
ISSN 1392-0561. INFORMACIJOS MOKSLAI. 2009 50

160

PROGRAMAVIMAS IR PROGRAMINĖ ĮRANGA

Ensuring Models Consistency in the OMT, Booch, and 
OOSE Object-Oriented Methods*

* The work is supported by Lithuanian State Science and Studies Foundation according to High Technology Development 
Program Project “Business Rules Solutions for Information Systems Development (VeTIS)” Reg. No. B-07042

Rūta Dubauskaitė
Vilnius Gediminas Technical University
Programmer, Doctoral student
Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
E-mail: rutad@isl.vgtu.lt

Olegas Vasilecas
Vilnius Gediminas Technical University
Prof., Dr.
Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
E-mail: olegas@isl.vgtu.lt

Modelling of information systems (IS) involves development of different models that present various 
aspects of a system, like the static structure, behaviour, etc. Expression of an IS through various 
models is related to the problem of ensuring of different models consistency, which is very important 
for IS design, models transformation and fi nally code generation tasks.
Restriction of IS models can help to solve the problem of models inconsistency. However, constraints 
defi ned in the OMT, OOSE, Booch object-oriented methods are suitable only for one model and at 
that point constraints of models relationships are not defi ned explicitly. Hence the authors of the 
paper suggest the approach for extension of an ensuring consistency, based on semi-formal models 
with constraints, by adding the consistency rules to object-oriented IS models. Consistency rules are 
directed to constrain relationships of different aspect models. The proposed approach is illustrated 
by a case study in a digital library domain.

Introduction

The models of processes, states, structure and 
other models are created when an information 
systems (IS) are modelling by various aspects. 
Zahman Enterprise architecture framework sug-
gested modelling aspects are data (things), functi-
on (process), network (location), people, time and 
motivation (business rules) (McGovern, 2003). 

Business rules make an important and inte-
gral part of each IS by expressing business logic, 
constraints on concepts, their interpretation and 
relationships. Defi ned rules of structure and be-
haviour are captured in the models of structures, 

states, processes and other IS models (Nemuraite, 
Ceponiene, Vedrickas, 2008). Hence the problem 
of IS models consistency includes the problem of 
rules models consistency or inconsistency.

Sometimes the models of different aspects 
are not interrelated and even more, contra-
dictory information can be provided in them. 
Expression of an IS through various models is 
related to the problem of ensuring consistency 
of different models. Consistency means that the 
structures, features and elements that appear in 
one model are compatible and in alignment with 
the content of other models (Rozanski, Woods, 
2005). According to (ISO/IEC 1997), consis-



161

tency expresses the matching ratio. Sometimes 
an integrity concept is used instead of consis-
tency concept. According to Caplinskas (1997), 
consistency is part of integrity. Integrity also 
involves the following quality characteristics: 
accuracy of facts, accuracy of values, confor-
mity, accuracy of time. In this research, we are 
concentrated on improving models consistency.

Model-driven architecture (MDA) puts mo-
dels into the centre of the IS development pro-
cess as the source of transformation to platform-
specifi c models (PSM), which are used for code 
generation (Mokati et al. 2007). Unambiguous 
models are necessary for the successful accom-
plishment of the tasks of model transformati-
on and code generation (Berkenkotter, 2008; 
Rozanski, Woods, 2005). Therefore checking 
the consistency of related models should be cen-
tral aim of IS development process.

Thus the goal of the paper is to improve the 
consistency of IS models. The main task is to 
extend the existing approach for checking mo-
dels consistency and removal of detected in-
consistencies that would allow making a model 
more consistent. The proposed approach is illus-
trated by the case study of consistency rules for 
UML static structure and behaviour models in a 
digital library domain. In the future the authors 
are going to apply and extend the proposed ap-
proach to a method for checking the consistency 
of UML static structure and behaviours models, 
especially concentrating on the consistency of 
models elements that can be visualised by class 
and sequence diagrams.

The related work analysis is made by theo-
retical research and comparative analysis met-
hods. Logical induction and constructive resear-
ched methods are used to suggest a solution of 
ensuring the consistency problem. The suitabili-
ty of proposed approach for solving the consis-
tency problem is researched by the experimental 
analysis method.

The remainder of the paper is organized as fol-
lows. Section “Related Work” gives a brief over-
view on approaches for ensuring the consistency 
of IS models and presents the analysis results of 
ensuring the consistency in Booch, OMT, OOSE 
object oriented methods. Section “The Approach 

of Ensuring the Consistency in Object-Oriented 
Models” presents the proposed approach for chec-
king the consistency of object-oriented IS models. 
Section “A Case Study” illustrates the usage of ap-
proach proposed for ensuring consistency. Section 
“Conclusions and Future Works” concludes the 
paper and presents future research directions.

Related Work

Approaches of Ensuring Consistency

The problem of ensuring models consisten-
cy, for example, can be solved: i) using matri-
ces; ii) modelling a system using a semi-formal 
language with constraints or iii) modelling a 
system using a formal language.

A matrix can be used to show the consisten-
cy rules among semi-formal models of different 
aspects (Saulis, Vasilecas, 2008). For example, 
the usage of the entity-function matrix helps to 
check the consistency of structure and behaviour 
models. However this approach does not take 
into consideration constraints of every aspect 
model taking into account that the consistency 
of IS models means not only correctness of one 
single model, but all related models of the IS 
used in development process.

IS models can be created using the natural 
language, semi-formal or formal modelling lan-
guage. Semi-formal languages, for example, 
UML, are useful for modelling IS, because these 
languages are more understandable in compari-
son with formal languages and more precise in 
comparison with the formal languages and more 
precise in comparison with natural languages. 
But the usage of a semi-formal language cannot 
ensure that created models were consistent, be-
cause the of lack of formal semantics (Mokati et 
al., 2007). Part of semantics of UML is defi ned by 
OCL (Object Constraint Language), and some of 
constrains are provided in UML specifi cation by 
the natural language that is claimed to be preci-
se. Berkenkotter (2008) suggested to rectify UML 
constraints expressed in OCL and formalize UML 
constrains expressed in the natural language. The 
major disadvantage of these works (Berkenkotter, 
2008; Pakalnickiene, Nemuraite, 2007) is that 



162

they propose constraining only one model, but 
the consistency rules of different aspects models 
are not presented. The consistency rules in this 
context mean constraints on relationships bet-
ween models. The relationships of models show 
which elements of a model should have relations-
hips with the elements of another model. These 
relationships are often not expressed explicitly. 
For example, in the UML state chart diagrams 
it should be allowed to model states of a class, 
which is defi ned in the model of static structure 
(classes diagram).

Another approach proposed for ensuring 
models consistency is based on formal mo-
dels (Mokati et al., 2007; Van Der Straeten et 
al., 2003; Simons, Bastarrica, 2005). Formal 
models are expressed by a formal modelling 
language, for example, Maude (based on rew-
riting logic) (Mokati et al., 2007) and a descrip-
tion logic (Van Der Straeten et al. 2003). Most 
formal languages have inference mechanisms. 
These mechanisms allow us to reason about the 
consistencies of knowledge bases. The result of 
models checking is a formal text. It is diffi cult 
enough to understand the formal text even for IS 
developers. More information about approaches 
for ensuring models consistency is provided in 
(Vasilecas, Dubauskaite, 2009). 

The analysis of the approaches for ensuring 
consistency shows that the approaches proposed 
solve the models inconsistency problem from 
some specifi c viewpoint. Formal models are 
often too complex to be used in practice. Semi-
formal models are wide used, but their cons-
traints usually are only applied to one model 
and the constraints on relationships of models 
are not defi ned (Table 1).

Therefore the authors suggest extending the 
approach based on semi-formal models with 
constraints by adding the consistency rules for 
relationships of different aspect models.

The Analysis of Ensuring Consistency in 
the Booch, OMT, OOSE Object-Oriented 
Methods

UML is the most popular semi-formal model-
ling language (Berkenkotter, 2008). It is conside-
red as the standard for the object-oriented model-

ling (Mokati et al. 2007) and usually object-orien-
ted methods are used for a detailed analysis and 
following implementation. The initial versions of 
UML originated from three leading object-orien-
ted methods: Booch, OMT, and OOSE (UML 
2007). Therefore these methods are chosen for 
a detailed analysis. There is  a need to mention 
that there are a lot of object-oriented system de-
velopment methods, for example, OAA (Object 
Oriented Analysis), UP (Unifi ed Process), RUP 
(Rational Unifi ed Process), ICONIX, AM (Agile 
Modelling) methods, Merode development pro-
cess, Newton, etc. But this time they are not in 
the scope of our research. 

The original developers of the UML Grady 
Booch, James Rumbaugh, and Ivar Jacobson 
provide the core of the language in the Booch 
(Booch 1991), OMT (Rumbaugh 1991) and 
OOSE (Jacobson 1992) methods. 

The Booch, OMT, and OOSE methods des-
cribe, which models should be created for soft-
ware development (Booch, Rumbaugh, Jacobson 
1998). For example, the Booch model consists of 
three different aspect models: requirements model 
(describes all objects statically), behaviour model, 
and architecture model (Conoles et al., 1996).

The analysis of Booch, OMT and OOSE 
shows that instructions how to develop different 
aspect models (for example, static or dynamic) are 
provided in the natural language and expressed in 
an implicit way. Examples of such instructions for 
developing a dynamic model of OMT are:

• A process must have at least an input fl ow 
and an external fl ow.

• A fl ow is between processes or between the 
fi le and process, or process and external in-
put, external output (Conoles et al., 1996). 

The Booch, OMT, and OOSE methods 
express instructions for model development in 
an implicit way, therefore it is diffi cult to check 
the consistency and to automate process of chec-
king consistency of the developed models.

The OMT, Booch and OOSE methods defi ne 
general models relations (fl ow of models deve-
lopment), but the relationships of elements in 
different aspect models are not described. 

A detailed comparison of approaches for 
ensuring models consistency and ensuring 



163

object-oriented models consistency using OMT, 
OOSE and Booch methods are presented in 
Table 1.

Based on the analysis of approaches for en-
suring consistency using object-oriented models 
(OOM), the authors suggest:

• extending the approach based on semi-
formal models with constraints, adding 
the consistency rules on different aspect 
models relationships (see Table 1, text in 
a grey shadow);

• to use several consistency rules that can 
be acquired from object-oriented methods 
and formalised (see Table 1, text in verti-
cal lines shadow).

The proposed approach is presented in detail 
in the next section.

The approach for Ensuring the 
Consistency in Object-Oriented Models 

The analysis of approaches for ensuring 
consistency shows that the inconsistency pro-
blem can be solved by using formal or semi-
formal models with constraints. Formal models 
are often too complex to be used in practice. 
Semi-formal models are wide used, but their 
constraints are often applied only to one model 
and the relationships of models are not defi ned. 
Semi-formal languages are more understanda-
ble in comparison with formal languages. Semi-
formal languages are also more correct (more 
unambiguous) in comparison with natural lan-
guages. Therefore it is important to improve the 
consistency of semi-formal models. 

            Comparison criteria

Compared approaches
 and methods

Ensuring consistency of one 
model

Ensuring consistency of different aspect 
models

Instructions for 
model develop-
ment, expressed 
in an implicit 
way

Constraints 
for one model, 
expressed in an 
explicit way

General relation-
ships of models 
(fl ow of models 
development)

Relationships of 
elements of different 
aspect models ex-
pressed in an explicit 
way

A
pp

ro
ac

he
s o

f e
ns

ur
-

in
g 

co
ns

is
te

nc
y 

of
 

se
m

i-f
or

m
al

 m
od

el
s

Using matrices - - - +
Modelling system 
using semi-formal 
language with 
constraints 

- + - -

Transforming 
semi-formal 
models to formal 
models

- + +

O
bj

ec
t-o

rie
nt

ed
 m

et
ho

ds
 

fo
r c

re
at

in
g 

se
m

i-f
or

m
al

 
U

M
L 

m
od

el
s

OMT
+ - + -

Booch
+ - + -

OOSE
+ - + -

The approach of ensuring 
semi-formal model consist-
ency proposed in this work

- + - +

Ta b l e 1. Comparison on approaches for ensuring models consistency using object-oriented methods



164

The analysis of Booch, OMT and OOSE 
methods shows that they express instructions for 
model development in an implicit way and defi -
ne only general models relationships. However 
these OOM can be a source for acquisition of 
formal constraints and consistency rules.

The authors of the paper suggest extending 
the IS development approach, based on semi-
formal models and constraints, by adding the 
formal consistency rules to IS models. The as-
sumption is that set of semi-formal models are 
OOM. The proposed approach for ensuring con-
sistency of OOM is presented in Fig. 1. 

Fig. 1 presents sequence of steps that re-
alised proposed approach. First of all a met-
hod for checking the consistency of IS models 
should be created. Next the method for ensu-
ring the consistency of UML models will be 
created and farther constraints and consistency 
rules will be defi ned for a metamodel of mo-
delling language. The novelty of this approach 
is proposal to defi ne the consistency rules for 
a relationship of two elements from different 
aspect models in an explicit way (Fig. 1, acti-
vities in gray shadow). The analysis of related 

works shows that nowadays constraints on the 
elements of only one aspect model are defi ned 
in an explicit way.

A second group of activities of the approach 
proposed is checking IS models. If constraints 
are expressed in an explicit way, it is possible to 
automate the process of checking consistency of 
the developed models. All models are checked 
according to the implemented constraints and 
consistency rules.

And fi nally, the consistency of IS models is 
improved by removing the detected confl icts. 
The usage of the approach proposed is illustrated 
by a case study in the next section of the paper.

A Case Study

According to the approach proposed, it is 
recommended to defi ne constraints and consis-
tency rules in an explicit way. An example of 
the UML model consistency rule and its usage 
for detecting inconsistencies in the books libra-
ry IS models are presented in the chapter. Due 
to space limitations only one consistency rule is 
presented.

F i g. 1 Approach for ensuring model consistency in object-oriented approach



165

In this section, a consistency rule for UML 
class and sequence models is presented. Classes 
and their relationships show a static structure of 
data, while a sequence model presents interacti-
ons of classes. The consistency rules are defi ned 
for a metamodel. 

Let us consider that we analyse a domain of 
books library and develop models:

The process of books search is presented in 
the sequence model.

The static structure of books library is pre-
sented in the class model.

Recall that the major elements of the class 
model are classes and their relations. A class con-
sists of three parts: name, attributes, and operati-
ons. The class defi nes the type of object data. The 
major elements of a sequence model are lifelines 
of objects and messages, sent and received by li-
felines in order to perform the process.

According to UML superstructure specifi -
cation (OMG, 2007), the lifeline of a sequence 
model can be related with the class of class mo-
del through ConnectableElement. The relations-
hip description in (OMG, 2007) is provided in 
the natural language: “The classifi er containing 
the referenced ConnectableElement must be the 
same classifi er, or an ancestor of the classifi er 
that contains the interaction enclosing this life-
line.”). In this case, OMG UML specifi cation is 
the source of the proposed consistency rule ID1 
(see the text below).

The authors of the paper suggest defi ning 
the consistency rule between operations of the 
class and messages of lifeline in order to test 
the approach. The consistency rule consists of 
a textual description and a formal constraint 
expressed in OCL. Below the consistency rule 
between elements of different aspect models is 
presented.

Consistency rule ID1: 

It should be noted that not all the lifelines of 
a sequence model are related with classes in the 
class model. The type of lifelines can be a do-
main, control and boundary. An example of the 
control lifeline is a Search lifeline which repre-
sents web application, while the domain lifeline 
Book represents class Book of the class model. 
Only the domain lifelines should be connected 
with the class model. It means that the proposed 
consistency rule ID1 should be applied only to 
domain lifelines of the sequence model.

Using the consistency rule ID1 helps to de-
tect a consistency confl ict of models presented 
in part 1 of Fig 2 and part 2 in Fig. 2. The static 
structure, classes and their relations can be pre-
sented graphically using a UML class diagram, 
while interactions can be showed using the UML 
sequence diagram (part 3 of Fig. 2). The lifeline 
Book (part 2.c of Fig. 2) is related with the class 
Book (part 1.a of Fig. 2). The lifeline Book (part 
e of Fig 2) has a message getBookDetails (part 
f of Fig. 2, part 2.d of Fig. 2), while the class 
Book, which should be related with the lifeline 
Book, has only one operation getBookTitle (part 
1.b of Fig.2), but the operation getBookDetails 
is not presented in this class. It means that the 
static structure and behaviour models are incon-
sistent.

If a designer adds the operation getBook-
Details to the class Book, the consistency of 
static structure and behaviour models will be 
improved. 

The process of checking models consistency 
rules can be automated using CASE tools. Because 
of space limitations, CASE tools are not detailed 
here. Checking the consistency of UML models 
by using MagicDraw UML  and PowerDesigner 
tools is presented in (Dubauskaite, Vasilecas, 
2009). The authors of the paper intend to extend 
the proposed approach to the method for consis-

tency checking 
of UML models 
and to imple-
ment it using the 
MagicDraw UML 
tool (Vasilecas, 
D u b a u s k a i t e , 
2009). 

The operation of a classifi er containing the referenced Message of Connectable ele-
ment must be the same operation of the classifi er that contains the interaction enclosing 
this message of lifeline. 

context ce : UML::CompositeStructures::InternalStructures::
ConnectableElement inv OperationOfClassMustBeMessageOfLife-
Line :

ce.class.operation=ce.lifeline.interaction.message



166

Conclusions and Future Works

The analysis of related works shows that se-
mi-formal models are wide used, but consistency 
constraints are often applied to only one model-
ling aspect. Constrains on the relationships of 
elements of different aspect models usually are 
not provided in an explicit way. Object-oriented 
development methods like Booch, OMT and 
OOSE express the instructions for semi-formal 
model development in an implicit way but descri-
be only general relationships of models. Despite 
the fact that some results have been achieved in 
the fi eld of ensuring of models consistency, the 
problem of is still open and relevant. 

Based on the research performed, the aut-
hors of the paper suggest extending of the exis-
ting approach, based on semi-formal models by 
adding the consistency rules for the relationship 

of elements of different aspect models in an ex-
plicit way. Object-oriented methods can be a 
source for acquisition of formal constraints and 
consistency rules.

The case study shows that usage of the ap-
proach proposed allows detecting inconsisten-
cies of different aspect models. 

In future works we are going to elicit the 
consistency rules expressed explicitly and impli-
citly from different models used in object-orien-
ted methods and from the UML metamodel, and 
to extend the proposed approach to a method 
for ensuring consistency of UML models. The 
next step is implementing of defi ned rules in 
the MagicDraw UML tool which is used in run-
ning “Business Rules Solutions for Information 
Systems Development (VeTIS)” project and tes-
ting the method proposed.

F i g . 2 The example of models and their consistency confl icts

REFERENCES

AYVAZREYS, Z.; UYSAL, M. (2001). Desi-
gning an Object-Oriented Application Model by Bo-
och methodology. Journal of Electrical &Electronics, 
vol. 1, no 2. p. 193–200.

BERKENKÖTTER, K. (2008). Reliable UML 
Models and Profi les. Electronic Notes in Theoretical 
Computer Science (ENTCS), vol. 217, p. 203–220. 



167

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. 
(1998). The Unifi ed Modelling Language User Gui-
de. Addison Wesley 512 p.

CHIOREAN, D.; PASCA, M.; CARCU, A.; BO-
TIZA, C.; MOLDOVAN, S. (2004). Ensuring UML 
models consistency using the OCL Environment. 
Electronic Notes in Theoretical Computer Science 
(ENTCS), vol. 102, p 99–100. 

CHONOLES, M., J.; QUATRANI, T.. LOCK-
HEED M. Advanced concepts center, rational soft-
ware corporation (1996). Succeeding with the Booch 
and OMT methods: a practical approach. Addison-
Wesley, 378 p.

ČAPLINSKAS, A. (1996). Programų sistemų in-
žinerijos pagrindai [Fundamental of Software System 
Engineering]. Vilnius: Mokslo aidai, t. 1. 294 p.

DUBAUSKAITĖ, R.; VASILECAS, O. (2009). 
Checking Consistency of UML Models Using Magic-
Draw UML and PowerDesigner Tools, Informatics: 
Proc. of the 12th conference of Lithuanian’s resear-
chers. Vilnius: Technika (in press).

ISO/IEC 1997. Information Technology – Softwa-
re quality characteristics and metrics – Part 3: Internal 
Metrics, International Organization for Standardizati-
on and International Electrotechnical Commission.

JACOBSON, Y. (1991). Object-oriented softwa-
re engineering. USA: ACM. 400 p.

MOKHATI, F.; GAGNON, P.; BADRI, M. (2007). 
Verifying UML Diagrams With Model Checking: A 
Rewriting Logic Based Approach. Proceedings of the 
Seventh International Conference on Quality Softwa-
re. USA, p. 356–362.

NEMURAITE L., CEPONIENE L., VEDRIC-
KAS, G. (2008). Representation of business rules 
in UML&OCL models for developing information 

systems. In The Practice of Enterprice Modeling: 
First IFIP WG 8.1 Working Conference, PoEM 2008, 
Stockholm, Sweden, November 12-13, 2008 : proce-
edings / Stirna, Janis Persson, Anne (Eds.). Vol. 15, 
Lecture Notes in Business Information Processing. 
Berlin; Heidelberg; New York, p. 182–196.

OMG (2007). OMG Unifi ed Modeling Language 
(OMG UML), Superstructure, v2.1.2 , OMG Document: 
formal/2007-11-04. Available at: <http://www.omg.org/
docs/formal/07-11-02.pdf>, last visit 2009 04 01.

PAKALNICKIENĖ, E., NEMURAITĖ, L. 
(2007). Checking of conceptual models with integri-
ty constraints. Information technology and control, 
vol. 36, no. 3, p. 285–294.

ROZANSKI, N.; WOODS, E. (2005). Software 
System Architecture. London: Addison-Wesley. 546 p.

SAULIS, A.; VASILECAS, O. (2008). Informa-
cinių sistemų projektavimo metodai. Vilnius: Tehcni-
ka. 247 p.

SIMMONDS, J.; BASTARRICA M. C. (2005). 
Description Logics for consistency checking of archi-
tectural features in UML 2.0 models. DCC Technical 
Report TR/DCC-2005-1, Departamento de Ciencias 
de la Computacion, Santiago, Chile.

VAN DER STRAETEN, R.; SIMMONDS, J.; 
MENS, T.; JONCKERS, V. (2003). Using Descrip-
tion Logic to Maintain Consistency between UML 
Models. UML 2003: LNCS 2863. Berlin: Springer-
Verlag, p. 326–340.

VASILECAS, O., DUBAUSKAITE, R. (2009). 
Ensuring Consistency of Information System Rules 
Models. In Stoilov, T., Rachev, B. (eds.). Proc. of the 
International Conference on Computer Systems and 
Technologies “CompSysTech’09”, Ruse, Bulgaria, 
18–19 June (accepted).

MODELIŲ DARNOS UŽTIKRINIMAS NAUDOJANT OMT, BOOCH IR OOSE
OBJEKTINIUS METODUS

Rūta Dubauskaitė, Olegas Vasilecas

S a n t r a u k a

Projektuodami informacinę sistemą sukuriame 
skirtingus modelius pagal duomenis, procesus ir kitus 
aspektus. Šiuo atveju yra rizika, kad sistemos speci-
fi kacijoje bus darnos pažeidimų dėl tarpusavyje nesu-
derintų modelių. Darnūs ir neprieštaringi modeliai yra 
reikalingi tolesniam pradinių modelių transformavi-
mui ir galiausiai programinio kodo generavimui. Taigi 
yra svarbu užtikrinti modelių darną. Taikant objektinių 
sistemų kūrimo metodus darnos užtikrinimo proble-
ma sprendžiama apribojant kiekvieno aspekto, pa-

vyzdžiui, duomenų, procesų ir kitų, modelius. Tačiau 
dviejų ir daugiau skirtingų aspektų modelių ribojimai 
nėra apibrėžti išreikštiniu būdu. Šiame darbe siūloma 
išplėsti ribojimais grindžiamą modelių darnos užti-
krinimo būdą, papildant jį objektinių modelių darnos 
taisyklėmis. Darnos taisyklė šiame kontekste apibrėžia 
ryšių tarp skirtingų aspektų modelių elementų riboji-
mus. Pasiūlytas objektinių modelių darnos užtikrinimo 
būdas yra iliustruojamas knygų bibliotekos dalykinės 
srities pavyzdžiu.


