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How Can We Design a More Intelligent Path-Planning?

Akira Imada
Brest State Technical University
Moskowskaja 267, Brest 224017 Republic of Belarus
El. paštas: akira@bsty.by

We contemplate in this paper on how it would be intelligent when we say artifi cial intelligence. 
Human intelligence is not always effi cient, nor worthy enough to be called optimized but rather spon-
taneous or unpredictable more or less. Even when we come across a similar situation as before our 
behavior may be different than in the way we had reacted then. Aiming such a fl exibility in an artifi cial 
intelligent agent, we propose here a benchmark in which we have infi nite number of equally valuable 
solutions. And then we observe if an agent trained by some of the machine learning techniques will 
behave in such an intelligent way as human’s.

Introduction

In the “Star Trek” prequel, Spock’s father 
tells him, “You will always be a child of two 
worlds”, urging him not to keep such a tight 
vise on his emotions. And Spandexy Old Spock, 
known as Spock Prime, tells his younger self: 
“Put aside logic. Do what feels right.” – By 
Maureen Dowd, from her article in the New 
York Times on 10th May 2009.  

By “path planing problem’,’ we usually im-
ply that our goal is to fi nd a shortest path from 
a specifi ed point to start to a specifi ed point to 
fi nish. But what if our concern is to fi nd the lon-
gest path to reach the goal under a condition of 
a limited amount of energy given? While a shor-
test-path-problem has usually a unique solution, 
this longest-path-problem has multiple solutions. 
Therefore the latter might be a good benchmark to 
test if an agent can try a different route according 
to how the agent feels from one run to the next.
One option to realize this idea of fl exible intelli-
gence is that we make an agent learn during its 
action. The approach described here was moti-
vated by the work by Floreano et al. (2000) in 
which the authors controlled a mobile robot by 
a neural network so that the robot navigates pro-

perly by modifying its synaptic weights of the 
neural network during navigation. The modifi -
cation was based on a set of four Hebbian-like 
rules with each of the rules being specifi ed by 
a number of parameters. Each connection de-
termines which rule out of the four with which 
parameter values to modify itself during navi-
gation. In other words, starting with a random 
confi guration of the weights, each connection 
changes its weight value according to the rule 
assigned to the connection. 

To obtain such a rule set, Floreano et al. 
exploited a learning via a population search in 
advance. The set of rules is evolved from gene-
ration to generation, and eventually those rules 
assigned to each of the connections converge to 
the optimal ones. This is called an evolution of 
learning. 

Later, Stanley (2003) united these four ru-
les into one equation with two parameters, with 
the meaning being remain intact. More recently, 
Durr (2008) proposed a more general equation 
of learning*.

The experiments above were made using 
sigmoid neurons, that is, neurons’ state takes a 
* Floreano is one of the authors, too.
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continuous value. We now are planning to use a 
neural network with spiking neurons, expecting 
a more biological plausibility. Then a counter-
part of the Hebbian learning is spike-timing-de-
pendent-plasticity, or STDP.

Experiment

A benchmark. To test how an agent behaves 
under a machine learning technique, we propose 
here the following problem.

In a gridworld, agent moves to the neighbo-
ring cell spending one unit of energy. The gri-
dworld is suffi ciently large so that agents never 
reaches the border. Starting from the base loca-
ted in the center of the gridworld with N units 
of energy, an agent must travel visiting as many 
different cells as possible, and the agent must 
return to the base before consuming all the ener-
gy given at its start.

Try to imagine an unmanned land-rover in a 
planet like the Mars. The mission of the rover is 
to explore the areas which have not yet explored 
with a limited fuels charged when it started the 
base. Of course the rover should return to the 
base before the tank of fuels becomes empty. 
To simply put, the rover should travel along a 
never-crossing-loop starting from the base and 
returning to the base again.

Random walk as a basis of comparison. 
First of all, let us make the rover explore with 
a random walk. The rover starts from the base, 
and moves up, down, left or right at random. The 
rover was given 100 units of fuel at the start. 
Since we found it was less likely to observe the 
rover would return to the base after a long jour-
ney, we observed if the rover tried to go as far as 
possible in the fi rst half of the travel and tried to 
return to a point as close as possible to the base. 
To be more specifi c, what we want to know is, 
if it reached a point whose Manhattan distance 
from the base was more than a preset value of 

maxM , while the fi nal point it reached was the 
point of Manhattan distance less than finalM , 
the other preset value, from the base. What we 
found then was, none out of 10,000,000 trials 

attained this target even for a weak demanding 
condition of 05max == finalMM ,* and only one 
out of 100,000,000 trials fulfi lled this criteria, 
though it was not a good journey at all, that is, 

15max =M   and 84=finalM .
Reinforcement Learning. In a standard im-

plementation of reinforcement learning, agent is 
given a reward only when it reaches to the goal. 
Hence, as Driessens et al. (2004) put it “Using 
random exploration through the search space, 
rewards may simply never be encountered”. This 
might be a reason why those proposed worlds to 
be explored usually include obstacles, and agent 
is given a penalty when it touches an obstacle. 
In a sense, obstacles might not be obstacle. 
Although the agent should avoid obstacles, tho-
se obstacles, on the other hand, are good guides 
to lead the navigation. Our gridworld, however, 
has no border nor obstacle and includes only 
one goal to be reached, which makes the search 
a-needle-in-a-haystack-problem.

Our trick is, then, (i) agent is given a reward 
at any cell it passes; (ii) reward is associated 
with the Manhattan distance from the starting 
point; (iii) the further away the agent goes the 
more reward agent obtains if it’s during the fi rst 
half of the travel, and vice versa if it’s during the 
last half of the travel.

Like the experiment with a random walk 
mentioned above, rover is given 100 units of 
fuel at the start. And what we observed was se-
ven rovers after 300 episodes managed to return 
to the base after a journey. Further check, ho-
wever, revealed the routes of all these seven ro-
vers were just explorations close to the starting 
points. The failure is because “the Q-function 
only converges after each state has been visi-
ted multiple times’’, as Driessens et al. (2004) 
pointed out.

Genetic Algorithm with a heuristic. We have 
found so far the problem is not easy. However, we 
know a heuristic to create such a loop of journey 
starting from the base with the goal being retur-
ning again to the base at the time when it has spent 

* We want the values to be more demanding ones, e.g.,  
04max =M  and 01=finalM , but we found it was too 

demanding.
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all the fuels. That is, the number of up and down 
should be equal, and same goes for the number of 
right and left. So, chromosome should be made 
up of four genes each corresponding to up, down, 
right, and left such that the number of these genes 
fulfi lls the condition above. It is not so diffi cult to 
create such chromosomes. For example, using a 
population of random permutations of the integer 
from 1 to N , the number of genes, we shuffl e 
an original string which includes equal number 
of these four genes. Nevertheless, it is not so 
simple to apply genetic algorithm to those chro-
mosomes, because a standard crossover as well 
as a standard mutation destruct the condition, or 
validity of the journey.

We repair those broken chromosomes so that 
they will recover its validity following Mitchell 
(2005) – one of the traditional approaches to the 
Traveling Sales-person Problem. The result was 
successful. See Figure 1.

Are we happy with this? In genetic algo-
rithm, agents moves according to chromoso-
me, and in reinforcement learning, moves are 
according to policy. As a result, the behavior 
is deterministic. Agent behaves any trials after-
wards as exactly identical as when it learned. Can 
we call it an intelligence, however effi cient the 
behavior might be? The answer would be “no’’, 
if our concern is on intelligence rather than on 
effi ciency.

A neural network approach toward an in-
telligent behavior. Then what we are planning 
is, to control an agent by spiking neurons with 
modifying its connection weights, from one step 
to the next during a navigation.

Following the model by Florian (2005), we 
will use here a neural network of stochastic lea-
ky integrate-and-fi re neurons. Membrane poten-
tial vi(t) of neuron-i at time t evolves in discrete 
time δt according to:

)()()/exp()()( ttfttwtttvtv jij
j

iii δδτδδ −−+−−= ∑
where τi is a time constant of neuron-i, wij 
is synaptic weight value from neuron-j to 
neuron-i, and fj(t) = 1 if neuron-j fi res at time t 
otherwise 0.

The neuron-i  fi res stochastically with pro-
bability ))(( tviσ :

F i g u r e  1. A successful journey from the base 
(0,0) to the base found by a genetic algorithm using 

a heuristic. The rover started the base with 300 
units of fuel and a such, the length of the loop was 

300 cells
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If the neuron fi res, the the membrane poten-
tial is reset to a reset-potential Vr .

The parameters of neurons are set here as 
follows: threshold potential θi  = 5 mV, expo-
nential escape noise with τσ = 25 ms, τi = 20 ms, 
δt = 1, Vr = 0 mV, and βσ = 0.2 mV.

We experiment here, among others, with a 
feedforward architecture with two sensor neu-
rons, input layer with 4 neurons, hidden layer 
with 8 neurons, output layer with 2 neurons. 
All neurons from one layer to the next layer are 
fully connected. At the beginning of a run, the 
synaptic weights were initialized with random 
values from −1 to 1 except for those from the 
sensor neurons which take a value from 0 to 1 
at random.

Since we have no obstacle, the activation of 
the sensor neurons takes a random value bet-
ween 0 and 1. The sensor neurons fi red Poisson 
spike trains, proportional to the activation, with 
a fi ring rate r = 20 Hz. Namely, the probability 
of emitting one spike during δt, is rδt.

The motor activations ai(t) (i = 1, 2 here) of 
the output neurons evolve according to the fol-
lowing equation with time constant τe = 2s:
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N is the number of synaptic connections. Then 
question is, “what should be a fi tness criteria’’? 
Still we haven’t solved this issue.

Yet another approach also by STDP. The 
other approach is by reinforcement learning, 
specifi cally by what Florian (2007) called 
Reward Modulated STDP. As for the learning of 
the synaptic weight values, Florian applies: 

)()()()( tttrtwttw jijiji ζδγδ ++=+
where r(t) is reward at time t and γ is discount 
rate by which eventual reward is estimated as 

.)3()2()()( 32 L+++++++ ttrttrttrtr δγδγδγ

Dynamics of ζij  is given by: 

,)()()()()( tftPtftPt jjiijiji
−+ +=ζ

in which ±
jiP   are:

)()/exp()()( tfAtttPtP jjiji ++
++ +−−= τδδ  

and 

)()/exp()()( tfAtttPtP ijiji −−
−− +−−= τδδ

where ±τ  and ±A  are constant parameters.* 
See (Florian, 2007) for more in detail. Then 
the question is, “how should we set the reward 
r(t)’’? We have not been successful, either. 

Concluding Remarks

What we have described in this article is still 
an on-going project. The benchmark task pro-
posed here was found to be diffi cult. Up to this 
moment, it has been resisted to be solved. It is 
this result that leads to the title of this paper: 
“How can we design a more intelligent path-
planning, if any’’? Neural networks by spiking 
neurons are said to be more biologically plausi-
ble. If so, the very simple benchmark proposed 
in this paper should be easily performed by ex-
ploiting spiking neurons, like our human brain 
does, but...

* For his benchmark of XOR, he set τ+ = τ– =20ms, A+ =1,  
and A– = −1. +

jiP  and −
jiP  track the infl uence of pre-synaptic 

and post-synaptic spikes, respectively (Florian 2007).

F i g u r e  2. A route with 100 steps of the agent 
controlled by the feedforward spiking  neuron’s 

neural network  described in the text

.)())/1exp(1()/exp()()( tftttata ieeeii τντδδ −−+−−=

The factor of fi(t) is to normalize the activa-
tion to 1 when the neuron fi res regularly with fre-
quency νe = 25 Hz. One output neuron’s activity 
determines the distance r, the amount the agent 
moves at time t, and the other output neuron’s 
activity determines the direction θ toward which 
the agent should move, that is, )(2 taiπθ =  from 
the direction of the x-axis. Then agent mo-
ves with its increment being θδ cosrx =  and 

θδ sinry = . Note that the world is no more dis-
crete gridworld.

Thus we can make the agent explore the 
world anyway. See Figure 2. The question is, 
how we modify wij(t) such that the point the 
agent fi nishes coincides to the point it started, 
with any ran being with a different route. 

A planned approach by STDP. One appro-
ach is by evolution. The principal equation of 
STDP is: 
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where prepost ttt −=Δ , difference of fi ring time 
of post-synaptic neuron and pre-synaptic neu-
ron. Weight value changes depending on four 
parameters. Hence, each connection has to be 
assigned with these four parameters which will 
specify its weight value. Evolution is simply on 
those chromosomes which have 4N genes where 
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KAIP SUKURTI INTELEKTUALESNĘ MARŠRUTŲ PLANAVIMO PROGRAMĄ?

Akira Imada

S a n t r a u k a

Šiame straipsnyje svarstoma, kiek intelektualu 
yra tai, kas vadinama dirbtiniu intelektu. Žmogaus in-
telektas ne visada yra efektyvus, ne visada optimalus; 
dažnai yra daugiau ar mažiau spontaniškas, nenuspė-
jamas. Net patekus į panašias situacijas, kokiose jau 
teko būti, mūsų elgsena gali būti kitokia nei praeityje. 

Siekdami realizuoti analogiškai lanksčius dirbtinio 
intelekto agentus, siūlome bandomąją užduotį, kurio-
je turime begalinį kiekį vienodai svarbių sprendinių, 
ir ištiriame, ar programinis agentas, apmokytas maši-
ninio mokymo metodais, elgsis taip pat intelektualiai, 
kaip ir žmonės.


