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In their seminal paper published in 1987, Hinton & Nowlan showed us an elegant experiment which 
might be called an evolution with the Baldwin effect in computers which searches for only one object 
located in a huge search space. The object was called a­needle­in­a­haystack. Hinton & Nowlan 
evolved a population of candidates of the solution in the same way as a standard evolutionary search. 
What made it unique was an exploitation of individual’s lifetime­learning. Since then we have had a 
fair amount of proposals of how we reach the needle more efficiently. The issue, however, is still open 
to debate. We try to repeat their experiment and take a consideration on it. 

Let’s start with a thought experiment. “(i) 
Suppose we have N sea-shells on the table and 
a marble is hidden under one of those N shells. 
Then, how much query on average will be ne-
cessary to locate where the marble is? (ii) If no 
such marble is hidden at all, how many queries 
will be needed to know that?”. Or, we might 
imagine that we would try to break a N-digit 
PIN code (Personal Identification Number) by 
a random-trial-and-error or exhaustive-one-by-
one search. Then what if N is very huge?

Why we search for a needle? – Computatio-
nal analogue. The problem of looking for only 
one object hidden in a huge search space is 
sometimes called a-needle-in-a-haystack prob-
lem. It has long attracted and is still attracting 
many computer researchers. Let’s name a few.

Crammer & Chechik (2004) defined the pro-
blem as, “The problem of finding a small and 
coherent subset of points in a given data which 
sometimes referred to as one-class or set co-
vering...”. Joshi et al. (2001) pointed out yet 
another but a similar situation, writing, “The 
traditional evaluation metric of accuracy is not 

adequate when the target-class is rare. If the 
class is very rare, say 0.5%, then predicting 
everything to be of non-target-class can also 
achieve very high accuracy level of 99.5%”. The 
technique proposed by Crammer & Chechik to 
solve this problem exploits two phases called 
positive & negative. Hence they call it PN-rule. 
Weiss (2004) summarized this method as, “This 
approach identifies regions likely to contain nee-
dles in the first phase and then learns to discard 
the strands of hay within these regions in the se-
cond phase”. Weiss also discusses about, “the 
role that rare classes and rare cases play in data 
mining”, citing an interesting example of “a ma-
chine learning technique to detect oil spills from 
satellite images” (Kubat et al., 1998).

Sabhnani et al. (2003) applied nine different 
machine learning techniques to the KDD-cup-
1999 dataset (Stolfo et al., 1999) to know how 
these techniques detect network intrusions. In 
the dataset, data for four categories of intrusions 
are given, together with data for normal tran-
sactions. It was shown that the two out of four 
categories were all immune to any of the nine 
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methods more or less, while the other two were 
universally easy to be detected. We hypothesi-
zed that this is due to these two categories of 
attacks are like needles in a haystack of a normal 
and other categories of attacks (Imada, 2006).

Among others, besides a specific data in a 
huge database, the most popular issue on this 
topic these days is probably a searching for  
needles in a huge hay of world-wide-web resour-
ces, and designing such search-engines. See, for 
example, (Makris et al., 2006). In software engi-
neering community, this issue is also explored. 
See, for example, (Whitaker et al., 2004).

Hinnton & Nowlan’s model – 
Computational Baldwin Effect

In their seminal paper, Hinton & Nowlan 
(1987) proposed a needle defining it as just a 
unique configuration of 20-bit binary string, with 
all other configurations being a haystack. Then 
they tried an evolutionary search starting with a 
population of random candidates of the needle. 
A smart trick in their evolution is an inclusion of 
flexible genes in its genotype. Each of these fle-
xible genes is replaced with either 1 or 0 in its 
phenotype. Then each of these phenotypes (again 
a binary 20-bit string) is checked if it matches the 
needle. Hence, this is called a lifetime-learning. 
Each genotype can try learning during its life-
time. Note that successful flexible genes in phe-
notype are not re-mapped into phenotype. This 
is a computational analogue of biological model 
of evolution called the Baldwin effect (Baldwin, 
1896). Although we have had lots of reports con-
cerning this approach, such as (Mills & Watson, 
2006), the topic still includes open issues.

Note that if we apply a standard genetic al-
gorithm starting with a population of chromo-
somes with their genes being either 0 or 1 at 
random, then the fitness of each individual is al-
ways zero unless the individual is ultra lucky to 
be coincidentally identical to the needle. Hence 
the fitness landscape is everywhere flat land of 
altitude zero except for the only one point. See 
Figure 1. How could we hillclimb if not a hill to 
climb! Impossible to evolve.

F i g u r e  1 .  A fictitious sketch of fitness landscape 
of a needle in a haystack.

The haystack here is drawn as a 2-dimensional  
flat plane of fitness zero

However, their choice of 20-bit is a good one. 
We tried a random search with a similar condition 
of Hinton & Nowlan’s experiment. The number 
of trials needed until the needle was found is 
plotted as a function of number of bits. Although 
the number explodes exponentially, as shown in 
Figure 2, 20-bits is just before the explosion. But 
in fact we never observed a needle longer than, 
say, 25 bits was reached in a reasonable time. 

F i g u r e  2 .  Assuming only one configulation  
of n-bit binary strings is a needle, the number  

of random trials needed until the needle was found  
is plotted against n. The result is an average  

during 100 runs

Experiment, Results, and Discussion

Following Hinton & Nowlan’s experiment 
and a more clear specification of the experi-
mental condition suggested by Mills & Watson 
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(2005), we tried to repeat their experiment. We 
create a population of �02� chromosomes of 
20-bit whose genes are either 0, 1, or 9. Genes 
are determined at random with a probability 
of 0.25 for 0’s and �’s and 0.5 for 9’s. A ne-
edle here is the 20-bit string of all 1, without 
a loss of generality. Each chromosome is gi-
ven a chance of 1000 trials each time with its 
9 being randomly replaced either with 0 or 1, 
and check if the result of replacement matches 
the needle or not, if it matches the needle at n-
th trial, the fitness is given as (1000 – n). Then 
we evolve this population from one generation 
to the next by fitness-proportionate-selection, 
one-point-crossover and mutation with the pro-
bability of 1/20.

Can we observe such an elegant result?  
In Figure 3 we show the number of individuals 
needed to find the needle in two cases: (i) by sim-
ple random search (the same data as in Figure 2) 
and (ii) by search with lifetime learning. The plots 
here are against total search points N instead of 
number of bits. Although the number is O(N) in 
both cases, what a tremendously dramatic enhan-
cement in efficiency it looks like! So far so good.

F i g u r e  3 .  Number of individuals necessary  
for the needle to be reached for the first time vs.  

the number of total search points. A result  
of random walks (blank circles) and search by 

1000 learnings during individual’s lifetime (filled 
circles). The data are averaged after 100 runs. 
Complexity is both linear, but what a dramatic 

difference!

Why should we continue when the lifetime 
learning already find the needle? This is what 
we wondered when we read the original Hinton 
& Nowlan’s paper. A possible answer was given 
by Mills & Watson (2005) in which they argued, 
“This model is not intended to show any engi-
neering advantage but a biological interest”. 
Then they went on, “To remove the assumpti-
on of learning phenotypes, we evaluate fitness 
as the mean fitness of the lifetime phenotypes, 
rather than the number of trials remaining af-
ter the phenotypic solution is first found. This 
means that the organisms do not have to reco-
gnize their own success (as is implicit in Hinton 
& Nolan’s model.)”. We were not fully satisfied 
with this answer but let’s accept it here. Then 
the next question arises.

The higher the fitness of a genotype, the 
better it performs? Hinton & Nowlan’s assump-
tion is that the closer the genotype to the needle, 
the faster the learning of phenotype, which makes 
the needle-like-peak smoother. To study this, we 
compared their lifetime results of two genotypes: 
one reached the needle quickly (just 2 steps) and 
the other reached the needle but almost at the last 
chance (985 steps). We counted how many suc-
cesses out of �000 learnings of �02� phenotypes. 
The histograms are shown in Figure 4. Although 
genotypes which reached the needle almost at the 
last chance sometimes reached the needle quickly, 
the higher fitness genotype by and large seems to 
perform better.

What is a fate of those flexible genes? 
Then questions are, “How many flexible genes 
are optimal?” or “Is the number of flexible ge-
nes decreasing as evolution proceeds?”. Let’s 
see what happened our evolution of these geno-
types. We observed 100 runs with 100 different 
random number seeds, and what we saw in the 
1st generation were only 4 successful genotypes 
at the luckiest case. The other 99 runs have only 
two, one or even zero successful genotypes. And 
in this luckiest case, the number of successful 
genes increased in an early stage of evolution 
to 300 – 400, but all of a sudden at some point 
of evolution, an extinction occurred. That is, the 
number of survival genotypes fell down to one 
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or zero. Not possible for reproduction any more. 
(Figure to show this phenomenon is not in this pa-
per.) Then, why don’t we try another similar biolo-
gical evolution model such as Lamarckian inheri-
tance rather than sticking to the Baldwin Effect.

Is the Lamarckian inheritance compu­
tationally plausible? Turney (1996) wrote, 
“Lamarckism requires an inverse mapping from 
phenotype and environment to genotype. This 
inverse mapping is biologically implausible”. 
And further assumed by describing, “Perhaps 
Lamarckian evolution is superior to the Baldwin 
effect, when we are attempting to solve problems 
by evolutionary computation”, and then went on 
to write “…(but) we believe that computing this 
mapping is intractable in general”.

Why not? Let’s try! This reverse mapping is 
really easy in Hinton & Nowlan’s model. All we 
need is remap some of the successful 0’s and �’s 
in the phenotype to the corresponding flexible 
genes in the genotype with a certain probabili-
ty. Look at the typical success in its evolution 
shown in Figure 5. Though we still don’t know 
this is biologically meaningful, this hypothesis 
once tried to be used to explain, “Why giraffe 
has a long neck?”.

Are we really happy with these models 
to find needle? As already shown in Figure 2, 
exploiting the Baldwin effect seemed to tremen-
dously enhance the efficiency of searching for 
the needle. But this is only under a comparison 
with the number of individuals who tried to  
reach the needle. If we compared with the num-
ber of points which are visited, we have almost 
similar result in those models. (Figure to show 
this is not included here.) Then how can we find 
a needle longer than, say, 25 bits? 

In addition, we have to admit that even if we 
found a really efficient needle-detector, the steps 
we need would be still O(N) like in Figure 3.

To Conclude

We have tried a bird’s eye view on the topic 
on a-needle-in-a-haystack problem, or equiva-
lently, a computational model of the Baldwin ef-
fect. The topic was initially proposed by Hinton 
& Nowlan two decades ago, but still this is a 
very important problem. Though we have had 
lots of proposals to approach to this problem, 
essentially we still have not find a truly efficient 
way of finding a needle in a really huge hay. 
Most techniques reported are still not sufficient 
when they are applied to a more scaled-up cir-
cumstance than when it was designed. A success 
in a small scale experiment is not necessarily a 

F i g u r e  4 .  Examples of histogram of two geno-
types of how many successes out of 1000 learnings 
of 1024 phenotypes. Genotype which reached the 

needle with 2 steps (top) and the other reached with 
985 steps (bottom)

F i g u r e  5 .  An evolution of genotypes including  
flexible genes by Lamarkian inheritance
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royal road to a success in a large scale situation 
in the real world. 

Let me take an example. We now assume a 
robot in a N × N grid. A needle is hidden so-
mewhere in the grid. Then the task of the robot 
is to look for the needle starting from somewhe-
re in the grid. The robot has no idea of where 
is the needle. This is a two-dimensional version 
of a-needle-in-a-haystack problem. If N is small 
enough, the robot can eventually reach the ne-
edle even with random walks. And a learning, 
whatever it might be, can reduce the number of 
steps to the needle. We have so many successful 
reports of experiments of robot navigation in a 
much more complicated simulated world than the 
above mentioned simple grid world. The fact is, 
however, if the grid size explodes then we actu-
ally don’t know how we make robot navigate as 
we like, even in a very simple world without no 
constraint such as corridors, walls or obstacles. 

Yet another point we wanted to emphasize 
in this paper is that we have to avoid an effect 
of like-to-hear-what-we-want-to-hear. We had 
an interesting discussion between two papers: 
Yu & Miller’s (2002) “Finding needles in hay-
stacks is not hard with neutrality” vs. Collins’ 
(2005) “Finding needles in haystacks is harder 
with neutrality”.

Anyway, as already mentioned, all appro-
aches described in this paper require O(N) 

steps to the needle. Let me conclude this paper 
with the claim of a real speed up from O(N) to  

 by Grover (1997) by his quantum search, 
which was already mathematically proved. The 
problem in his context is to find the needle from 
no-structured huge database. That is, “Find 
x such that P(x) = 1 when only x from N data 
fulfills P(x) = 1 while all others do not”. This 
is owing to a strange path of quantum computa-
tion. Namely, when a particle goes from point A 
to point B, it takes all possible paths from A to B 
at the same time. In reality, however, no one so 
far has seen a real practical implementation of 
quantum computation. 

We hope this article would be a good prelude 
to the re-opening this issue.
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NAUJAI PERŽIūRIMAS HINTONO IR NOWLANO SkAIčIUOJAMASIS BALDWINO EFEkTAS: 
AR TAI MUS TENkINA?

akira Imada

S a n t r a u k a

Savo užuomazginiame straipsnyje, publikuotame 
1987 m., Hintonas ir Nowlanas pademonstravo elegan-
tišką eksperimentą, kurį galima vadinti evoliucija  su 
Baldwino efektu kompiuteriuose, kuri ieško vieno ob-
jekto milžiniškoje paieškos erdvėje. Šis objektas buvo 
pavadintas adata šieno kupetoje. Hintonas ir Nowla-
nas išvystė visą populiaciją sprendimo kandidatų 

analogiškų standartinei evoliucinei paieškai. Unikalu 
buvo tai, kad panaudotas individo mokymasis visą 
gyvenimą. Nuo to laiko pateikta pakankamai daug 
siūlymų, kaip efektyviau pasiekti ieškomąją adatą. 
Tačiau šis klausimas išlieka atviras diskusijoms. 
Šiame straipsnyje pakartojamas ir apsvarstomas Hin-
tono ir Nowlano eksperimentas.


