
ISSN 1392-0561. INFORMACIJOS MOKSLAI. 2011 56

146

application of pure aspect-oriented design patterns in
the development of ao frameworks: a case study

Žilvinas vaira
Vilnius University, Institute of Mathematics and
Informatics, Software Engineering Department,
Doctoral student, MS
Vilniaus universiteto Matematikos ir informatikos
instituto Programų sistemų inžinerijos skyriaus
doktorantas
Akademijos Str. 4, LT-08412 Vilnius
E-mail: zilvinas.vaira@ik.ku.lt

albertas Čaplinskas
Vilnius University, Institute of Mathematics and
Informatics, Principal researcher, Professor,
Doctor (HP)
Vilniaus universiteto Matematikos ir informatikos
instituto Programų sistemų inžinerijos skyriaus
vedėjas, profesorius, daktaras (HP)
Akademijos Str. 4, LT-08412 Vilnius
E-mail: albertas.caplinskas@mii.vu.lt

The paper discusses results of a case study on the advantages applying pure aspect design patterns
in the development of aspect-oriented (AO) application frameworks. By an AO application framework
we mean a framework which, alongside with traditional object-oriented (OO) framework customiza-
tion mechanisms, provides also abstract aspects as hot spots. We have tested the hypothesis that
pure AO design patterns should promote the ease of designing collaborating abstract aspects repre-
senting hot spots. To this end, we studied the process of reworking of the OO simulation application
framework into the AO framework. During this study, appropriate qualitative and quantitative data
have been collected. The paper presents the generalization of the collected data and concludes that
the above hypothesis has been proven.

Introduction

The	 paper	 presents	 results	 of	 experimental	
research on the application of aspect design
patterns in the development of aspect-oriented
application frameworks. There is still no com-
mon	 consensus	 as	 to	 what	 the	 term	 “aspect-
oriented	framework”	really	means.	Roughly,	all	
software frameworks, including aspect-oriented
ones, may be divided into three categories: ap-
plication frameworks, domain frameworks and
supporting frameworks (Adair, 1995). Aspect-
oriented	 supporting	 frameworks,	 for	 example,	
JBoss	AOP	(Fleury,	Reverbel,	2003)	or	Spring	
AOP (Laddad, 2010), provide the means for
implementing crosscutting concerns and/or pro-
gramming constructs used to specify the cros-
scutting behaviour of a program. According to
Johnson	(1988),	an	application	framework	is	a	

reusable,	 “semi-complete”	application	 that	can	
be specialized to produce custom applications.
However, later application frameworks have
been divided into two categories: frameworks
that cover functionality and can be applied to
different domains (application frameworks) and
frameworks	that	capture	knowledge	and	experti-
se in a particular domain (domain frameworks).
Sometimes domain frameworks are referred to
as enterprise application frameworks (Kaisler,
2005). A domain framework, which produces
applications built from a collection of interac-
ting objects, is referred to as an object-oriented
domain framework. In this paper, we deal with
some category of aspect-oriented domain fra-
meworks,	 namely	 white-box	 frameworks.	 By	
the aspect-oriented domain framework we mean
a framework which, alongside the traditional
object-oriented mechanisms, provides abstract

147

aspects as hot spots. Such hot spots are speci-
alized by concrete aspects. The applications
produced using aspect-oriented domain frame-
works are built from a collection of interacting
objects which are woven with aspects provided
by the framework.

In order to develop an aspect-oriented do-
main framework, one must design abstract
aspects representing hot spots. It is not an easy
task to achieve. A number of object-oriented
design	patterns,	first	of	 all	GoF	23,	have	been	
proposed to ease the designing of object-orien-
ted	frameworks	(Gamma	et	al.,	1994).	A	number	
of ideas (Hannemann, Kiczales, 2002; Noda,
Kishi,	2001;	Hachani,	Bardou,	2003)	have	been	
proposed on how to transform GoF 23 patterns
into the aspect-oriented ones, however, with the
purpose to develop more effective patterns for
designing objects. Of course, such patterns are
not appropriate for designing aspects. Recently
(Vaira,	 Čaplinskas,	 2011)	 have	 demonstrated	
that 20 of GoF23 patterns have also been trans-
formed into pure aspect-oriented patterns (AO
GoF 20 patterns) that are purported for desi-
gning	aspects.	By	pure	aspect-oriented	patterns	
we mean the design patterns that are implemen-
ted in the aspect-oriented programming langu-
age using only aspect-oriented constructs. The
experimental	research	described	in	this	paper	is	
a qualitative one. It was designed with the aim
to validate the following hypothesis:

•	 under	 the	 assumption	 that	 the	 efficiency	
is measured with regard to the established
quantitative parameters such as the code
line number, the number of data members
and references, the number of involved
abstract and specialized entities (class-
es and/or aspects), the number of hook
methods,	 the	number	of	defined	abstract	
and specialized operations (methods and/
or advices), the number of invocations of
these operations (calls and/or pointcuts),
the framework designs developed using
AO GoF 20 design patterns in addition to
the	GoF	23	patterns	are	more	efficient	as	
compared with its analogues designed us-
ing only GoF 23 patterns;

•	 framework designs developed using AO
GoF 20 design patterns allow us to design
abstract	aspects	that	facilitate	significant-
ly	the	extension	of	a	framework	with	new	
hot spots;

•	 framework designs developed using AO
GoF23 design patterns reduces crosscut-
ting in a framework;

•	 the possible loss of performance of AO
domain frameworks, developed using AO
GoF 20 design patterns, compared with
their object-oriented analogues, does not
exceed	5%.

In addition, the research described in this pa-
per investigates also building techniques of the
AO	domain	white-box	framework,	under	the	as-
sumption that they are implemented in AspectJ
and Java languages using AO GoF 20 patterns.

The rest of the paper is organized as follows.
Section 2 discusses the research methodology,
Section	3	describes	research	settings,	Section	4	
presents the results, Section 5 surveys related
works, and Section 6 concludes the paper.

Research methodology

A case study approach has been used to test
the above hypothesis, and the constructive re-
search methodology (Crnkovic, 2010) was ap-
plied for this purpose. A case study is an empiri-
cal method that aims at investigating some phe-
nomena	in	their	context	(Runeson,	Höst,	2009).	
Our research aimed at investigating the impact
of the application of AO GoF 23 design patterns
on	the	design	of	AO	domain	white-box	frame-
works.	It	is	a	positivist	case	study	(Benbasat	et	
al.,	1987)	because	it	measured variables, tested
hypotheses and drew inferences from our sam-
ples to the whole population of AO domain whi-
te-box	 frameworks.	We	 sought	 an	 explanation	
of the given phenomena, but not in the form
of a causal relationship. We investigated both
the design results and the design process itself.
Different research methodologies can be applied
to this end. We selected the constructive research
methodology. According to Kari Lukka (Lukka,
2003),	constructive	research	is	an	experimental	

148

research procedure that can be used to test a hy-
pothesis by developing an innovative construc-
tion which implements the assumptions of this
hypothesis. Generally, the novel construction
should be an abstract notion with a great, actu-
ally	infinite,	number	of	potential	realisations.	In	
our case, it is the AO domain framework. The
innovative construction and its development
process were considered as test instruments to
validate,	 refine	 or	 even	 to	 develop	 an	 entirely	
new hypothesis by a profound analysis of what
works (or does not work) in practice. Thus, the
constructive research, in parallel with some ot-
her	 methodologies	 of	 experimental	 research,	
can be viewed as a kind of case research met-
hodology.	This	methodology	 is	 “an	 alternative	
which applies a strong, problem-solving type of
intervention and an intensive attempt to draw
theoretical conclusions based on the empirical
work”	(Lukka,	2003).	One	of	the	advantages	of	
the constructive research methodology is that it
allows not only to test and investigate the pro-
perties of the innovative construction, but also to
study its development process. According to the
conventional view, case studies should be used
for	the	falsification	of	a	hypothesis	only.	A	case	
study itself cannot prove any hypothesis and
should be linked to some hypothetico-deductive
model	 of	 explanation.	However,	 the	 closeness	
of a case study to real-world situations and its
multiple wealth of details argues that this view
is correct only in part. In some cases, the results
of a case study can be successfully generalised
(Flyvbjerg,	2004).	This	depends	upon	 the	case	
one is speaking of, and how it is chosen. The
generalizability of case studies can be increased
by the strategic selection of cases (Ragin, 1992).
The selected case should be either critical or ty-
pical.	A	 critical	 case	 is	 an	 atypical	 or	 extreme	
case used, in parallel with typical or representa-
tive cases, to test the hypothesis in critical situ-
ations. From the point of view of our research,
a	 representative	 example	 was	 the	 framework	
designed using at least one design pattern from
each	kind	–	creational,	structural,	behavioural	–	
of AO GoF 20 patterns, and a critical case was
the one that required application of all AO GoF

20	patterns.	For	this	experimental	research,	we	
selected randomly two representative cases. No
critical case was investigated; it is the issue of
further research.

Although our research, similarly to any
other case study, cannot provide statistically
significant	 conclusions,	 different kinds of evi-
dence,	figures	and	statements	are	 linked	 toget-
her to support strong and relevant conclusions.
We use also some quantitative data such as the
code line number, the number of data members,
the number of involved abstract and specialized
entities, the number of hook methods, the num-
ber	of	defined	abstract	and	specialized	operati-
ons, the number of invocations of these opera-
tions, etc. Mainly, we followed the Guidelines
for Conducting and Reporting Case Study
Research in Software Engineering prepared by
Per Runeson and Martin Höst (Runeson, Höst,
2009). Quantitative data were collected by me-
asurements and qualitative ones by monitoring,
analyzing, comprehending and generalising the
framework development process.

There	 exist	 two	basic	ways	of	 how	an	AO	
domain framework can be developed: 1) to de-
velop the framework from scratch; 2) to trans-
form	a	certain	existing	OO	domain	framework	
into the aspect-oriented one. We used the second
case	which	is	constrained	by	the	existing	design	
of the OO framework and mainly should replace
at least some of the applied object design pat-
terns by the relevant aspect design patterns. It is
obvious that only the parts of a framework that
are affected by some crosscutting of concerns
should be reworked. If the tangled and scatte-
red code over the whole framework is present
or some singletons are implemented, it is advi-
sable to consider the reasonability of implemen-
ting hot spots in the form of aspects (Monteiro,
2006). The main steps of our research methodo-
logy are summarized in Table 1.

Table 1 provides a certain completed cycle.
The resulted data are compared at several iterati-
ons in order to reject or promote the hypothesis.
The qualitative data produced by this research
include a brief description of the research steps,
UML diagrams of the resulted design patterns,

149

and	a	summary	of	the	results	confirming	the	hy-
pothesis. The quantitative data are data of me-
asurements performed for each iteration of the
cycle.

the study settings

The OO simulation SimJ framework has
been chosen for transformation into the AO do-
main framework. SimJ is a relatively small aca-
demic framework containing only one crosscut-
ting concern, namely logging. It is purported to
design simulation applications based on discrete
events and can be regarded as a typical repre-
sentative of simulation frameworks. The SimJ
provides	five	hot	 spots	 (simulation,	events,	 re-
sources, entities, entity factory). It is a relatively
mature framework which has been improved
many times.

All codes required for both frameworks were
written in the Java and AspectJ programming

languages.	The	Eclipse	SDK	3.6	and	NetBeans	
IDE 6.9.1 development platforms were used
for developing and testing the framework. The
Eclipse SDK 3.6 has been used as a run time
environment for the SimJ. All measurements
were done on a computer with the AMD Athlon
dual	core	2.61	GHz	processor,	2	GB	of	RAM,	
and the Microsoft Windows xP SP3 operating
system, using the built-in Eclipse SDK 3.6 and
NetBeans	IDE	6.9.1	tools.

The design results were documented using
an	UML-like	notation.	The	<<hook>>	stereoty-
pe was used to note the hooks; the hot spots are
commented by appropriate notes.

observations and findings

The OO framework SimJ provides four hot
spots and contains only one crosscutting con-
cern, namely logging. The framework is de-
signed in such a way that logging is split into

Ta b l e 1. The study methods

case study process steps Reworking of oo framework
1. Identify what aspects should
be designed

Identify the crosscuttings that should be implemented as aspects of the
OO framework. Identify what parts of the framework are affected by
crosscutting and should be reworked. Decide what new hot spots should
added to the framework and which of the aspects should be used to
implement these hot spots

2. Decide what patterns should
be applied to design the
identified	aspects

Decide what aspect should be designed in order to implement the new
hot	spots,	examine	what	problems	should	be	solved	while	designing	these	
aspects, and determine which of the AO GoF 20 design patterns can be
applied for this purpose.

3. Design and implement
the aspects, document
observations	and	findings,	and	
collect other qualitative data

Design the required aspects: apply the required AO GoF 20 patterns;
document the design using UML diagrams. Observe and describe in detail
the whole design process. Rework the OO framework parts affected by
some crosscutting of concerns, develop the AspectJ code of aspects

4.	Perform	measurements,	test	
code, and collect quantitative
data

Use	built-in	tools	of	development	platform	(Eclipse,	NetBeans)	to	
collect static quantitative data. Prepare the required test cases, perform
measurements, and collect quantitative dynamic data

5. Evaluate the structure of the
code according to the criteria

Check whether the AspectJ code is already acceptable. Improve the design
of	the	code	and	go	back	to	Step	4	if	the	refactoring	of	the	code	is	still	
required

6. Analyze and generalize the
collected data, evaluate the
hypothesis

Analyze the collected data for each design pattern separately, comparing
both OO and AO framework designs.

150

three specialized parts (for each hot spot) which,
using appropriate hooks, can be adapted inde-
pendently for a particular application. Thus, the
logging affects three of four hot spots. The code,
related to logging, is scattered over into seven
classes. We decided to remove this code and to
use it to develop abstract aspects that would im-
plement a new hot spot named Logger. It was
necessary to remove this code in such a way that
the remaining code would still be correct. We
will not discuss the amount of efforts required
for reworking, because it is beyond the scope
of this paper. However, in our case it was not
a big problem. The AO Template Method desi-
gn pattern was applied to combine the removed
code into aspects. In this way, we designed three
aspects that implement the default behaviour
to all resource logging. Such solution allowed
us to customize in the applications some part
of this behaviour because, in our case, the AO
Template Method pattern allowed for an abstract
method implementing a hook. Since the default
behaviour of the original OO framework provi-
des only one kind of events, we designed only
one additional aspect to implement the default
behaviour for event logging. It has no abstract
methods and, consequently, does not provide

any	hooks.	For	the	reasons	of	efficiency,	we	de-
cided to use this aspect to implement also the
subsidiary logging-related functionality (prin-
ting messages, get time values). However, this
functionality had to be shared also with the re-
source logging. As the most reasonable decision
to solve this problem, we decided to apply the
AO Adapter design pattern. The resulting design
is presented in Fig. 1. It provides one additional
hot spot (Logger) that can be customized in the
applications by overriding the provided hook
method.

This design improves the maintainability and
unplugability of the logging as compared with
the original OO framework because all the log-
ging functionality and the related code are col-
lected together and the resource logging can be
customized using the additional hot spot. The qu-
antitative data related to this design iteration will
be	presented	and	analyzed	in	the	next	section.

It is obvious that the design can be further
improved, because it did not allow us to cus-
tomize the event logging. For this reason, the
second design iteration was performed. Since it
is reasonable to model the logging behaviour of
resources and events by the behaviour of an hie-
rarchy	of	more	specific	loggers	(Fig.	2),	the	AO	

F i g. 1. SimJ Logger concern after the first development iteration

+displayInfo() : void
«Hook» +doDisplayInfo()
«Pointcut» +concreteResource()
«Pointcut» +logStart()
«Pointcut» +logWait()
«Pointcut» +logEnd()
«Advice» +after: logStart()
«Advice» +after: logWait()
«Advice» +after: logEnd()

«Aspect»ResourceLogger

+doDisplayInfo() : void
«Pointcut» +concreteResource()

-eventLogger : EventLogger
«Aspect»shoppiglogger

+getTime() : double
+print() : void
«Pointcut» +logEvents()
«Advice» +after: logEvents()
«Pointcut» +enableFeatures()
«Advice» +after: enableFeatures()

-isOn : bool
«Aspect»eventlogger

+doDisplayInfo() : void
«Pointcut» +conreteResource()

«Aspect»cashDesklogger

-eventLogger

1

void doDisplayInfo(){
 eventLogger.print(resourceName);
 eventLogger.print(" at time ");
 eventLogger.print(eventLogger.getTime());
}

Logger hot spot
(Template Method and Adapter patterns)

framework

application

151

Factory Method design pattern was applied to
build this hierarchy. This design pattern separa-
tes also the logging behaviour from the entities
that trigger this behaviour, because it splits the
hierarchy into the factories and product hierar-
chies. In the product hierarchy, all required ope-
rations can be lifted to the top, to the abstract
Logger aspect; therefore, the AO Adapter desi-
gn pattern is no longer necessary (Fig. 2). On
the other hand, the AO Template Method design
pattern was applied to design hooks for the Final
Logger	and	the	Event	logger.	So,	in	the	final	de-
sign, three additional hook methods were desi-
gned for the logging hotspot (Fig. 2).

Thus,	the	final	design	is	an	evidence	that	AO	
GoF 20 design patterns allow us to design the
abstract aspects that facilitate the OO frame-
work	extension	with	new	hot	spots,	and	the	ap-
plication of these patterns reduces crosscutting
in the framework.

Measurements and data analysis
During both SimJ framework development

iterations, some quantitative data on the struc-
ture of the code and on the performance of the
applications produced using the AO SimJ fra-
mework were collected. They are presented in
Figs.	3	and	4	by	the	coresponding	bar	graphs.	
Each graph contains three bars: the O bar cor-
responds to OO implementation, the A1 bar to
AO	implementation	after	the	first	development	
iteration, and the A2 bar to AO implementation
after the second development iteration. The me-
asurements in Fig. 3 are presented as quantities
and	in	Fig.	4a	and	Fig.	4b	as	milliseconds.	Data	
on the structure of the code (Fig. 3) demons-
trate	that	the	complexity	of	the	code	in	general	
decreases. The number of code lines and data
members	 remain	 almost	 the	 same.	 The	 first	
AO development iteration produced less code
than did the OO analogue. However, the second

Logger hot spot
(Factory Method and 2 Template Methods)

+getTime() : double
+print() : void
«Hook» +dispayInfo() : void
«Pointcut» +enableFeatures()
«Advice» +after: enableFeatures()

-isOn : bool

«Aspect»
Logger

+displayInfo() : void

«Aspect»eventlogger

+displayInfo() : void

finallogger

«Hook» +create()
«Pointcut» +logEvent()
«Pointcut» +logObject()

«Aspect»
LoggerFactory

+create() : Logger
«Pointcut» +logScanResourcesEvent()
«Advice» +after: logScanResourcesEvent()

«Aspect»eventloggerfactory

+create() : Logger
«Pointcut» +logFinalEvent()
«Advice» +after: LogFinalEvent()

«Aspect»finalloggerfactory

+displayInfo()
«Hook» +doDisplayInfo()
«Pointcut» +logObject()
«Advice» +before: logObject()

ResourceLogger

+create() : Logger
«Pointcut» +logCashDesk()
«Advice» +after: logCashDesk()

«Aspect»
cashDeskloggerfactory

+create() : Logger
«Pointcut» +logShoppingArea()
«Advice» +after: logShoppingArea()

«Aspect»
shoppingarealoggerfactory

+doDisplayInfo()

«Aspect»
cashDesklogger

+doDisplayInfo()

«Aspect»shoppingarealogger

-logger

-eLogger

-fLogger

-saLogger

-cdLogger

Framework

Application

F ig. 2. SimJ Logger concern after the second development iteration

152

design iteration increased the number of lines,
and it became greater than in the OO analogue,
but	did	not	exceed	2%	and	may	be	considered	
as	 acceptable.	 Besides,	 the	 increase	 of	 lines	
was	caused	by	the	extended	capabilities	of	log-
ging customization, but not by the application
of AO design patterns. The greater number of
entities (i.e. classes and aspects) was caused
by	the	finer	granularity	of	the	implementation	
code. It was useful, because the entities be-
came	 smaller	 and	 less	 complex.	 During	 both	
development iterations, customization was
extended	by	providing	one	additional	AO	hot	
spot. However, the number of hook methods
decreased as compared with OO implemen-
tation because of the reduced crosscutting of
the logging concern. The two additional hook
methods	were	provided	by	extended	customi-
zation during the second development iteration
A2 than during A1. The number of methods,
advice, calls, and pointcuts decreased also in
both	A1	 and	A2	 cases.	The	first	 development	
iteration produced less methods and advice
than did the second one, or the second iteration
produced	less	external	calls	and	pointcuts	than	
did	the	first	one	(Fig.	3.).	

Tests of the applications produced by the
AO SimJ framework revealed some interesting
data. After each design iteration, an application
was produced, and for each application two tests
were	performed.	In	the	first	test,	the	application	
was	executed	using	the	logging	that	aggregated	
the	registered	data	(Fig.	4a),	and	in	the	second	
test the normal logging functionality was used

(Fig.	4b).	Each	test	was	performed	50	times	in	
two	different	modes:	50	separate	executions	of	
the	application	 (execution	 time)	and	execution	
of the application 50 times in a countinous cycle
(continuous	 execution	 time).	 All	 executions	
were	 performed	 using	 the	 same	 configuration	
of the application. Each test was performed for
1000000 simulation time units which are equ-
al	to	approximately	44000	cycles	of	simulation	
processing	 and	 25	 test	 executions	 per	 testing	
case. The results are presented as average values
of	all	50	executions.		

114711001167

O A 1 A2

70 70 71

O A 1 A2

12

7
9

O A 1 A2

102
85 96

O A 1 A2

126

68
47

O A 1 A2

Code Lines Data Members
and References

Hook
Methods

Methods
and Advice

External Calls
and Pointcuts

20 23
30

O A 1 A2

Classes and
Aspects

F i g. 3. Static quantitative data of measurements (SimJ framework)

263.68 286.04
203.8

O A 1 A2

Continuous
execution time (ms)

321.2
378.8

287.5

O A 1 A2

Execution time (ms)

(a)

4275.6

6151.9
4965.4

O A 1 A2

Continuous
execution time (ms)

4048.8

5993.2
4867.5

O A 1 A2

Execution time (ms)

(b)

F i g. 4. Testing of measurement data (SimJ
framework)

153

After	 the	 first	 design	 iteration,	 the	 perfor-
mance of the application, especially in the se-
cond	mode	of	execution,	was	somewhat	lost,	but	
it increased again after the second design iterati-
on.	This	was	an	unexpected	result	which	cannot	
be	 explained	 on	 the	 basis	 of	 our	 observations	
and requires further investigation.

Hypothesis evaluation
The hypothesis that AO GoF 20 design pat-

terns	decrease	 the	complexity	of	 the	code	was	
confirmed	by	both	design	iterations.	The	hypot-
hesis that the AO GoF 20 design patterns allow
us to design the abstract aspects that facilitate
the	extension	of	a	framework	with	new	hot	spots	
was	also	fully	confirmed	by	the	design	of	addi-
tional hot spots. The hypothesis that AO GoF20
design patterns reduce crosscutting in the fra-
mework	was	also	confirmed	because	the	whole	
logging implementation code was successfully
collected together in logging aspects. The hy-
pothesis that AO GoF 20 design patterns do not
cause	a	significant	loss	of	the	performance	was	
confirmed	only	in	part.	After	the	first	design	ite-
ration,	 the	 average	 of	 31%	 loss	 of	 the	 perfor-
mance	in	both	execution	modes	was	observed.	
However, the average performance loss for the
second	 iteration	 in	 both	 execution	modes	was	
approximately	0.8%	and	did	not	exceed	5%.		

Related works

The application of aspects in the design of
different frameworks has been studied by several
authors; however, the aspects were mostly used
to deign frozen spots (i.e. unchangeable parts
of	a	framework).	Rausch	et	al.	(2004)	used	the	
aspects as a glue code for gluing the framework
core and the produced applications. In Santos
et	 al.	 (2007),	Arpaia	et	 al.	 (2008),	 the	abstract	
aspects were used to implement hot spots; ho-
wever, no AO design patterns have been applied
for	this	purpose.	More	complex	design	structures	
that involve some idioms of AspectJ were sug-
gested by Kulesza et al. (2006). These authors
proposed	how	to	use	extension	join	points	to	de-

sign hot spots. Hanenberg et al. (2003), Laddad
(2003),	 Miles	 (2004),	 Bynens,	 Joosen	 (2009)	
proposed a number of AO design patterns. These
patterns can be successfully applied to design
AO frameworks. We applied also some of these
patterns	in	our	design.	However,	no	experimen-
tal data are available on the details of applying
these patterns in the framework design. Finally,
Vaira,	Čaplinskas	 (2011)	 proposed	 how	 to	 de-
velop purely AO GoF 20 design patterns. In the
present paper, we describe in detail the results of
a case study in which we have investigated the
application of AO GoF20 patterns for designing
abstract aspects in AO domain frameworks.

conclusions and future work

The case study has demonstrated that AO
GoF 20 design patterns can be used to design
AO frameworks. During this research, two ver-
sions of AO frameworks were designed, and a
detailed evaluation of the applied design pat-
terns	 is	 presented.	 The	 case	 study	 has	 confir-
med that AO GoF 20 design patterns decrease
the	code	complexity,	eliminate	crosscutting,	and	
allow to design additional AO hot spots in fra-
meworks. Performance tests have revealed that
in most cases the loss of performance is minimal
and	fully	acceptable.	Besides,	it	depends	on	the	
optimization of the design, and the more design
refinement	 steps	 are	 performed	 the	 better	 per-
formance can be achieved. The optimization of
design depends also on the skills of designers,
i.e. on how proper design patterns he/she is able
to choose. Of course, it is a kind of art.

In the general case, the AO GoF 20 design
patterns and patterns proposed by Hanenberg
et	 al.	 (2003),	 Laddad	 (2003),	 Miles	 (2004),	
Bynens,	Joosen	(2009)	are	 insufficient	 to	opti-
mize the design, and additional AO design pat-
terns are still necessary; in particular, pointcut
and advice-related design patterns are required.

Our planned research provides for inves-
tigation of the application of AO GoF 20 pat-
terns in designing AO domain frameworks from
scratch.

154

lItERAtuRE
ADAIR, D. (1995). Building Object-Oriented

Frameworks.	AIXpert.	Feb.	1995	Appleton,	B.	1997.	
Patterns and software: Essential concepts and ter-
minology	 [accessed	 9	 May	 2011].	Available	 from:	
<http://www.cmcrossroads.com/bradapp/docs/pat-
terns-intro.pdf>.

ARPAIA,	P.;	BERNARDI,	M.	L.,	Di	LUCCA,	G.;	
INGLESE	V.;	SPIEZIA,	G.	(2008).	Aspect	oriented-
based software synchronization in automatic meas-
urement systems. In Proceedings of Instrumentation
and Measurement Technology Conference, IMTC
2008,	IEEE,	1718–1721,	12–15	May	2008.

BENBASAT,	 I.;	 GOLDSTEIN,	 D.	 K.;	 MEAD,	
M.	 (1987).	The	 case	 research	 strategy	 in	 studies	 of	
information systems. MIS Quarterly, vol. 11, no. 3,
p.	369–386.

BYNENS,	M.;	 JOOSEN,	W.	 (2009).	Towards	a	
pattern	 language	 for	Aspect-Based	 Design.	 In	Pro-
ceedings of the 1st Workshop on Linking Aspect Tech-
nology and Evolution (PLATE ‘09), Charlottesville,
Virginia,	USA,	March	2–6,	2009.	ACM,	p.	13–15.

CRNKOVIC, G. D. (2010). Constructive research
and info-computational knowledge generation. Mod-
el-based reasoning in science and technology. Studies
in Computational Intelligence,	2010,	vol.	314/2010,	
p.	359–380.

FLEURY,	M.;	REVERBEL,	F.	(2003).	The	JBoss	
extensible	 server.	 In	 Proceedings of the 4th ACM/
IFIP/USENIX International Conference on Distribut-
ed Systems Platforms and Open Distributed Process-
ing	(Middleware’03).	Vol.	2672	of	Lecture	Notes	in	
Computer	Science.	Springer-Verlag,	p.	344–373.

FLYVBJERG,	 B.	 (2004).	 Five	 misunderstand-
ings about case-study research. In C. Seale, G. Gobo,
D. Silverman (eds.). Qualitative Research Practices.
London	and	Thousand	Oaks,	CA:	Sage,	p.	420–434.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLIS-
SIDES,	J.	(1994).	Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison-Wesley
Professional.

HACHANI,	 O.;	 BARDOU,	 D.	 (2003).	 On	
Aspect-Oriented Technology and Object-Oriented
Design Patterns. In Proceedings of European Con-
ference on Object Oriented Programming ECOOP
2003. Position paper at the workshop on Analysis of
Aspect-Oriended Software. Darmstadt, Germany.

HANENBERG,	 S.;	 UNLAND,	 R.;	 SCHMID-
MEIER, A. (2003). AspectJ Idioms for Aspect-Ori-

ented Software Construction. In Proceedings of 8th
European Conference on Pattern Languages of Pro-
grams (EuroPLoP),	Irsee,	Germany,	25th–29th	June,	
p.	617–644.

HANNEMANN, J.; KICZALES, G. (2002). De-
sign pattern implementation in Java and AspectJ. In
Proceedings of the 17th Conference on Object-Ori-
ented Programming, Systems, Languages, and Appli-
cations (OOPSLA ’02), ACM Press,	p.	161–173.

JOHNSON,	R.	E.;	FOOTE,	B.	(1988).	Designing
Reusable Classes. Journal of Object-Oriented Pro-
gramming,	 June/July,	 vol.	 1(2),	 p.	 22–35	 [accessed	
4	April	 2011]	Available	 from:	<http://www.laputan.
org/drc/drc.html>.

KAISLER, S. H. (2005). Software paradigms.
John Wiley & Sons, Inc.

KULESZA, U.; ALVES, V; GARCIA, A.; de
LUCENA,	 C.	 J.	 P.;	 BORBA,	 P.	 (2006).	 Improving	
Extensibility	 of	 Object-Oriented	 Frameworks	 with	
Aspect-Oriented Programming. In Proceedings of
Intl Conference on Software Reuse (ICSR), Torino,
Italy,	p.	231–245.	

LADDAD, R. (2003). AspectJ in Action: practi-
cal aspect-oriented programming. Manning Publica-
tions Co.

LADDAD, R. (2010). AspectJ in Action. Second
Edition: Enterprise AOP with Spring Applications.
Manning Publications Co.

LUKKA, K. (2003). The constructive research
approach. In L. Ojala, O-P. Hilmola (eds.). Case
study research in logistics. Publications of the Turku
School	 of	 Economics	 and	Business	Administration,	
Series	B	1,	p.	83–101.

MILES,	R.	(2004).	AspectJ Cookbook. O’Reilly
Media.

MONTEIRO, M. P. (2006). Using Design Pat-
terns as Indicators of Refactoring Opportunities (to
Aspects). In Proceedings of AOSD 2006 workshop on
Linking Aspect Technology and Evolution (LATEr).
Bonn,	Germany,	20	March	2006.

RAGIN,	C.	C.	 (1992)	“Casing”	and	 the	process	
of social inquiry. In Charles C. Ragin and Howard S.
Becker	(eds.).	What is a Case? Exploring the Foun-
dations of Social Inquiry. Cambridge: Cambridge
University	Press,	p.	217–226.	

NODA, N.; KISHI, T. (2001). Implementing
Design Patterns Using Advanced Separation of Con-
cerns. In Proceedings of OOPSLA 2001 Workshop on

155

Advanced Separation of Concerns in Object-Oriented
Systems,	Tampa	Bay,	FL,	USA.	

RAUSCH,	A.;	RUMPE,	B.;	HOOGENDOORN,	L.	
(2003). Aspect-Oriented Framework Modeling. In
Proceedings of the 4th AOSD Modeling with UML
Workshop, UML Conference 2003, October.

RUNESON, P.; HÖST, M. (2009). Guidelines for
conducting and reporting case study research in soft-
ware engineering. Empirical Software Engineering,
vol.	14,	issue	2,	p.	131–164.

SANTOS, A. L.; LOPES, A.; KOSKIMIES, K.
(2007).	 Framework	 specialization	 aspects.	 In	 Pro-
ceedings of AOSD ‘07 the 6th international confer-
ence on Aspect-oriented software development, ACM
New	York,	NY,	USA,	p.	14–24.

VAIRA,	Ž.;	ČAPLINSKAS,	A.	(2011).	Paradigm-
independent design problems, GoF 23 design patterns
and aspect design. Informatica, 22(2) (accepted for
the publishing).

oBjEktInIo kARkAso pERtvARkymAs nAudojAnt AspEktInIus
pRojEktAvImo ŠABlonus

Žilvinas vaira, Albertas Čaplinskas

S a n t r a u k a

Straipsnyje	 pateikiami	 aspektinių	 projektavimo	
šablonų	naudojimo	aspektiniams	dalykiniams	karka-
sams projektuoti eksperimentinio tyrimo rezultatai.
Aspektinis	 dalykinis	 karkasas	 –	 tai	 toks	 karkasas,	
kuriame	greta	tradicinių	objektinio	karkaso	priemo-
nių	naudojami	ir	abstraktūs	aspektai.	Atliekant	tyri-
mą	 siekta	 išsiaiškinti,	 kokiu	mastu	 aspektiniai	 pro-
jektavimo	šablonai	palengvina	abstrakčiųjų	aspektų	

ansamb	lių	 projektavimą	 tokiuose	 karkasuose.	 Eks-
perimentas	atliktas	kaip	atvejo	analizė.	Analizuotas	
imitacinio	modeliavimo	uždavinių	sprendimo	karka-
so	pertvarkymas	iš	objektinio	į	aspektinį.	Straipsnyje	
iškeltos	kelios	hipotezės	apie	aspektinių	projektavi-
mo	šab	lonų	naudojimo	rezultatus	ir	pateikti	tas	hipo-
tezes patvirtinantys šiame eksperimentiniame tyrime
surinkti kokybiniai ir kiekybiniai duomenys.

