1963

СЕКУЩИЕ ПОВЕРХНОСТИ ПРОИЗВЕДЕНИЯ РАССЛОЕНИЙ

А. МАТУЗЯВИЧЮС

1. Произведене расслоений. Пусть

$$\overline{E}_1(E_1, B, F_1, p_1)$$
 и $\overline{E}_2(E_2, B, F_2, p_2)$ —

два расслоения с одной и той же базой В. Произведением этих расслоений называется расслоение

$$\overline{E}_1 \times \overline{E}_2 (E, B, F_1 \times F_2, p).$$

Точками пространства расслоения E являются пары $(e_1,\ e_2)$, где $e_1\!\in\! E_1,\ e_2\!\in\! E_2$, удовлетворяющие условию $p_1\left(e_1\right)\!=\!p_2\left(e_2\right)$, таким образом, пространство E является подпространством прямого произведения $E_1\times E_2$. Проекция $p:E\to B$ расслоения $\overline{E_1}\times\overline{E_2}$ определяется формулой

$$p(e_1, e_2) = p_1(e_1) = p_2(e_2).$$

Слоем произведения $\bar{E_1} \times \bar{E_2}$ является прямое произведение $F_1 \times F_2$.

2. Теорема 1. Пусть

$$\overline{E}_1(E_1, B, F_1, p_1)$$
 H $\overline{E}_2(E_2, B, F_2, p_3)$ —

два расслоения, базой которых служит один и тот же односвязный CW-полиэдр B, слои F_1 , F_2 соответственно расслоений \overline{E}_1 , \overline{E}_2 являются гомотопически простыми в размерности r и асферичны в размерностях < r. Тогда произведение $\overline{E}_1 \times \overline{E}_2$ расслоений \overline{E}_1 , \overline{E}_2 имеет над r-мерным остовом базы секущую поверхность. Если характеристический класс расслоения \overline{E}_i (i=1,2) обозначим через

$$Z_i^{r+1} \in H^{r+1}\left(B, \pi_r(F_i)\right),$$

то характеристический класс

$$Z^{r+1} \in H^{r+1}\left(B, \pi_r\left(F_1 \times F_2\right)\right)$$

произведения $\overline{E}_1 \times \overline{E}_2$ связан с характеристическими классами Z_1^{r+1} , Z_2^{r+1} соотношением

$$Z^{r+1} = \hat{j}_{1*} Z_1^{r+1} + \hat{j}_{2*} Z_2^{r+1},$$

где \hat{j}_{t*} — гомоморфизм групп когомологий

$$H^{r+1}\left(B, \ \pi_r(F_i)\right) \to H^{r+1}\left(B, \ \pi_r(F_1 \times F_2)\right)$$

пораждаемый гомоморфизмом

$$j_{l*}:\pi_r(F_l)\to\pi_r(F_1\times F_2).$$

^{7.} Ажтовский математический сборямк, 111 № 2

Доказательство. В силу асферичности слоя F_1 во всех размерностях < r мы можем над r-мерным остовом B^r базы B расслоения \overline{E}_l построить секущую поверхность φ_l . Тогда и над r-мерным остовом B^r базы B произведения $\overline{E}_1 \times \overline{E}_2$ определяется секущая поверхность φ формулой

$$\varphi(b) = (\varphi_1(b), \varphi_2(b)), \quad b \in B^r$$

Пусть τ^{r+1} — произвольная (r+1)-мерная ориентированная клетка CW-полиэдра B, а $\tau^{r+1}=S^r$ — его когерентно ориентированная граница. Будем рассматривать секущую поверхность φ_t только на S^r . По определению секущей поверхности имеем $p_t \circ \varphi_t = e$, где e — тождественное отображение сферы S^r на себя. Пусть h_t — деформация, соединяющая тождественное отображение $h_0 = e: S^r \to S^r$ с отображением $h_1: S^r \to h_0$ и построенная таким образом, что сначала сфера S^r стягивается по клетке в свою точку, а затем эта точка непрерывно перемещается в фиксированную точку h_0 базы h_1 .

Применяя условия существования накрывающей гомотопии для расслоения \vec{E}_t , получаем такое семейство отображений $\phi_t': S' \to E_t$, что $p_t \circ \phi_t' = h_t$.

Но непрерывное отображение φ_i^1 ориентированной r-мерной сферы в слой $F_i = p_i^{-1}(b_0)$ определяет некоторый элемент гомотопической группы $\pi_r(F_i)$, который поставим в соответствие клетке τ^{r+1} и обозначим через $z_{\varphi_i}^{r+1}(\tau^{r+1})$. Без труда доказывается, что элемент $z_{\varphi_i}^{r+1}(\tau^{r+1})$ не зависит от выбора элементов построения, является значением коцикла $z_{\varphi_i}^{r+1}$ на клетке в области коэффициентов $r_i(F_i)$. Этот коцикл $z_{\varphi_i}^{r+1}$ называется препятствием к распространению секущей поверхности φ_i на (r+1)-мерном остове B^{r+1} базы B.

По такой же схеме определяется и препятствие z_{ϕ}^{r+1} к распространению секущей поверхности ϕ на (r+1)-мерном остове B^{r+1} базы B произведения $\overline{E}_1 \times \overline{E}_2$. Это препятствие z_{ϕ}^{r+1} над произвольной (r+1)-мерной клеткой τ^{r+1} принимает значение $z_{\phi}^{r+1}(\tau^{r+1})$ в области коэффициентов $\pi_r(F_1 \times F_2)$. Оно определяется таким отображением $\phi^1: S^r \to F_1 \times F_2$, которое удовлетворяет условию $p \circ \phi^1 = h_1$, где h_1 всю сферу S^r переводит в точку $b_0 \in B$.

Пусть S_1^r , S_2^r — такие полиэдры, каждый из которых гомоморфен r-мерной сфере, что они имеют единственную общую точку a. Как известно, сумма таких полиэдров называется r-мерным букетом сфер второго порядка и обозначается через $B_2^r = S_1^r \cup S_2^r$. Удобно рассматривать клеточное разбиение букета B_3^r : состоящее из клеток

$$\tau^0 = a$$
, $\tau_1^r = S_1^r \backslash a$, $\tau_2^r = S_2^r \backslash a$.

Обозначим через f отображение поляризованной сферы S^r в B_2^r , которое переводит полюс сферы S^r в точку a букета B_2^r и имеет степень +1 на клетках τ_1^r , τ_2^r .

Определим отображение ψ букета B_2^r в произведение $F_1 \times F_3$ формулой

$$\psi\left(b\right) = \left\{ \begin{array}{ll} \left(\phi_1^1\left(b\right), \ b_0\right) & \text{при} \quad b \in S_1^r, \\ \\ \left(b_0, \ \phi_2^1\left(b\right)\right) & \text{при} \quad b \in S_2^r, \end{array} \right.$$

переводящее точку $a \in B_2^r$ в точку $(b_0, b_0) \in F_1 \times F_2$.

Тогда f есть сфероид букета B_2^r в точке a, причем его степень равна, очевидно, $(1,\ 1)$. Поэтому сфероид f принадлежит классу $\alpha_1+\alpha_2$, где элементы α_1 , $\alpha_2\in\pi_r(B_2^r,\ a)$ определяются отображением сферы S^r в B_2^r соответственно в клетки τ_1^r , τ_2^r .

Применив гомоморфизм ψ группы $\pi_r(B_2^r, a)$ в $\pi_r(F_1 \times F_2)$, мы получим $\{\psi f\} = \psi(\alpha_1) + \psi(\alpha_2).$ (1)

Но элементы $\psi(\alpha_1)$, $\psi(\alpha_2)$ определяются композицией отображения f сферы S' в клетки τ_1' , τ_2' и отображения ψ клеток τ_1' , τ_2' соответственно в F_1 , F_2 . В свою очередь, очевидно, что отображение ψ на клетках τ_1' , τ_2' можно представить как соответственно композиции $j_1 \circ \varphi_1^1$, $j_2 \circ \varphi_2^1$ двух отображений φ_1^1 или φ_2^1 и j_1 или j_2 , где j_1 , j_2 — естественные отображения $F_1 \to F_1 \times F_2$, $F_2 \to F_1 \times F_2$, определяемые соответственно формулами

$$j_1\left(b_1\right) = (b_1, \ b_0), \quad j_2\left(b_2\right) = (b_0, \ b_2), \quad b_1 \in F_1, \quad b_2 \in F_2.$$

Так как отображение $\varphi_i^1 \circ f$ определяет элемент $z_{\varphi_i}^{r+1}(\tau^{r+1}) \in \pi_{r+1}(F_i)$, то отображение $j_l \circ \varphi_i^1 \circ f$ определяет элемент $j_{l*} z_{\varphi_i}^{r+1}(\tau^{r+1}) \in \pi_r(F_1 \times F_2)$. Таким образом, получаем

$$\psi\left(\alpha_{i}\right) = j_{i*} z_{\varphi_{i}}^{r+1}\left(\tau^{r+1}\right), \tag{2}$$

где j_{i*} — гомоморфизм гомотопических групп

$$\pi_r(F_i) \to \pi_r(F_1 \times F_2).$$

Очевидно, что отображение $\psi \circ f$ (ψ рассматриваемое на всем букете B_2^*) гомотопно отображению ϕ^1 , которое, как видели раньше, определяет элемент $Z_n^{r+1}(\tau^{r+1}) \in \pi_r(F_1 \times F_2)$.

Поэтому имеем

$$\{\psi f\} = z_{\Phi}^{r+1}(\tau^{r+1}).$$
 (3)

Наконец, из (1), (2) и (3) вытекает

$$z_{\varphi}^{r+1}\left(\tau^{r+1}\right) = j_{1*} z_{\varphi_{1}}^{r+1}\left(\tau^{r+1}\right) + j_{2*} z_{\varphi_{4}}^{r+1}\left(\tau^{r+1}\right). \tag{4}$$

Так как это соотношение имеет место для произвольной клетки τ^{r+1} CW-полиэдра B, то получаем

$$z_{\varphi}^{r+1} = j_{1*} z_{\varphi_1}^{r+1} + j_{2*} z_{\varphi_2}^{r+1}. \tag{5}$$

В свою очередь, из равенства (5) вытекает соотношение

$$Z^{r+1} = \hat{j}_{1*} Z_1^{r+1} + \hat{j}_{2*} Z_2^{r+1},$$

где $z_{\phi}^{r+1}, z_{\phi_1}^{r+1}$ $(i=1,\ 2)$ — препятствия, принадлежащие соответственно классам когомологий

$$Z^{r+1} \in H^{r+1}\left(B, \ \pi_r(F_1 \times F_2)\right), \ Z_i^{r+1} \in H^{r+1}\left(B, \ \pi_r(F_i)\right)$$

а \hat{j}_{i*} — гомоморфизм групп когомологий

$$H^{r+1}\left(B, \ \pi_r(F_i)\right) \to H^{r+1}\left(B, \ \pi_r(F_1 \times F_2)\right)$$

пораждается гомоморфизмом

$$j_{l*}:\pi_r(F_l)\to\pi_r(F_1\times F_2).$$

3. Определение различающей. Пусть $\overline{E}(E, B, F, p)$ — расслоение, база B которого является односвязным CW-полиэдром; φ , ψ — две секущие поверхности расслоения \overline{E} , заданные над r-мерным остовом B^r базы B и совпадающие

над (r-1)-мерным остовом B^{r-1} . Далее, пусть τ^r — произвольная ориентированная r-мерная клетка CW-полиэдра B. Возьмем два экземпляра τ^r_+ и τ^r_- этой клетки τ^r и ,,склеим" по их общей границе. Получим сферу $S^r = \tau^r_+ \cup \tau^r_-$, которую ориентируем согласованно с клеткой τ^r_+ (тогда клетка τ^r_- будет иметь ориентацию, противоположную ориентации сферы S^r).

Определим отображение $f_0: S' \to E$ формулой

$$f_0(x) = \begin{cases} \varphi(x) & \text{при} \quad x \in \tau_+^*, \\ \psi(x) & \text{при} \quad x \in \tau_-^* \end{cases}$$

и отображение $e: S^r \to \tau^r$, тождественно отображающее каждую клетку τ_+^r , τ_-^r на τ^r .

Тогда по определению секущих поверхностей φ , ψ и отображения f_0 имеем $p \circ f_0 = e$. Пусть k_i' — деформация, соединяющая тождественное отображение k_0' клетки τ в B с отображением k_1' , переводящим всю клетку τ в фиксированную точку b_0 базы B. (Как и раньше, мы можем считать, что деформация k_i' сначала стягивает клетку τ по себе в точку, а затем непрерывно переводит ее в фиксированную точку b_0 .) Положим $k_i = k_i' \circ e$. Исходя из соотношения $p \circ f = k_0$ и применяя условие существования накрывающей гомотопии для расслоения E, найдем такую деформацию f_i отображения f_0 , что $p \circ f_i = k_i$.

Поставим в соответствие каждой r-мерной клетке τ базы B отображение $f(\tau'):S^r\to F$, считая $f=f_1$, где $F=p^{-1}(b_0)$ — слой, лежащий над точкой b_0 . Нетрудно проверить, что гомотопический класс отображения $f\colon S^r\to F$ не зависит от случайности построения. Обозначим этот класс через $d_{\tau, \ \psi}^r(\tau')$ и назовем получающуюся коцепь различающей для совпадения секущих поверхностей $\phi, \ \psi$ на B^r . Различающая коцепь $d_{\tau, \ \psi}^r$ принимает значения в области коэффициентов $\pi_r(F)$. Свойства так определенной различающей аналогичны тем, которые имеются в случае косого произведения.

Если секущие поверхности φ , ψ , заданные над (r+1)-мерным остовом B^{r+1} базы B, то различающая коцепь $d^r_{\varphi,\ \psi}$ является коциклом. Класс когомологий этого коцикла называется различающим классом и обозначается через D^r ; этот класс является элементом группы когомологии $H^r(B, \pi^r(F))$.

4. Теорема 2. Пусть

$$\overline{E}_1(E_1, B, F_1, p_1)$$
 H $\overline{E}_2(E_2, B, F_2, p_2)$ —

два расслоения, базой которых служит один и тот же односвязный CW-полиэдр B, слои F_1 , F_2 соответственно расслоений \overline{E}_1 , \overline{E}_2 , являются гомотопически простыми в размерности r и асферичны в размерностях < r. Тогда в произведении $\overline{E}_1 \times \overline{E}_2$ расслоений \overline{E}_1 , \overline{E}_2 существуют две секущие поверхности над r-мерным остовом B^r базисного пространства B, которые совпадают над остовом B^{r-1} . Если в расслоениях \overline{E}_1 , \overline{E}_2 существуют две секущие поверхности и над (r+1)-мерным остовом B^{r+1} , тогда и в произведения $\overline{E}_1 \times \overline{E}_2$ имеем две секущие поверхности над тем же остовом B^{r+1} . Обозначим через

$$D_1^r \in H^r\left(B, \ \pi_r\left(F_1\right)\right), \quad D_2^r \in H^r\left(B, \ \pi_r\left(F_2\right)\right)$$

различающий класс секущих поверхностей соответственно в расслоениях \overline{E}_1 , \overline{E}_2 . Тогда различающий класс

$$D^r \in H^r \left(B, \ \pi_r \left(F_1 \times F_2 \right) \right)$$

секущих поверхностей произведения $ar{E_1} imes ar{E_2}$ связан с классами D_1^r , D_2^r соотношением

$$D^r = \hat{j}_{1*} D_1^r + \hat{j}_{2*} D_2^r,$$

где j_{i*} (i=1, 2) — гомоморфизм групп когомологий

$$H^r(B, \pi_r(F_i)) \to H^r(B, \pi_r(F_1 \times F_3))$$

пораждаемый гомоморфизмом

$$j_{i*}:\pi_r(F_i)\to\pi_r(F_1\times F_2).$$

Доказательство. В силу асферичности слоя F_i во всех размерностях < r мы можем построить две секущие поверхности φ_i , ψ_i над r-мерным остовом B^r базы B в расслоении $\overline{E_i}$. Для секущих поверхностей выше указанным образом определяется первая нетривиальная различающая $d_{\varphi_i}^r \psi_i$, так как все различающие меньших размерностей в силу асферичности слоя F_i равны нулю и секущие поверхности φ_i , ψ_i совпадают над (r-1)-мерным остовом B^{r-1} .

Тогда и над B^r базы B в произведении $\overline{E}_1 \times \overline{E}_2$ определяются две секущие поверхности $\phi,\ \psi$ формулами

$$\varphi(b) = \left(\varphi_1(b), \ \varphi_2(b)\right), \quad b \in B^r,$$

$$\psi(b) = \left(\psi_1(b), \ \psi_2(b)\right), \quad b \in B^r.$$
(6)

Эти секущие поверхности совпадают над B^{r-1} так как секущие поверхности φ_l , ψ_l совпадают над тем же остовом. Таким образом, первое утверждение теоремы доказано.

Если в расслоении $\vec{E_1}$ существуют секущие поверхности φ_i , ψ_i и над B^{r+1} , то в произведении $\vec{E_1} \times \vec{E_2}$ формулы (6) определяют секущие поверхности φ_i , ψ так же над B^{r+1} .

Тогда секущими поверхностями φ_t , ψ_t , φ , ψ определенные различающие коциклы $d^r_{\varphi_t,\ \psi_t}$, $d^r_{\varphi_t,\ \psi}$ над произвольной r-мерной клеткой τ^r базы B принимают значения $d^r_{\varphi_t,\ \psi_t}(\tau^r)$, $d^r_{\varphi_t,\ \psi}(\tau^r)$ соответственно в областях коэффициентов $\pi_r(F_t)$, $\pi_r(F_1 \times F_2)$ и определяют различающие классы когомологий

$$D_i^r \in H^r\left(B, \ \pi_r(F_i)\right), \quad D^r \in H^r\left(B, \ \pi_r(F_1 \times F_2)\right).$$

Таким образом, для доказательства теоремы, очевидно, нам достаточно показать, что имеет место соотношение

$$d_{_{\Phi_{1},\;\,\psi_{1}}}^{r}\left(\tau^{r}\right)=j_{1\,*}\;d_{_{\Phi_{1},\;\,\psi_{1}}}^{r}\left(\tau^{r}\right)+j_{2\,*}\;d_{_{\Phi_{2},\;\,\psi_{2}}}^{r}\left(\tau^{r}\right).$$

Доказательство последнего соотношения проводится по такой же схеме как и доказательство аналогичного соотношения (4) теоремы 1.

5. Обобщения. Легко вядеть, что теоремы 1, 2 верны и для расслоений, базой которых служит неодносвязный СW-полиэдр. Для этого необходимо изменить определения препятствия и различающей, так чтобы они принимали значения в локальной системе коэффициентов.

Отметим, наконец, что легко определить произведение любого (конечного или бесконечного) множества расслоений с одним и тем же базисным пространством и перенести на этот случай теоремы 1 и 2.

Вильнюсский государственный университет им. В. Капсукаса

Поступила в редакцию 21.1.1963

ЛИТЕРАТУРА

- 1. В. Г. Болтянский. Труды матем. ин-та им. В. А. Стеклова, 47 (1955).
- 2. А. Матузявичюс. Литовский матем. сб., І № 1-2, 117—129 (1961).
- 3. А. С. Шварц. Труды Московского матем. общества, 10, 217-272 (1961).

SLUOKSNIAVIMŲ SANDAUGOS KERTAMIEJI PAVIRŠIAI

A. MATUZEVIČIUS

(Reziumė)

Dvieju su ta pačia baze B sluoksniavimu

$$\widetilde{E}_1(E_1, B, F_1, p_1)$$
 ir $\widetilde{E}_1(E_2, B, F_2, p_2)$

sandauga vadinamas słuoksniavimas $\vec{E}_1 \times \vec{E}_2$ $(E, B, F_1 \times F_2, p_2)$. Słuoksniavimo $\vec{E}_1 \times \vec{E}_2$ erdve E apibrežiama tiesioginės sandaugos $E_1 \times E_2$ poerdviu, susidedančiu iš tokių dvejetų (e_1, e_2) , kur $e_1 \in E_1$, $e_2 \in E_2$, kurie patenkina sąlygą $p(e_1) = p(e_2)$. Projekcija $p: E \to B$ apibrežiama formule $p(e_1, e_2) = p_1(e_1) = p_2(e_2)$.

Sakykime, kad $\vec{E_1}$, $\vec{E_2}$ – du sluoksniavimai, kurių bendra bazė B yra vienkart susijęs CW-padalijimas, o sluoksniai $\vec{F_1}$, F_2 – homotopiniai paprasti matavime r ir asferiniai matavimuose < r.

Tada sluoksniavime $\vec{E}_1 \times \vec{E}_2$ ant r-matės bazės dalies egzistuoja kertamasis paviršius. Jeigu

$$Z_i^{r+1} \in H^{r+1}\left(B, \ \pi_r(F_i)\right) \ (i=1, \ 2) -$$

słuoksniavimo $\overline{E_i}$ charakteringoji klasé, tai słuoksniavimo $\overline{E_i} \times \overline{E_i}$ charakteringoji klasé

$$Z^{r+1} \in H^{r+1} \left(B, \pi_r \left(F_1 \times F_2 \right) \right)$$

surišta su klasėmis Z_1^{r+1} , Z_2^{r+1} formule

$$Z^{r+1} = \hat{j}_{1*} Z_2^{r+1} + \hat{j}_{2*} Z_2^{r+1},$$

kur jie - kohomologijos grupių

$$H^{r+1}\left(B, \ \pi_r\left(F_i\right)\right) \rightarrow H^{r+1}\left(B, \ \pi_r\left(F_1 \times F_2\right)\right)$$

homomorfizmas, indukuotas natūralaus homomorfizmo

$$j_{i \oplus} : \pi_r (F_i) \rightarrow \pi_r (F_1 \times F_2).$$

Analoginis tvirtinimas teisingas ir dėl dviejų kertamųjų paviršių skiriamosiomis apibrėžtų kohomologijos klasiu.

ÜBER DIE SCHNITTFLÄCHEN IM PRODUKT DER FASERUNGEN

A. MATUZEVIČIUS

(Zusammenfassung)

Es sei

$$\widetilde{E}_i(E_i, B, F_i, p_i)$$
 $(i=1, 2)$

eine Faserung mit homotopisch einfacher Fiber F_i in der Dimension r und π_s $(F_i)=0$, wo s< r; dann ist die Schnittfläche auf B' im Produkt $\overline{E}_1 \times \overline{E}_2$ $(E, B, F_1 \times F_3, p)$ konstruierbar. Bezeichnet man die charakteristischen Kohomologieklassen der Faserungen \overline{E}_i , $\overline{E}_1 \times \overline{E}_2$ bzw. mit

$$Z_i^{r+1} \in H^{r+1}\left(B, \ \pi_r\left(F_i\right)\right), \ Z^{r+1} \in H^{r+1}\left(B, \ \pi_r\left(F_1 \times F_1\right)\right).$$

Im vorliegenden Artikel wird die Formel

$$Z^{r+1} = \hat{j}_{1*} Z_1^{r+1} + \hat{j}_{2*} Z_1^{r+1}$$

bewiesen, wo

$$\widehat{j}_{i+}:H^{r+1}\left(B,\ \pi_r\left(F_i\right)\right)\to H^{r+1}\left(B,\ \pi_r\left(F_1\times F_2\right)\right)$$

ein Homomorphismus ist.

Analogische Formel gilt für Kohomologieklassen der Unterscheidungen von zwei zusammenfallenden (auf B^{r-1}) Schnittflächen.