
ISSN 1392-0561. INFORMACIJOS MOKSLAI. 2009 50

248

INTERNETINĖS TECHNOLOGIJOS

Quality of Services in the Context
of Internet of Services

Jérémy Besson
Institute of Mathematics and Informatics
Akademijos g. 4, LT 69121 Vilnius, Lithuania
E-mail: contact.jeremy.besson@gmail.com

Albertas Čaplinskas
Institute of Mathematics and Informatics
Akademijos g. 4, LT 69121 Vilnius, Lithuania
E-mail: alcapl@ktl.mii.lt

In the recent decade the component technologies have been evolved from object-oriented to ser-
vice-oriented ones. A lot of different component models, component architectures, and component
description languages have been proposed. To systematize and conceptualize the proposed appro-
aches is a hard and complicated task. The paper aims to contribute to the solution of this problem. It
analyses the most important approaches for specifying the quality of services (QoS) delivered by the
software components. The analysis is made from the point of view of the Internet of Services (IoS).

1. Introduction

Software Engineering (SE) community fa-
ces a period of revolutionary changes. Advanced
Enterprise Architectures, Cloud computing, and
Services Oriented Architectures (SOA) change
many traditional SE methods, approaches and
techniques. One of the main SE next year chal-
lenges is the Internet of Services (IoS). In the IoS
“a service can be characterised by the fact that
the service consumer does not own the service,
and by the existence of a service level agreement
(SLA), either explicit or implicit, between a provi-
der and a consumer. The SLA provides the shared
context between different parties to a relationship
based on the service. The relationships between
provider and consumer can range from long-lived
associations to dynamic single-use scenarios.”
(NESSI, 2006). This model requires to provide
and guarantee a certain Quality of Service (QoS).
QoS becomes a part of any contract between
service consumers and providers. It should be
expressed in SLA’s terms. So, the mechanisms

to defi ne, to negotiate, and to monitor the QoS
are essential components of the IoS. A number
of approaches were proposed on how to specify
and to manage end-to-end QoS in different archi-
tectures and environments. However, it is far not
obvious which of those approaches and in what
extend are suitable in the IoS environment. This
paper analyses the most important approaches of
the proposed and aims to evaluate the relevance
of these approaches for the QoS management in
the IoS environment.

The remainder of this paper is organized as
follows. Section 2 briefl y discusses the concept
of QoS. Section 3 analyses and evaluates the
most important approaches to the QoS manage-
ment. Section 4 concludes the paper.

2. Quality of Services

The concept of QoS was developed for the
telephony and other network services. Later on,
it has been extended for packet-switched net-

249

works, including computer networks, and for
such network resources as, for example, Web
servers. Approximately of the same time QoS
was defi ned for software components. However,
the understanding and usage of QoS in networ-
king and in SE were signifi cantly distinct. In
networks the QoS is a dynamical phenomenon.
It takes into account the resource reservation
control mechanisms. A network or protocol that
supports the QoS may agree on such a traffi c
contract that the application software can re-
serve the required capacity in the network no-
des. In component-based SE the QoS is a static
concept that addresses the extra-functional pro-
perties of software components. The QoS spe-
cifi cations are mainly used to make the design
decisions during the system development phase.
More than ten years ago the concept of QoS was
extended to be applicable to open distributed
processing (ODP) systems, such as Corba or do-
tNet based systems. In ODP environments the
QoS combines static and dynamic features be-
cause component systems are dynamically com-
posed of distributed components communica-
ting with each other through the network. In this
context, QoS takes into account network-related
characteristics as well as quality characteristics
of software components. Although the list of
system components is not a static one and per-
manently changes, it is defi ned at any particular
moment of time. It means that only the com-
ponents registered as a system’s components
can communicate one another. Besides, all the
system’s components should be built using the
same technology and should run inside the same
run-time environment (e.g. Corba environment).
Similarly, the concept of the QoS is also inter-
preted in the current SOA systems, for example,
in a system composed of Web-services. The IoS
takes different point of view, because in the IoS
the whole Internet is looked upon as a reposi-
tory of components. It means that components
are mainly developed independently, not taking
into consideration any particular system. They
might be built using different technologies and
run in different run time environments. A sys-
tem is a temporal, maybe one-off, composition
of services. A service consumer (person, device,

component or application) and a service pro-
vider negotiate at the run-time and agree on a
QoS-contract dynamically, the QoS-policies can
be changed at run-time and the behaviour can-
not be well defi ned a priori. The QoS must be
monitored dynamically and corrective operati-
ons may be taken to fulfi l the agreed contract.
The end-to-end QoS must take into account all
architectural levels, including hardware, softwa-
re components, applications, run-time environ-
ments and heterogeneous networks.

3. Analysis and evaluation of the proposed
approaches

3.1 METEOR-S

METEOR-S (Verma, 2005) is a Web Service
Annotation Framework that involves creation
and application of a broad variety ontologies
related to data, function, non-functional/QoS
and execution semantics to support the com-
plete web process lifecycle. Meteor-S grows up
from the WSDL-S (W3C, 2005) It extends the
WSDL in order to add ontological concepts to it.
It integrates and co-exists with current industry
technologies, including Eclipse BPWS4J Editor
and BPEL4WS Execution Engine. METEOR-S
provides a mechanism to add QoS semantics to
WSDL fi les. It also provides a QoS model that
allows for the description of non-functional
aspects of workfl ow components from a QoS
perspective and a mathematical model that al-
lows automatic computing of the overall QoS of
a workfl ow. METEOR-S provides a constraint
based process composition which constrains
both the generic QoS parameters (time, reliabi-
lity, etc.) and domain specifi c QoS parameters
(e.g., supply time). Constraints are converted
into linear equalities/linear inequalities over
a set of discovered services, which are solved
using integer linear programming methods. To
sum up, METEOR-S is intended to be used in
large scale distributed information systems. It
concentrates on workfl ow systems and assumes
that all components are web services that are
designed and developed for a particular system.

250

So, this approach cannot be used directly in the
IoS environment.

3.2 OWL-S

OWL-S (Martin, 2004) is an OWL (Grau et
al., 2006) ontology to describe the Web service.
It provides a core set of mark-up language cons-
tructs required to describe the services offered by
service providers and the services needed by ser-
vice consumers. OWL-S provides non-functio-
nal properties of services. It enables us to descri-
be the semantics of web services and is intended
to be used in the service-oriented environment,
but it is devoted only to Web Services. OWL-S
provides only few predefi ned non-functional
properties, but an explicit extension mechanism
may be used to defi ne new properties. It provides
an attribute used for rating a web service but does
not provide any special mechanisms to describe
the QoS. Just like METEOR-S, OWL-S assumes
that all components are designed and developed
for a particular system.

3.3 Quality of Services Modelling Language
(QML)

QML (Frolund, Koisten, 1998) is a kind of
interface defi nition language which was deve-
loped for defi ning multi-category QoS specifi -
cations of the components in distributed object
systems. QML provides three abstraction me-
chanisms: contract types, contracts, and profi -
les. A contract type represents some non-func-
tional aspect of the component. A contract is an
instance of a particular contract type. A profi le
bounds the contract to a component interface,
operation, and operation argument or operation
result using the language element known as a
profi le. A client-server relationship could have
two QoS specifi cations allowing negotiation of
QoS dynamically between clients and servers
in the distributed systems. QML enables us to
specify the QoS and to negotiate the QoS dyna-
mically. It is intended to be used in distributed
object systems and is not applicable directly in
the service-oriented environment.

3.4 The Quality Objects (QuO/QDL)

QuO/QDL (Pal et al., 2000) is a framework
for providing QoS in network-centric distribu-
ted applications, including the embedded ones.
It extends a distributed object computing fra-
mework that is implemented as a middleware
for developing and adding adaptation and QoS
awareness and control to those applications.
QuO/QDL provides mechanisms to specify the
desired QoS for distributed applications and to
inform the applications about the obtained QoS
and adaptation as QoS changes. QuO bridges
the gap between the socket-level QoS and the
distributed object level QoS and provides some
ideas how to guarantee the required QoS under
the failure circumstances (Rubel et all., 2006). It
provides 3 aspect-oriented Quality Description
Languages:

• Contract Description Language. CDL is
used to describe the QoS contract betwe-
en a client and a component, including
the QoS required by the client, the QoS
that the component expects to provide,
regions of possible levels of QoS, the be-
haviour to invoke to adapt to or notify of
changes in QoS, and interfaces that can be
used to measure and control the QoS. The
QoS properties are assumed to be the re-
sult of invoking instrumentation methods
on remote objects. No formal constraints
are placed on the implementation of these
methods.

• Structure Description Language. SDL
describes the internal structure of com-
ponent implementation and the amount
of resources they require. It allows spe-
cifying adaptation alternatives and stra-
tegies, based upon the QoS measured in
the system, the behaviours to invoke for
method calls and/or returns, and the QuO/
QDL connections.

• Resource Description Language. RDL
describes the available resources and tho-
se that will be used.

QuO/QDL enables us to specify and custo-
mize the QoS requirements for applications, for
the system elements that must be monitored and

251

controlled to measure and provide QoS, and for
the behaviour, which adapts to QoS variations
that occur at run-time (Schantz et all., 2000). It
is intended to be used in distributed object sys-
tems and is not applicable directly in the servi-
ce-oriented environment.

3.5 Service Component Architecture
(SCA Policy)

SCA Policy (SCA, 2007)provides a general
approach to defi ne components and to describe
how they interact in the system, modelling their
interactions as services, that is, separating their
functionality and implementation technology
(Chapel, 2007). SCA Policy provides a set of
specifi cations that describe a model for building
component systems, using a Service-Oriented
Architecture (SOA). The most important of
them are the assembly model specifi cation,
component implementation specifi cations, bin-
ding specifi cations, and the policy framework
specifi cation. The main elements of the policy
framework are:

• Intents: Intent is a single abstract assertion
about QoS. It can be qualifi ed and satisfi ed
by a variety of bindings and with many dif-
ferent ways of confi guring those bindings.
It is allowed to attach intents to any ele-
ment used in the defi nition of components
and composites. Intents allow us to start
the design with abstract QoS requirements
and to add deployment details later in the
process. They are independent of any im-
plementation technology or of any binding
and can be attached to any element used in
the defi nition of a component.

• Profi les: Profi les are aggregations of in-
tent names or something like macro,
which declares a single name for a collec-
tion of intents. They represent common
sets of QoS requirements. A profi le intent
is satisfi ed if all the underlying intents are
satisfi ed. Using high level policy profi les,
SCA Policy simplifi es the potential com-
plexity of infrastructure policy for QoS
(Marino, Rowley, 2009).

• Policy sets: At the deployment time intents
are mapped to corresponding policy sets
containing the specifi cs of technology.
One or more policy sets can be attached
to any SCA element used in the defi niti-
on of components and composites. Each
policy set contains one or more policies
expressed in a particular policy descripti-
on language. How the intents or policies
are specifi ed within an implementation
depends on the implementation technolo-
gy. Both intents and policy sets may be
used to specify the QoS requirements.

The policy framework specifi cation defi nes
how to add confi gurable infrastructure services
(security, reliable messaging, transactions, etc.)
to the application systems. Bindings and poli-
cies allow separating business logic from the
infrastructure. The policy assertion represents a
requirement, capability, or an other property of
behaviour. Some assertions are relevant to servi-
ce selection and usage (e.g. QoS characteristics)
(Marino, Rowley, 2009). To sum up, SCA Policy
is a language and technology independent ap-
proach that consequently follows the principle
separation of concerns and supports a uniform
declarative binding abstraction. However, it is
more about building the components that consu-
me services than about building services. Up to
date, the SCA is not adequate for mobile servi-
ces. In addition, it provides only a limited sup-
port for the specifi cation of the QoS and is more
vendor-oriented than oriented to an SOA system
architect. SCA is well-suited for authentication,
confi dentiality, integrity, message reliability, and
transaction propagation. However it is not clear
how adequate it will be for other QoS issues.

3.6 SLAng

SLAng (Lamanna et al., 2003) is an XML-
based language for defi ning service level agre-
ements (SLA). Any SLA is a part of contract
between a service consumer and a service pro-
vider describing the required QoS. In this appro-
ach a SLA includes an end-point description of
the contractors, contractual statements, and the

252

required QoS description and associated metri-
cs. SLAng provides a format for QoS negotiati-
on and contract specifi cation and is designed to
be appropriate as input to automated reasoning
systems or QoS-aware adaptive middleware. It
aims to facilitate different levels of QoS abs-
traction and defi nes 7 different types of SLA:
between applications/web-services and compo-
nents (application SLA), between a service pro-
vider and host (hosting SLA), between a host
and storage service provider (persistence SLA),
between application or host and Internet servi-
ce providers (communication SLA), between
component and web service providers (service
SLA), between container providers (container
SLA), and between network providers (networ-
king SLA). SLAng identifi es the need for diffe-
rent levels of expressiveness of horizontal and
vertical SLAs. Horizontal SLAs are contracts
that govern interaction between components.
Vertical SLAs regulate the support that parties
get from their underlying infrastructure. Each
SLA defi nes the relationship of responsibility
between a client and a server. Responsibilities
are expressed in terms of end-point, contractual
and SLS parameters, which are specifi c to the
type of SLA (Lamanna et al., 2003). In order to
represent services and SLAs, the SLAng uses
the UML profi le for QoS and Fault Tolerance,
but redefi nes the QoS catalogue. UML and OCL
are used to precisely defi ne the meaning of
SLAs. The semantics of the language is formal-
ly defi ned in terms of the behaviour of services
and clients involved in service usage. SLAng is
oriented to the e-business domain. It is not well-
suited to defi ne SLAs in the service-oriented en-
vironment, because the syntactic structure and
semantics of SLAng are defi ned with reference
to a model of the distributed system client-ser-
ver architecture. However, it focuses not only
on web services exclusively and defi nes a voca-
bulary to model a number of other Internet ser-
vices, including Application Service Provision
(ASP), Internet Service Provision (ISP), Storage
Service Provision (SSP) and component hosting
(Skene et al., 2004).

3.7 UML profi le for QoS and Fault Tolerance

The UML profi le (OMG, 2005) defi nes a
number of UML 2 extensions to represent QoS
and introduces extra-functional aspects in UML
models. Later, these requirements should be al-
located in the analysis model and implemented
by the software architecture. Thus, the profi le is
intended to be used to specify the QoS of the
component that is going to be developed. The
QoS is defi ned as a set of perceivable characte-
ristics expressed in a user-friendly language with
quantifi able parameters that may be subjective
or objective. The characteristics of quality and
their parameters are based on user satisfaction
and resource consumption. A quality characte-
ristic includes a set of quality attributes that are
the dimensions to express a satisfaction. The
quantifi able level of satisfaction of a non-func-
tional property is described by the appropriate
quality level. Quality levels are used to describe
contracts for the QoS provided by the compo-
nent. To fulfi l these contracts, the component
requires some amount of system resources and
appropriate quality levels of services delivered
to this component by other components. These
quality levels are expressed in the required qua-
lity contracts. Quality contracts are expressed in
terms of the values associated to quality charac-
teristics. The profi le allows the corresponding
QoS values to be attached to messages using a
communication diagram. Some infrastructure
should be provided for the management of QoS
contracts in the run-time environment. Various
approaches can be used for this aim. For exam-
ple, the interface description language can be
extended to support the description of quality
contracts. QuO (Pal et al., 2000) is an example
of such an approach. To sum up, the profi le de-
fi nes constructs to model the described concepts
and defi ne constraints on the QoS characteris-
tics. It allows us to model QoS contracts in the
client-server architecture that, on the one hand,
describe the quality values, which can be sup-
ported by the server (provider- offered QoS), and
the requirements that must achieve their clients
(provider-required QoS), and, on the other hand,
the quality required by the client (client-required

253

QoS) and the quality that the client ensures (cli-
ent-offered QoS). If the provider does not sup-
port the required QoS required, the contract and
the fi nal quality must be negotiated. The profi le
introduces the QoS catalogue for storing speci-
fi cations of general QoS characteristics and ca-
tegories that can be reused in different projects
and domains. This makes it possible to build the
components using different technologies and to
run them in different run time environments.
However, all the components are assumed to be
designed and developed for a particular system.
Besides, the end-to-end QoS takes into account
not all architectural levels in this approach.

3.8 UniFrame

The UniFrame approach (Raje, 2001) has
been proposed for the open distributed object-
computing environment. Later on this approach
evolved and was adapted to the service-orien-
ted environment (Olson et al., 2005). The ap-
proach is based on the so-called Unifi ed Meta-
Component Model (UMM) treating a system
“as as a collection of large number of hetero-
geneous, interconnected, (possibly) mobile, and
“smart” components” (Raje, 2001), which cons-
tantly discover one another in the network, offer
and utilize services, and negotiate the cost and
the QoS. The paradigm beyond the UniFrame
approach combines “the principles of distribu-
ted, component-based computing, model-dri-
ven architecture, service and quality of service
guarantees, and generative techniques” (Olson
et al., 2005). It provides an iterative, incremen-
tal process for assembling a distributed com-
puting system from services available on the
network and emphasizes determining the QoS
during this process. Components in the UMM
have public multiple level interfaces describing
not only their functional responsibilities, but
also guaranteed QoS ratings. A component is
described by six groups of attributes: inherent,
functional, non-functional, cooperative, auxi-
liary, and deployment attributes. The inherent
attributes contain the bookkeeping information
about a component. The non-functional attri-

butes represent the QoS parameters, along with
their values that the component developer gu-
arantees in a specifi c deployment environment.
They may also indicate the effects of the deplo-
yment environment and usage patterns on the
QoS values. The requirements specifi cation of a
component is written in a natural language and
inter alia describes the required values of QoS
parameters. Using two-level grammars (Briant,
Lee, 2002), this specifi cation is transformed into
a formal specifi cation allowing the generation
of a component’s interface. The QoS parameters
as well as generation rules in the formal specifi -
cation are expressed in the two-level grammars
formalism. The generated interface also incor-
porates the QoS aspects of a component. Once
all the required components are developed and
deployed on the network, one must compose
them into system. The system is described by
a generative domain-specifi c model, which is
used to generate the glue/wrapper interfaces be-
tween the required components. The static QoS
parameters are processed generating the system
by the two-level grammars. The dynamic para-
meters result in the instrumentation of generated
code. The instrumentation is necessary for the
run-time QoS metrics evaluation. (Raje et all.,
2002). In order to automate the instrumentation
of the generated code, a system behaviour mo-
del is required. In the UniFrame approach, the
attributed event grammar formalism (Auguston,
1995) is used for modelling the system’s be-
haviour. The system’s execution is represented
as a set of events connected by an event trace.
Possible confi gurations of events within the
event trace are described by a set of axioms and
the dynamic QoS metrics are expressed as com-
putations over the event trace. After the instru-
mentation of the generated code is completed,
the components that can guarantee appropriate
values of the dynamic QoS parameters are cho-
sen from the set of available components, using
a representative set of test cases. However, the
proposed approach does not guarantee that these
components will be able to provide the requi-
red QoS under failure circumstances. To sum
up, UniFrame is intended to be applicable in an
open distributed object-computing environment.

254

It allows specifying QoS at both the component
and system levels. Like UML profi le for QoS
and Fault Tolerance, it provides the QoS cata-
logue for storing specifi cations of reusable QoS
attributes including the metrics, the evaluation
methodologies and the relationships with other
QoS attributes. It also provides an infrastructure
for the management of QoS contracts in the run-
time environment. UniFrame SLA specifi cati-
ons rely on the specifi cation of measurements
in external ontologies that provide structured
natural language descriptions of measurements.
This approach fi ts to most of the IoS require-
ments. However, it does not guarantee that the
components will be able to provide the required
QoS under failure circumstances.

3.9 Web Service Level Agreement (WSLA)

WSLA (Ludwig et al., 2003) is an XML-
based language to describe SLAs. It advocates
the idea of individually negotiated customized
SLA. A web service level agreement is an agre-
ement between a service provider and a service
customer and as such defi nes the obligations of
the parties involved. The WSLA supports ne-
gotiations and deployment. Mechanisms can be
specifi ed to defi ne how the QoS attributes are
measured. It is allowed to create new metrics
defi ned as functions over the existing metrics. It
is supposed that all measurements must be pro-
vided by a web service encapsulating monitors.
The monitors are external constructs to the lan-
guage because no constraints are placed on their
implementation. The involved parties are auto-
matically informed when the service does not
meet the QoS specifi ed in the WSLA. WSLA
supports negotiation and monitoring of QoS.
However, it is meant only for web services.

3.10 Web Service Level Offering (WSLO)
framework

WSLO (Tosic et al., 2002) allows the formal
and unambiguous specifi cation of prices, mone-
tary penalties, management responsibilities and
third parties, especially accounting parties. The

main targets of the WSOL project are the cre-
ation of service offerings and the defi nition of
QoS constraints. Another important design goal
is a low run-time overhead achieved through
defi ning classes of services instead of individu-
ally managed SLAs. WSOL also supports the
reusability of specifi cations. This is realized by
means of the concept of constraint groups and
constraint group templates to include the for-
merly defi ned elements and import of elements
defi ned in other WSOL fi les. Similarly as in the
UniFrame, SLAs are specifi ed using external on-
tologies providing natural language descriptions
of measurements. Like QML, it provides a type
system for SLAs. Similarly as the WSLA, this
approach is dedicated only to Web Services.

3.11 Web Service Modeling Ontology
(WSMO)

WSMO (Roman et al., 2006) is upper lay-
er ontology for describing various aspects of
Semantic Web Services. For complete item des-
criptions, each WSMO element is described by
the properties that contain relevant, non-functio-
nal aspects. These are based on the Dublin Core
Metadata Set and other service specifi c proper-
ties like versioning information, QoS informati-
on, as well the owner and fi nancial information.
WSMO discriminates between the component’s
QoS and the network related QoS. The latter re-
presents the QoS mechanisms operating in the
transport network which is independent of the
service. It can be measured by network delay,
delay variation and/or message loss. WSMO
allows us to describe only predefi ned non-func-
tional properties. It provides fl exible extension
but does not provide any explicit mechanisms
for this aim. Besides, it is dedicated only to Web
Services.

3.12 Web Services Policy Framework
(WS-Policy)

The WS-Policy framework (Schlimmer,
2006) provides a simple grammar for combi-
ning various policies. It is a part of the core Web

255

services architecture specifi cations. It defi nes a
XML-based model that is used to describe the
policies associated with a Web service. In the
WS-Policy, an assertion is the basic unit of poli-
cy. The meaning of each individual assertion is
beyond the scope of the WS-Policy framework
and should be part of another specifi cation.
QoS is one of the issues that potentially can be
expressed using the WS-Policy. The WS-Policy
proposes an interesting police-based approach
to describe QoS. However, it is dedicated only
to Web Services.

4. Conclusions

We still do not have well-established stan-
dards to defi ne the QoS in the SOA and none
of the analyzed approaches is appropriate to be
used directly in the IoS environment. The ana-
lysis made demonstrates that separation of con-

cerns and virtualization are the main trends in
the evolution of component technologies. The
bindings and policies completely separate the
business logic from the infrastructure concerns.
The SCA, QuO and some other approaches pro-
vide truly aspect-oriented solutions. The QuO,
UniFrame, and other approaches suggest how
to bridge socket-level, network-level, and sys-
tem-level QoS. However, many problems re-
main unsolved as yet. The list includes service
level agreements, measurement and evaluation
of the dynamic QoS characteristics, legal issu-
es of negotiations. Many approaches, including
the SCA, remain at least partly object-oriented.
Almost all the service-oriented approaches con-
centrate on the web services and pay no attenti-
on to other kinds of services.

Acknowledgments. The research is funded
by the Lithuanian State Science and Studies
Foundation under the contract No. S 09/2009

REFERENCES

AUGUSTON, M. (1995). Program behavior mo-
del based on event grammar and its application for de-
bugging automation. In: Ducassé M. (ed.) AADEBUG,
2nd International Workshop on Automated and Al-
gorithmic Debugging, May 22–24, 1995, Saint Malo,
France, Proceedings. IRISA-CNRS, p. 277–291

BRIANT, B. R.; LEE B.-S. (2002). Two-level
grammar as an object-oriented requirements specifi -
cation language. In: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences
(HICSS’02), vol. 9, p. 280–289

CHAPEL, D. (2007). Introducing SCA.
Chapell&Associates. URL: http://www.davidchap-
pell.com/articles/Introducing_SCA.pdf

FROLUND, S.; KOISTEN J. (1998). QML: A
Language for Quality of Service Specifi cation. HP
Labs Technical Reports.

GRAU, B. C.; HORROCKS, I.; MOTIK, B.;
PATEL-SCHNEIDER, P. F. (2006). OWL 1.1 Web
Ontology Language. Submission Request to W3C,
submitted 19 December, 2006, W3C, URL: http://
www.w3.org/Submission/2006/10/.

LAMANNA, D. D.; SKENE, J.; EMMERICH, W.
(2003). SLAng: A Language for Service Level Agre-
ements. In: Proc. of the 9th IEEE Workshop on Fu-

ture Trends in Distributed Computing Systems. IEEE
Computer Society Press, p. 100–106.

LUDWIG, H.; KELLER, A.; DAN, A.; KING, R.,
FRANCK, R. (2003). Web Service Level Agreement
(WSLA) - Language Specifi cation. IBM specifi cati-
on, URL: http://www. research.ibm.com/wsla/WS-
LASpecV1-20030128.pdf

MARINO, J.; ROWLEY, M. (2009). Understan-
ding SCA. Addison-Wesley Professional.

MARTIN, D. (ed.) (2004). OWL-S: Semantic
Markup for Web Services. Member Submission 22
November 2004, W3C. URL: http://www.w3.org/Su-
bmission/2004/SUBM-OWL-S-20041122/

NESSI (2006). NESSI Strategic Research Agen-
da. Vol. 1 Framing the future of the Service Oriented
Economy. Public Draft 1 -Version 2006-2-13 -Revisi-
on 3.1. URL: ttp://cordis.europa.eu/technology-plat-
forms/pdf/nessi1.pdf

OLSON, A. M; RAJE, R. R.; BRYANT, B. R.; BURT,
C. C.; AUGUSTON, M. (2005). UniFrame: a unifi ed
framework for developing service-oriented, component-
based, distributed software systems. In: Stojanovic, Z.,
Dahanayake, A. (eds.) Service-Oriented Software System
Engineering: Challenges and Practices (Chapter IV,
p. 68–87). Hershey,PA: Idea Group Publishing.

256

OMG Standard (2005). UMLTM Profi le for Mo-
deling Quality of Service and Fault Tolerance Cha-
racteristics and Mechanisms. URL: http://www.omg.
org/docs/ptc/05-05-02.pdf

PAL, P.; LOYALL, J.; SCHANTZ, R.; ZINKY, J.;
SHAPIRO, R.; MEGQUIER, J. (2000). Using QDL to
Specify QoS Aware Distributed (QuO) Application Con-
fi guration. In: Proc. of the 3rd IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Compu-
ting (ISORC’2000), March, 2000, p. 310–319, IEEE.

RAJE, R.R. (2001). UMM: Unifi ed Meta-object
Model for Open Distributed Systems. In: Proc. of
4th IEEE International Conf. on Algorithms and Ar-
chitecture for Parallel Processing, ICA3PP’2000,
Hongkong, p. 454–465.

RAJE, R. R.; BRYANT, B. R.; OLSON, A. M.;
AUGUSTON, M.; BURT, C. (2002). A quality of
service-based framework for creating distributed
heterogeneous software components. Concurrency
and Computation: Practice and Experience, vol. 14,
p. 1009–1034.

ROMAN, D.; LAUSEN, H.; KELLER, U. (eds.)
(2006). Web Service Modeling Ontology (WSMO).
WSMO Final Draft 21 October 2006. D2v1.3. URL:
http://www.wsmo.org/TR/d2/v1.3/

RUBEL, P.; LOYALL, J.; SCHANTZ, R. E.;
GILLEN, M. (2006). Fault Tolerance in a Multi-Lay-
ered DRE System: A Case Study. Journal of Compu-
ters, vol.1, issue 6, p. 43–52.

SCA (2007). SCA Policy Framework. Version
1.00, March 07, BEA Systems, Inc., Cape Clear
Software, International Business Machines Corp,
Interface21, IONA Technologies, Oracle, Primeton
Technologies, Progress Software, Red Hat, Rogue

Wave Software, SAP AG., Siemens AG., Software
AG., Sun Microsystems, Inc., Sybase Inc., TIBCO
Software Inc., URL: http://www.osoa.org/download/
attachments/35/SCA_Policy_Framework_V100.pdf

SCHANTZ, R.; ZINKY, J.; LOYALL, J.; SHAPI-
RO, R.; MEGQUIER, J. (2000). Adaptable Binding
for Quality of Service in Highly Networked Applica-
tions. In: Proc. of SSGRR-2000, International Con-
ference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet,
July 31–August 6, 2000, L’Aquila, Italy. URL: http://
dist-systems.bbn.com/papers/2000/SSGRR/ssgrr.doc

SCHLIMMER, J. (ed.) (2004–2006). Web Services
Policy 1.2 – Framework (WS-Policy). W3C Member
Submission 25 April 2006, BEA Systems Inc., Interna-
tional Business Machines Corporation, Microsoft Cor-
poration, Inc., SAP AG, Sonic Software, VeriSign Inc.
URL: http://www.w3.org/Submission/WS-Policy/

SKENE, J.; LAMANNA, D.; EMMERICH, W.
(2004). Precise Service Level Agreements. In: Proc.
of the 26th International Conference on Software En-
gineering, p. 179–188, IEEE Computer Society.

TOSIC, V.; PATEL, K.; PAGUREK, B. (2002).
WSOL - Web Service Offerings Language. In: Bus-
sler, Ch., Hull, R., McIlraith, Sh., Orlowska, M. E.,
Pernici, B., Yang, J. (eds.) Web Services, E-Business,
and the Semantic Web, LNCS; Vol. 2512, London:
Springer, p. 57–67

VERMA, K.; GOMADAM, K.; SHETH, A. P.;
MILLER, J. A., WU, Z. (2005). The METEOR-S
Approach for Confi guring and Executing Dynamic
Web Processes. Technical report No. 6-24-05, LS-
DIS, University of Georgia, Athens. URL: ttp://lsdis.
cs.uga.edu/projects/meteor-s/techRep6-24-05.pdf

PASLAUGŲ KOKYBĖ PASLAUGŲ INTERNETO KONTEKSTE

Jérémy Besson, Albertas Čaplinskas

S a n t r a u k a

Per pastarąjį dešimtmetį komponentinės tech-
nologijos iš objektinių išsivystė į paslaugų techno-
logijas. Buvo pasiūlyta daug įvairių komponento
modelių, komponento architektūrų ir komponento
aprašymo kalbų. Todėl sukurtų paradigmų ir me-
todų sisteminimas bei konceptualizavimas yra su-

dėtingas uždavinys. Straipsnio autoriai siekia
prisidėti prie šio uždavinio sprendimo. Darbe
analizuojami svarbiausieji programinių kompo-
nentų teikiamų paslaugų kokybės specifi kavimo
būdai. Analizė atliekama paslaugų interneto
kontekste.

