driven by
the software development approach and is
illustrated by a case study of the interoper-
ability problems, using the autonomic com-
puting components approach. The knowl-
edge element of the autonomic component
contains a complex model of the dynamic
environment and controls the behavior
of integration processes. This autonomic
interoperability component is focused on
evaluating the state of the other applications
and ensure the integration of applications in
a dynamic business environment.

The architecture of the interoperable
enterprise applications with the autonomic
integration component is presented and
demonstrated by the prototype. However,
further work is needed to make the compari-
son to existing interoperability solutions.
The presented approach is different from
other interoperability methods, because in
this paper, we research a dimension that
slices through three distinct interoperability
levels (Technical, Semantic/Data, and Or-
ganiZation). The assumption is that nothing

110

can have a properly designed interoper-
ability of enterprise applications if it has
no knowledge of domain causality, which
should be transferred across the modeling
layers from the business process modeling
to these enterprise applications develop-
ment. In most rival articles on interoper-
ability, there is a lack of analysis of the
mutual relations of application and business
processes. Therefore, this approach is aimed
to get more insights into the autonomic
interoperability subject, which would be
based on the deep knowledge of the domain.

The experimental verification of the
proposed method was made for an E-Shop

environment using three software systems:
Webshops (Prestashop and Oscommerce)
and CRM (SuiteCRM). The ongoing experi-
ment confirms that application integration
and interoperability solutions are not an
easy task, even in a static environment.
There is still a lot of work to be done to
gather evidence that autonomic interoper-
ability application with the internal enter-
prise domain model is a reliable solution.
With the initial prototype created for the
validation of interoperability of applica-
tions, we observed that deep knowledge
(internal model) is essential for effective
interoperability.

REFERENCES

ABDELZAHER, Tarek, et al. (2008). Introduction
to control theory and its application to computing
systems. In: Performance Modeling and Engineering.
Springer US, p. 185–215.

ArchiMate® 3.0 Specification [interactive], The
Open Group, 2016. Document Number: C162 [re-
viewed 2017 y. June 15 d.]. Internet access: <http://
pubs.opengroup.org/architecture/archimate3-doc/>.
ISBN: 1-937218-74-4.

ASHBY, W. Ross (2017). An introduction to cy-
bernetics. S. l.: London Chapman & Hall Ltd, 1956
[reviewed 2017 y. June 9 d.]. Internet access: <http://
dspace.utalca.cl/bitstream/1950/6344/2/IntroCyb.
pdf>.

BARTON, Rick (2013). Talend Open Studio
Cookbook. Packt Publishing Ltd. ISBN:1782167277.

BENATALLAH, Boualem et al. (2005). Develop-
ing adapters for web services integration. In Interna-
tional Conference on Advanced Information Systems
Engineering. Springer Berlin Heidelberg, p. 415–429.

BERNSTEIN, Philip A., et al. (2011). Generic
schema matching, ten years later. In: Proceedings of
the VLDB Endowment, 4(11) p. 695–701.

BRACHE, Alan P. (2002). How organizations
work: Taking a holistic approach to enterprise health.
John Wiley & Sons.

CONANT, Roger C.; ASHBY, W. (1970). Ross.
Every good regulator of a system must be a model
of that system. In: International journal of systems
science, 1 (2), p. 89–97.

CZARNECKI, Krzysztof; HELSEN Simon
(2003). Classification of model transformation ap-
proaches. In: Proceedings of the 2nd OOPSLA Work-
shop on Generative Techniques in the Context of the
Model Driven Architecture, 45(3).

DIETZ, Jan LG. (2006). The deep structure of
business processes. Communications of the ACM,
49(5), p. 58–64.

DONG, Xin Luna; NAUMANN Felix (2009).
Data fusion: resolving data conflicts for integration.
In: Proceedings of the VLDB Endowment, 2(2),
p. 1654–1655.

DONG, Xin Luna; SRIVASTAVA, Divesh (2013).
Big data integration. In: Data Engineering (ICDE),
IEEE 29th International Conference, p. 1245–1248.

European interoperability framework for pan-
european egovernment services. European Com-
munities, 2004 [reviewed 2017 y. June 3 d.]. Internet
access: <http://ec.europa.eu/idabc/servlets/Docd552.
pdf>. ISBN 92-894-8389-X.

EL-HALWAGI, Mahmoud M. (2016). Process
integration. Academic Press, 7. ISBN 0-12-370532-0.

FAYOL, Henri (2016). General and industrial
management. Ravenio Books.

FEINERER, Ingo (2007). A formal treatment of
UML class diagrams as an efficient method for con-
figuration management.

FOWLER, Martin. UML distilled: a brief guide
to the standard object modeling language. Addison-
Wesley Professional, 2004.

111

FRANCIS, Bruce A.; WONHAM, W. Murray
(1976). The internal model principle of control theory.
Automatica, 12(5), p. 457–465.

 GALASSO, François, et al. (2016). A method to
select a successful interoperability solution through
a simulation approach. Journal of Intelligent Manu-
facturing, 27(1), p. 217–229.

GAUDIN, Benoit, et al. (2011). Nixon A Control
Theory-Based Approach for Self-Healing of Un-
handled Runtime Exceptions. In: Proceeding of the
8th ACM international conference on Autonomic
computing, ACM, p. 217–220.

GEORGAKARAKOU, Chrysanthi E.; ECONO-
MIDES, Anastasios A. (2003). Software Agent
Technology: an Οverview Application to Virtual
Enterprises. In: Agent and Web Service Technolo-
gies in Virtual Enterprises, N. Protogeros (ed.). Idea
Group Publ.

GEORGAKOPOULOS, Diimitrios; HORN-
ICK, Mark; SHETH, Amit (1995). An Overview of
Workflow Management: From Process Modeling to
Workflow Automation Infrastructure. Distributed and
Parallel Databases, 3(2), p. 119–153.

GLANVILLE, Ranulph (2002). Second order
cybernetics. In: Systems Science and Cybernetics,
p. 59–85.

GROSSMANN, Georg; SCHREFL Michael;
STUMPTNER, Markus (2007). Exploiting semantics
of inter-process dependencies to instantiate predefined
integration patterns. Australian Computer Society,
p. 155–156.

GUDAS, Saulius (2016). Information Systems
Engineering and Knowledge-Based Enterprise Mod-
elling: Towards Foundations of Theory. In: Springer
Proceedings in Business and Economics, p. 481–497.
ISBN 978-3-319-33865-1.

GUDAS, Saulius; LOPATA, Audrius (2016). To-
wards internal modelling of the information systems
application domain. Informatica, 27(1), p. 1–29. ISSN
0868-4952.

GUDAS, Saulius; LOPATA, Audrius (2015).
Meta-model based development of use case model
for a business function. Information Technology and
Control, 36 (3).

GUDAS, Saulius (2012). Foundations of the
information systems’ engineering theory. Vilnius
University Press, p. 384.

GUDAS, Saulius (2012). Knowledge-Based En-
terprise Framework: A Management Control View. In:
New Research on Knowledge Management Models
and Methods. InTech, 2012.

HALEVY, Alon; RAJARAMAN, Anand; OR-
DILLE, Joann (2006). Data integration: the teenage
years. In: Proceedings of the 32nd international
conference on Very large data bases. VLDB Endow-
ment, p. 9–16.

HEYLIGHEN, Francis; JOSLYN, Cliff (2001).
Cybernetics, and Second-Order Cybernetics. In:
Encyclopedia of Physical science & Technology, 4,
p. 155–170.

HOHPE, Gregor; WOOLF, Bobby (2002). En-
terprise integration patterns. In: 9th Conference on
Pattern Language of Programs, p. 1–9.

HUEBSCHER, Markus C.; MCCANN, Julie A.
(2008). A survey of autonomic computing-degrees,
models, and applications. ACM Computing Surveys
(CSUR), 40(3), p. 7.

JACOB, Bart, et al. (2004). A practical guide
to the IBM autonomic computing toolkit. In: IBM
Redbooks, 4, p. 10.

KARDOŠ, Martin; DROZDOVÁ, Matilda (2010).
Analytical method of CIM to PIM transformation in
Model Driven Architecture (MDA). Journal of Infor-
mation and Organizational Sciences, 34(1), p. 89–99.

KEPHART, Jeffrey O.; CHESS, David M. (2003).
The vision of autonomic computing. In: Computer,
36(1), p. 41–50.

KUMAR, Shrawan (2012). Kac-Moody groups,
their flag varieties, and representation theory.
Springer Science & Business Media.

KUTSCHE, Ralf-Detlef; MILANOVIC Nikola,
eds. (2008). Model-Based Software and Data Integra-
tion: First International Workshop. In: Proceedings,
vol. 8. Springer Science & Business Media. MBSDI.

KRAFZIG, Dirk; BANKE Karl; SLAMA, Dirk
(2005).. Enterprise SOA: service-oriented architecture
best practices. Prentice Hall Professional.

KROGSTIE, John (2005). EEML2005: extended
enterprise modeling language. Norvegian University
of Science and Technology.

LABROU, Y. Peng1, et al. (1998). A multi-agent
system for enterprise integration.

LANKHORST, Marc (2013). Communication of
Enterprise Architectures. In: Enterprise Architecture
at Work, p. 61–74.

LI, Li; WU, Baolin; YANG, Yun (2005). Agent-
based ontology integration for ontology-based ap-
plications. In: Proceedings of the 2005 Australasian
Ontology Workshop, vol. 58. Australian Computer
Society, Inc., p. 53–59.

MAREELS, Iven; POLDERMAN, Jan Willem
(2012). Adaptive systems: an introduction. Springer
Science & Business Media. ISBN 978-1-4612-6414-9.

112

MCCANN, Robert, et al. (2005). Mapping main-
tenance for data integration systems. In: Proceedings
of the 31st international conference on Very large data
bases. VLDB Endowment, p. 1018–1029.

MEDINA-MORA, Raul, et al. (1992). The action
workflow approach to workflow management technol-
ogy. In: Proceedings of the 1992 ACM conference on
Computer-supported cooperative work. ACM.

MICHLMAYR, Anton, et al. (2007). Towards
recovering the broken SOA triangle: a software
engineering perspective. In: 2nd international work-
shop on Service oriented software engineering: in
conjunction with the 6th ESEC/FSE joint meeting.
ACM, p. 22–28.

MOEN, Ronald; NORMAN Clifford (2006).
Evolution of the PDCA cycle.

OSIS, Janis (2004). Software development with
topological model in the framework of MDA. CAiSE
Workshops, 1, p. 211–220.

OVEREINDER, Benno J.; VERKAIK, P. D.;
BRAZIER, Frances MT (2008). Web service access
management for integration with agent systems. In:
Proceedings of the 2008 ACM symposium on Applied
computing. ACM, p. 1854–1860.

PAPAZOGLOU, Michael P., et al. (2008).
Service-oriented computing: a research roadmap.
International Journal of Cooperative Information
Systems,17(2), p. 223–255.

PARASHAR, Manish; HARIRI Salim (2005). Au-
tonomic computing: An overview. In: Unconventional
Programming Paradigms, p. 97–97.

PAVLIN, Gregor; KAMERMANS, Michiel; SCA-
FES, Mihnea (2010). Dynamic process integration
framework: Toward efficient information processing
in complex distributed systems. Informatica, 34(4).

PEUKERT, Eric; EBERIUS Julian; RAHM Erhard
(2012). A self-configuring schema matching system.
In: IEEE 28th International Conference on Data
Engineering. IEEE, p. 306–317.

PORTER, Michael E.; MILLAR Victor E. (1985).
How information gives you a competitive advantage.

RAHM, Erhard; BERNSTEIN, Philip A. (2001). A
survey of approaches to automatic schema matching.
The VLDB Journal, p. 334–350.

SENDALL, Shane; KOZACZYNSKI Wojtek
(2003). Model transformation: The heart and soul of
model-driven software development. IEEE software,
20(5), p. 42–45.

SHVAIKO, Pavel; EUZENAT Jérôme (2013).
Ontology matching: state of the art and future chal-
lenges. In: IEEE Transactions on knowledge and data
engineering, 25(1), p. 158–176.

SILVERSTON, Len; INMON, William H.; GRA-
ZIANO Kent (1997). The data model resource book:
a library of logical data models and data warehouse
designs. John Wiley & Sons, Inc. ISBN:0471153672.

 TIN, Chung; POON, Chi-Sang (2005). Internal
models in sensorimotor integration: perspectives from
adaptive control theory. Journal of Neural Engineer-
ing, 2(3), S147.

TROTTA, Gian (2003). Dancing Around EAI’Bear
Traps’. Business Process Management (BPM) Best
Practices.

VALATAVICIUS, Andrius; DILIJONAS, Darius
(2014). Dynamic B2B process integration. In: Pro-
ceedings of “Informacinės Technologijos”, p. 34–39.

VALATVICIUS, Andrius; GUDAS, Saulius
(2015). Enterprise Software System Integration Us-
ing Autonomic Computing. CEUR-WS. org, 1420,
p. 156–163.

VAN DEN BOSCH, Marcel APM, et al. (2010).
A selection-method for Enterprise Application Inte-
gration solutions. In: International Conference on
Business Informatics Research, p. 176–187.

VERNADAT, François (2002). UEML: towards
a unified enterprise modelling language. Interna-
tional Journal of Production Research, 40(17),
p. 4309–4321.

VERNADAT, François B. (2007). Interoperable
enterprise systems: Principles, concepts, and methods.
In: Annual Reviews in Control, 31(1), p. 137–145.

WINOGRAD, Terry; FLORES Fernando (1986).
Understanding computers and cognition: A new
foundation for design. Intellect Books.

WHITE, Stephen A., et al. (2011). BPMN 2.0
handbook second edition: methods, concepts, case
studies and standards in business process modeling
notation. Future strategies, Inc.

WINTER, Kirsten; SANTEN Thomas; HEISEL
Maritta (1998). An agenda for specifying software
components with complex data models. In: Computer
Safety, Reliability and Security, p. 16–31.

ZACHMAN, John A. (1987). A framework for in-
formation systems architecture. IBM Systems Journal,
26(3), p. 276–292.

ZINNIKUS, Ingo; HAHN Christian; FISCHER
Klaus (2008). A model-driven, agent-based approach
for the integration of services into a collaborative
business process. In: Proceedings of the 7th interna-
tional joint conference on Autonomous agents and
multiagent systems, vol. 1. International Foundation
for Autonomous Agents and Multiagent Systems,
p. 241–248.

113

APIE TAIKOMŲJŲ PROGRAMŲ SĄVEIKUMO METODOLOGIJĄ, GRINDŽIAMĄ
GILUMINĖMIS ŽINIOMIS

Andrius Valatavičius, Saulius Gudas
S a n t r a u k a

Įmonių taikomųjų programų sąveika dinamiškoje
aplinkoje yra aktuali problema. Būtina ieškoti
naujų metodologijų ir sprendimų. Siūlomo metodo
metodologinis pagrindas yra vidinio modeliavi-
mo paradigma, kuri integruota su MDA (OMG)
metodu. Modifikuota MDA schema apima naują
modeliavimo sluoksnį, skirtą žinioms apie realy-
bės domeno savybes aprašyti, naudojami veiklos
vidinio modeliavimo karkasai, grindžiami valdymo
transakcijos konceptu. Modifikuota MDA schema
leidžia apibrėžti organizacijos veiklos srities realybės
priežastinius ryšius ir juos perduoti į skirtingus MDA
sluoksnių modelius. Tyrimas remiasi prielaida, kad
organizacijų veiklos sritis yra tikslo siekianti ir save
valdanti sistema. Valdymo transakcija yra esminis
veiklos valdymo vidinio modeliavimo konceptas,
nes atskleidžia kiekvienos tikslo siekiančios veiklos

vidines informacijos transformacijas (tai giliosios
žinios apie save valdančias veiklas). Panaudoti
veiklos vidinio modeliavimo karkasai leidžia atsekti
realybės domeno – organizacijos veiklos – priežas-
tines priklausomybes per visus programinės įrangos
kūrimo MDA sluoksnius ir taip nustatyti domeno
priežastingumo įtaką programos vientisumui ir
sąveikai. Šis metodas jungia veiklos modeliavimo
metodus ir reguliavimo teorijos principus, veiklos
architektūros modeliavimo karkasus ir autonominio
skaičiavimo koncepciją. Veiklos architektūros mode-
liavimo kalba ArchiMate yra vartojama priežastinių
ryšių perdavimui tarp modelių, kurie yra skirtinguose
MDA sluoksniuose, iliustruoti. Aprašyta šiuo metodu
sukurta taikomųjų programų sąveikumą užtikrinanti
programų sistemos architektūra su autonominiu
integravimo komponentu.

2017 m. rugpjūčio 8 d.

