ISSN 1392-0561. INFORMACIIOS MOKSLALI. 2009 50

MD3 - Integrated Model-Driven Data Design
for Objects, XML, and Relational Databases

Darius Silingas

UAB ,Baltijos programiné jranga“ mokymuy skyriaus vadovas
No Magic Europe, Training Department Manager, PhD

Savanoriu av. 363, LT-49425 Kaunas, Lithuania
Tel.: +370 37 705899
E-mail: darius.silingas@nomagic.com

The Model-Driven Architecture (MDA) paradigm promotes raising the level of abstraction and develo-
pment efficiency by leveraging visual modeling instead of textual programming as the main means for
producing software artifacts. In this paper, we focus on applying the MDA approach to data design.
We introduce an integrated model-driven data design (MD3) framework, which consists of the data
design workflow definition, a small subset of UML for conceptual data modeling, UML profiles for
representing XML and relational database schemas, verification rules for checking model comple-
teness and correctness, transformations between data design abstraction layers, and a customized
integrated modeling environment. Application of the MD3 framework is illustrated by a small repre-
sentative data design sample from the library domain. The MD3 framework is a conceptual starting
point for developing more specialized and formalized data design methods and tools.

Introduction

Model-driven development is a new software
development paradigm, which was introduced at
the beginning of the XXI century. Probably the
best-known version of this paradigm is Model-
Driven Architecture (MDA) (OMG, 2003) that
has been proposed and supported by the Object
Management Group (OMG). MDA promotes the
development of software based on models speci-
fied in the Unified Modeling Language (UML)
(OMG, 2009) or other visual modeling langu-
ages. This approach aims to raise the level of
abstraction compared to the usual programming
in textual languages like Java, C++, and others.
MDA raised a lot of hype in the software industry
and was considered to be a potential silver bullet
(Brooks, 1987), which should allow increase of
the software development efficiency by an order
of magnitude. However, now the hype is over, and
although it is possible to say that the MDA appro-
ach has been reported as a success in a number

of projects, in general it is facing a lot of chal-
lenges and is far from achieving its early promise
(Thomas, 2004; France, Rumpe, 2007). The basic
problem of MDA is that its scope is very wide —
the modeling can be used in all the major software
engineering activities, such as requirement analy-
sis, design, programming, and testing (Silingas,
Vitiutinas, 2007). However, the MDA solutions
leading to the executable software are typically
centered on a specialized well-defined solution
domain. One of the areas where MDA is very
natural to apply is data design, which has long
traditions of separating conceptual, logical, and
physical data views as well as using graphical en-
tity relationship diagrams in relational data theory
(Chen, 1976). However, recently the object-orien-
ted and XML-oriented data design has been the
major alternative techniques that are heavily used
in practice. It is typical to integrate systems using
objects, relational databases, and XML for data
persistence. A certain research has been pursued
on implementing the model-driven development

301

of relational databases (Silingas, Kaukenas, 2004) To illustrate the proposed schema, we will
and XML schemas (Bernhauer et al,, 2007). present examples for each step based on a ficti-
However, the optimal solution for data modelers tious library information management system
would be an integrated environment for the mo- MagicLibrary, which is used as a case study for
del-driven development of object, relational and ~ MagicDraw UML R&D and professional trai-
XML data structures. This could help the practi- nings and consultations. The first artifact — a do-
tioners to survive in a multi-platform data design main ER model — can be represented in UML as
problem, which is sometimes called a Bermuda a very simple class diagram providing a visual
triangle of data design. In this paper we propose a dictionary for domain concepts (see Figure 2 for
framework MD?3 (it stands for Model Driven Data an example).

Design and emphasizes data design
application to 3 solution domains:
objects, XML, and relational da-
tabases), which enables integrated
data modeling and transformations
between abstraction levels. A pro-
totype of an integrated modeling
environment supporting the MD3
framework was implemented as a
plug-in to MagicDraw UML, which
provides a rich set of features for
creating a domain-specific mode-
ling environment based on UML
profiles (Silingas et al., 2009).

Domain ER model
{concepts and relationships) e T A SN AL A
| Manual transformation
. Design solufions

0O data model
(classes, attributes, types, associations)

. h“mm“ s s
"oy UML = DOL-specific UML | XSD-specific UML

(tables, primary & foreign keys, -) Automated transformation i
| DDL-specific UML = DOL !
..., XSD-specific UML = XSD

DDL code
(CREATE statements)

Figure 1. Travelling through abstraction levels for data design

MD3 Framework: Reader submits B> Reservation « fulfills Loan

Principles, Samples, and ! ’ - ! 01 -

Integrated Modeling books ¥ | 4 issues ¥ |4

Environment Category <« is assigned to Title < is instance of Item
T - p .

MDA introduces diffe-
rent abstraction levels for
models: computation in-

Figure 2. Afragment of CIM for MagicLibrary — domain concept relations

dependent model (CIM)’ Reader Reservation Loan
. id : Integer author madeAt : date reservation madeAt : date
platform lndependent mo- active : Boolean ’ pendingFrom : date [returnedAt : date
: String status : Integer dueAt : date
del (PIM), and platform |emai: stin
: g

specific model (PSM).

LR . reservedTitle|1 loanedItermy 1

The main idea is to use au- Category —_ o
; 0.1
tomated transformations to name : String categories name : String assignedIitem [nr : Integer
get from PIM to PSM (see description : String ["« ;ﬂg?iz;:eiginzgdate title status : Integer
Figure 1) and from PSM to x ! 0.1
the code. In the data desi-
gn world, we proposed to Book MediaRecord
use a specialized version isbn : String duration : Integer
K pages : Integer tracks : String

of MDA abstraction levels
framework, which is pre-
sented in Figure 1. Figure 3. Afragment of PIM for MagicLibrary — object-oriented data model

302

To go over to the next abs-
traction level — PIM, we pro-
pose to use the object-oriented
paradigm with a more detailed
class modeling in UML (see
Figure 3). The first version of
this abstraction level can be
derived automatically from
CIM, but it is very typical to
introduce the class properties,
add specialized or intemediate
concepts to address design is-
sues and ensure completeness
of data model. Further on, this
PIM model can be automati-
cally transformed into a DDL-
specific model (see Figure 4),
and an XML schema-specific
model (see Figure 5). The
major difference between
those two PSM models is
their metamodels that in the
case of MD3 are implemen-
ted as UML profiles provi-
ding different sets of stere-
otypes applicable to UML
concepts used for data mo-
deling. The PSM models can
be transformed into an XML
schema or DDL code using a
completely automated model
to code transformation. Small
fragments of the generated
DDL and XML schema code
are presented in Table 1.

<<table>> <<table>> <<table>>
Reader Reservation Loan
<<PK>>id : integer <<PK>>id : integer <<PK>>id : integer
active : Boolean =<Fk>> madeAt : date <<FK>> madeAt : date
name : varchar pendingFrom : date returnedAt : date
email : varchar status : integer dueAt : date
fkReader : integer [1] fkitem : integer [1]
fkTitle : integer [1] fkReservation : integer [1]
I <<FK>> <<FK>> <<FK>:
<<table>> <<table>> <<table>>
CategoryTitle Title Item
fkCategory : integer <<FK>> _f<<PK>>id : integer <<PK>>id : integer
fkTitle : integer name : varchar nr: integer
author : varchar <<FK>> status : integer
publishedAt : date fkTitle : integer [1]
fkReservation : integer [1]
I<<FK>> <<FK>£ I <<FK>>
<<table>> <<table>> <<table>>
Category Book MediaRecord
<<PK>>id : integer <<PK>>id : integer <<PK>>id : integer
name : varchar isbn : varchar duration : integer
description : varchar pages : integer tracks : varchar

Figure4. Afragment of PSM for MagicLibrary — relational database

schema model

<<XSDcomplexType>> | <<XSDelement>> <<XSDcomplexType>> [<<XSDelement>> | <<XSDcomplexType>>
<<XSDsequence>> author <<XSDsequence>> reservation <<XSDsequence>>
Reader 1 0. Reservation 1 0. Loan
id : integer madeAt : dateTime madeAt : dateTime
active : Boolean pendingFrom : dateTime returnedAt : dateTime
name : string status : integer dueAt : dateTime
email : string
<<XSDelement>3 <<XSDelement>3}
reservedTitle|1 loanedltem},1
<<XSDcomplexType>> <<XSDcomplexType>> <<XSDelement>f <<XSDcomplexType>>
<<XSDsequence>> |<<XSDelement>> <<XSDsequence>> assignediten| <<xSDsequence>>
Category categories Title <<XSD. 0.1 Item
name : string 1.7 0.* |name : string title nr: integer
description : string author : string T|status : integer
publishedAt : dateTime |1 0.

<<XSDextension>> LF <<XSDextension>>

<<XSDcomplexContent>> <<XSDcomplexContent>>
<<XSDcomplexType>> <<XSDcomplexType>>
<<XSDsequence>> <<XSDsequence>>
Book MediaRecord
isbn : string duration : integer
pages : integer tracks : string

Table 1. Samples of the database and XML schema code, generated from PSM models

Figure5. A fragment for PSM for MagicLibrary — XML schema model

Database Schema Code Fragment

XML Schema Code Fragment

CREATE TABLE Reservation (
id integer PRIMARY KEY,
madeAt date,
pendingFrom date,
status integer,
fkReader integer NOT NULL,
{kTitle integer NOT NULL,

Reader(id));

FOREIGN KEY (fkTitle) REFERENCES Title(id),
FOREIGN KEY (fkReader) REFERENCES

<xs:element maxOccurs=

<xs:complexType name="Reservation”>
<xs:sequence>
<xs:element maxOccurs="1"" name="author” type="Reader”/>
name="reservedTitle”” type="Title"/>
<xs:element maxOccurs="1" minOccurs="0" name="assignedltem”
type="Item”/>
</xs:sequence>
<xs:attribute name="madeAt” type="xs:dateTime"/>
<xs:attribute name="pendingFrom” type="xs:dateTime"/>
<xs:attribute name="status” type="xs:integer”’/>
</xs:complexType>

212

303

In order to support the proposed MD3 fra-
mework, a customized version of MagicDraw
UML environment has been developed. It con-
tains the following features:

e UML profiles for the XML schema and

DDL;

e Customization suites for virtually trans-
forming data design stereotypes into the
first-class modeling concepts;

e Custom diagrams for each data design
abstraction layer — concepts, data struc-
ture, database schema, and XML schema
diagrams;

e Validation rule suites capable to verify a
data design model for completeness;

e Model-to-model transformations automa-
ting PIM to PSM conversion;

e Code generators that allow generating the
DDL and XML Schema code based on
platform-specific data design models and
plain text report templates using Velocity
Template Language scripts.

Due to the limitation of the paper size, the
MD3 integrated development environment is
not presented in detail here. However, it is rather
a typical example of building a domain-specific
modeling environment, which is discussed in
detail in (Silingas at al., 2009).

Summary

The paper introduced a model-driven data
design framework MD3, which promotes using
UML for computation-independent (CIM) and
platform-independent (PIM), data modeling, and
application of semi-automated transformations
of platform-independent models into platform-
specific data models (PIM) by using UML pro-
files for specifying XML and relational database
schemas. It also supports fully automated gene-
ration of XSD and DDL scripts from platform-
specific models. The paper includes a number of
concise illustrations for applying this framework

304

to a case study of a fictitious library information
management system MagicLibrary, which illus-
trate the validity of the proposed approach.

The MD3 framework provides the prin-
ciples and workflow for practitioners to cope
with the multi-platform data structure design
problem by focusing on platform-independent
object-oriented data modeling and automated
transformation to platform-specific represen-
tations, such as the XML schema and the re-
lational database schema. In order to support
pragmatic concerns of the MD3 framework, a
prototype of MD3 integrated modeling environ-
ment has been implemented as a plug-in to the
MagicDraw UML tool. It allows data designers
to prepare and manage data design models in a
simple and intuitive manner. However, the user
acceptance of such an integrated modeling en-
vironment still needs to be proved by running
the user experience survey.

While the MD3 framework lays out the
foundations for a data structure design, there are
still many details of applying this method that
need to be researched and improved. Also, it
is possible to improve the integrated modeling
environment by adding or customizing various
features. Therefore the MD3 framework should
be considered as a source for developing more
specialized and formalized data design methods
and tools.

Acknowledgements

I would like to thank Tomas Juknevicius
and other members of MagicDraw R&D team
who worked on implementing DDL and XML
schema code engineering in MagicDraw UML —
the presented approach utilizes some of the
tool features that are already available. Also, I
would like to thank Erik Meijer from Microsoft
Research, who introduced the data modeler’s
Bermuda triangle problem and inspired me to
write this paper.

REFERENCES

BERNAUER, Martin; KAPPEL, Gerti; KRAM-
LER, Gerhard. (2004). Representing XML schema
in UML — A Comparison of Approaches. Web Engi-
neering, LNSC 3140, p. 767-769. ISBN 978-3-540-
22511-9.

BROOKS, Frederick P. (1987). No Silver Bul-
let: Essence and Accidents of Software Engineering.
Computer, vol. 20 (4), p. 10-19.

FRANCE, Robert; RUMPE, Bernhard. (2007).
Model-driven Development of Complex Software: A
Research Roadmap. FOSE ‘07: 2007 Future of Soft-
ware Engineering. Washington, DC: IEEE Computer
Society, p. 37-54. ISBN 0769528295.

OMG (2003). MDA Guide Version 1.0.1. Access via
Internet: <http://www.omg.org/docs/omg/03-06-01.pdf>.

OMG (2009). OMG Unified Modeling Language
(OMG UML), Superstructure, v2.2. Access via Inter-
net: <http://www.socialresearchmethods.net/tutorial/
tutorial.htm>http://www.omg.org/spec/UML/2.2/Su-
perstructure/PDF>.

SILINGAS, Darius; VITIUTINAS, Ruslanas
(2007). Towards UML-Intensive Framework for
Model-Driven Development. In: Balancing Agil-

ity and Formalism in Sofiware Engineering: Second
IFIP TC 2 Central and East European Conference on
Software Engineering Techniques, CEE-SET 2007,
LNCS 5082, p. 116-128. ISBN 978-3-540-85278-0.

CHEN, Peter Pin-Shan (1976). The Entity-Re-
lationship Model — Toward a Unified View of Data.
ACM Transactions on Database Systems (TODS),
vol. 1, no. 1, p. 9-36, ISSN 0362-5915.

SILINGAS, Darius; KAUKENAS, Saulius
(2004). Applying UML for Relational Data Model-
ing. I8: Proceedings of the Thirteenth International
Conference on Information Systems Development:
Advances in Theory, Practice and Education (ISD
2004). Vilnius, 2004. ISBN 9986-05-762-0.

SILINGAS, Darius; VITIUTINAS, Ruslanas;
ARMONAS, Andrius; NEMURAITE, Lina (2009).
Domain-Specific Modeling Environment Based on
UML Profiles. In: Proceedings of Information Tech-
nologies 2009. Kaunas: Technologija, p. 167-177.

THOMAS, Dave (2004). MDA: Revenge of
Modelers or UML Utopia? /EEE Software, Los Ala-
mitos, CA: IEEE Computer Society, vol. 21, no. 3,
p- 15-17. ISSN 0740-7459.

MD3 — INTEGRUOTAS MODELIAVIMU PAGRISTAS DUOMENU PROJEKTAVIMAS
OBJEKTINEMS, XML IR SARYSINIU DUOMENU BAZIU TECHNOLOGIJOMS

Darius Silingas
Santrauka

Modeliais pagristos architektiiros (MDA) paradi-
gma sitlo didinti programinés jrangos kirimo efek-
tyvuma keliant abstrakcijos lygi. Tuo tikslu sitiloma
kaip pagrinding programy konstravimo priemong
naudoti ne tekstines programavimo kalbas, o vizu-
alias modeliavimo kalbas, tokias kaip UML. Siame
straipsnyje nagrin¢jamas MDA taikymas duomeny
struktliry projektavimui. Pristatomas MD3 metodi-
kos karkasas, kuris apibrézia duomeny projektavimo
principus, veiksmy seka, UML poaibi, skirta duome-

nims modeliuoti, UML plétinius XML schemoms
ir DDL kodui reprezentuoti, transformacijas tarp
skirtingy duomeny abstrakcijos lygiy bei duomeny
struktiry projektavimui specializuota modeliavimo
aplinka. MD3 taikymas iliustruojamas nedideliais,
bet reprezentatyviais pavyzdziais i$ bibliotekos da-
lykinés srities. Pristatomas MD3 metodikos karkasas
suvokiamas kaip pradinis atspirties taskas labiau spe-
cializuotiems ar formalizuotiemsy duomeny projek-
tavimo metodams ir jrankiams kurti.

305

