1964

ОБ ОДНОЙ ЭКСТРЕМАЛЬНОЙ ЗАДАЧЕ В ПРЕДЕЛЬНЫХ ТЕОРЕМАХ ДЛЯ СУММ НЕЗАВИСИМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

В. М. ЗОЛОТАРЕВ

1. Постановка задачи

Обозначим \mathfrak{B} -множество невырожденных всех распределений имеющих конечный третий момент и рассмотрим последовательность $\xi_1, \ \xi_2, \dots, \xi_n, \dots$ независимых, одинаково распределенных случайных величин с функциями распределения F(x) из множества \mathfrak{B} .

Образуем последовательность сумм

$$\zeta_n = (\xi_1 + \xi_2 + \cdots + \xi_n - nM\xi_1) (nD\xi_1)^{-1/2}$$

с функциями распределения $F_n(x)$.

Обозначим σ^2 — дисперсию, α_3 — центрированный третий момент и β_3 — центрированный третий абсолютный момент распределения F(x).

В соо тветствии с устанавливающейся в нашей литературе традицией мы будем исп ользовать далее для равномерной и ,,средней метрик следующие обозначения

$$\rho_2(G, H) = \sup_{x} |G(x) - H(x)|,$$

$$\rho_3(G, H) = \left\{ \int |G(x) - H(x)|^{\nu} dx \right\}^{1/\nu}, \ \nu > 1.$$

Расстояние функ ции G до класса $\mathfrak H$ относительно метрики ρ мы будем понимать, как и обычно:

$$\rho(G, \mathfrak{H}) = \inf_{H \in \mathfrak{H}} \rho(G, H).$$

Хорошо известно, что принадлежность F(x) к множеству $\mathfrak B$ обеспечивает не только сходимость $F_n(x)$ к нормальному закону $\Phi(x)$, но и выделение в явном виде первого остаточного члена при апроксимации F_n функцией Φ .

К. Эссеен [1] показал, что

$$B_{2} = \sup_{\mathfrak{B}} \frac{\sigma^{3}}{\beta_{3}} \lim_{n \to \infty} \sqrt{n} \rho_{2}(F_{n}, \Phi) = \frac{\sqrt{10} + 3}{6\sqrt{2\pi}}, \qquad (1)$$

что было своего рода неожиданностью, поскольку все ожидали появление предсказанной А. Н. Колмогоровым [2] константы $1/\sqrt{2\pi}$.

Б. Рогозин [3] уточнил результат Эссеена, показав, что апроксимация $F_n(x)$ семейством $\mathfrak Q$ всех нормальных законов дает уменьшение константы Эссеена до ожидавшейся ранее величины:

$$\overline{B}_2 = \sup_{\mathfrak{P}} \frac{\sigma^3}{\beta_3} \lim_{n \to \infty} \sqrt[n]{n} \rho_2(F_n, \mathfrak{Q}) = \frac{1}{\sqrt[n]{2\pi}}.$$
 (2)

В последнее время, наряду с ρ_2 , все большее употребление в построении предельных теорем находит метрика ρ_3 (и, в частности, среднеквадратичная ρ_3). Это объясняется тем, что ρ_3 , в некотором смысле будучи слабее ρ_2 , позволяет надеяться на устранение ряда трудностей при построении предельных теорем и их уточнений, возникающих в метрике ρ_2 .

Предельными теоремами в метрике ρ_3 занимались уже многие авторы. Наиболее обстоятельным и оригинальным исследованием в этом направлении, по-видимому, следует признать работу К. Эссеена [4].

В этой работе Эссеену удалось установить в ряде случаев существование и явное выражение предела

$$A_3(F) = \lim_{n \to \infty} \sqrt[n]{n} \ \rho_3(F_n, \ \Phi).$$

В частности для случая $\nu = 2$ (среднеквадратическая метрика):

$$A_3^2(F) = \begin{cases} \frac{1}{96\sqrt{\pi}} \left(\frac{\alpha_s}{\sigma^3}\right)^2, & \text{если } F - \text{нерешетчатое} \\ \frac{1}{96\sqrt{\pi}} \left(\frac{\alpha_s}{\sigma^3}\right)^2 + \frac{1}{24\sqrt{\pi}} \left(\frac{h}{\sigma}\right)^2, & \text{если } F - \text{решетчатое } c \text{ шагом } h. \end{cases}$$
(3)

Развивая эти результаты в плане упоминавшихся выше задач, решенных Эссееном и Рогозиным, естественно поставить вопрос о вычислении оптимальных констант

$$B_3 = \sup_{\mathfrak{N}} \frac{\sigma^3}{\beta_3} A_3(F), \tag{4}$$

$$\overline{B}_3 = \sup_{\mathfrak{B}} \frac{\sigma^3}{\beta_3} \lim_{n \to \infty} \sqrt{n} \, \rho_3(F_n, \mathfrak{Q}). \tag{5}$$

Некоторый интерес может представлять также величина

$$\overline{A_3}(F) = \lim_{n \to \infty} \sqrt[n]{n} \, \rho_3(F_n, \mathfrak{Q}). \tag{6}$$

В настоящей заметке исследуется случай $\nu=2$. При этом доказывается, что $B_3=\overline{B}_3$, находится величина B_3 , $\overline{A}_3(F)$, дается новое доказательство равенств (1), (2), которое позволяет понять причину различия аналогичных констант в метрике ρ_2 и попутно находится величина $\overline{A}_2(F)=\lim \sqrt{n} \ \rho_2(Fn,\ \mathbb{Q})$.

2. Основные результаты

Теорема 1. $B_3^2=\frac{1}{6\sqrt[3]{\pi}}$, причем экстремальное значение величины $\frac{\sigma^2}{\Theta^0}$ $A_3\left(F\right)$ достигается на симметричном распределении Бернулли.

Tеорема 2. $\overline{B}_3 = B_3$.

Доказательство теоремы 1. Вычисление B_3^2 , в силу представления (3), сводится к отысканию таких наименьших чисел k_1 и k_2 , что

- а) $\alpha_3^2 \le k_1 \, \beta_3^2$, если F нерешетчатое;
- б) $\alpha_3^2 + 4h^2 \, \sigma^4 \leqslant k_2 \, \beta_3^2$, если F решетчатое с шагом h.

Тогда

$$B_3^2 = \frac{1}{96 \sqrt[7]{\pi}} \max(k_1, k_2). \tag{7}$$

В случае а), очевидно, $k_1=1$. Займемся вычислением k_2 , заметив, уто величине шага h можно, не уменьшая общности рассуждений, приписать любое фиксированное значение (например, h=1). При этом всевозможные изменения h в рамках класса $\mathfrak B$ будут учитываться моментами распределения. Кроме того, поскольку в неравенстве присутствуют только центрированные моменты, мы вправе среди всех распределений $\mathfrak B$ рассматривать только те, у которых среднее значение равно нулю (класс $\mathfrak B_0$).

Неравенству б) в классе \mathfrak{B}_{0} можно придать вид

$$I(F, k_2) = \int \int g(x, y, k_2) dF(x) dF(y) \ge 0,$$

где

$$g(x, y, K) = K|xy|^3 - (xy)^3 - 4h^2(xy)^2.$$

Для каждого значения K>1, очевидно, существует в классе решетчатых распределений со средним значением 0 минимум функционала I(F,K). Согласно теореме В. Хефдинга [6] этот минимум может быть реализован во множестве двухточечных распределений. После этого нам остается решить уравнение inf I(F,K)=0, решением которого и будет величина k_2 .

Итак, рассмотрим класс \mathfrak{B}_0^* двухточечных распределений со средним значением, равным нулю. Из всего сказанного выше следует, что

$$k_2 = \inf_{\mathfrak{D}_0} (\alpha_3^2 + 4 h^2 \sigma^4) \beta_3^{-2} = \inf_{\mathfrak{D}_0^*} (\alpha_3^2 + 4 h^2 \sigma^4) \beta_3^{-2}.$$
 (8)

Пусть теперь $F \in \mathfrak{B}_0^*$. Обозначим $x_1 < x_2$ — точки роста функции F и $p = F(x_1)$. Мы можем записать следующую систєму равенств

$$x_1 p + x_2 (1 - p) = 0,$$

 $x_1^2 p + x_2^2 (1 - p) = \sigma^2,$
 $x_1^3 p + x_2^3 (1 - p) = \alpha_3,$

из которой, используя обозначения 2p-1= au и $x_2-x_1=h$, нетрудно получить следующие представления

$$\alpha_3 = \tau h \sigma^2$$
, $\beta_3 = -x_1^3 p + x_2^3 (1-p) = \frac{1}{2} (1+\tau^2) h \sigma^2$.

Подставляя эти выражения во второе равенство (8), получим

$$k_2 = 4 \min_{\tau} \frac{4+\tau^2}{(1+\tau^2)^2} = 16,$$

и для B_3^2 , согласно (7), значение 1/6 $\sqrt{2\pi}$. Поскольку минимум мы получили при $\tau = 0$, что соответствует p = 1/2, то экстремальное значение B_3^2 должно достигаться на симметричном распределении Бернулли.

Доказательство теоремы 2. Прежде всего отметим, что распределение $\Phi_n = \Phi$ $(b_n x + a_n)$ из $\mathfrak Q$ реализующее $\rho_3(F_n, \mathfrak Q)$ должно иметь параметры $a_n \to 0$ и $b_n = 1 + \delta_n \to 1$, поскольку в противном случае вообще бы не было сходимости F_n и Φ с ростом n. Элементарные соображения показывают, что величины a_n , δ_n , асимптотикой которых мы будем интересоваться, имеют порядок $1/\sqrt[n]{n}$ и потому могут быть представлены в виде

$$a_n = k' \frac{\alpha_3}{\sigma^3} n^{-1/2} (1 + o(1)), \quad \delta_n = k'' \frac{\alpha_3}{\sigma^3} n^{-1/2} (1 + o(1)).$$

Тогда

$$\begin{split} \Delta_n^2 &= \rho_3^2 \left(F_n, \ \Phi_n \right) \sim \rho_3^2 \left(F_n, \ \Phi + (k'' \, x + k') \, \frac{\alpha_3}{\sigma^3} \, \Phi' \, n^{-1/s} \right) \sim \\ &\sim \rho_3^2 \left(\sqrt[]{n} \, R_n, \ (k'' \, x + k') \, \frac{\alpha_3}{\sigma^3} \, \Phi' \right) \, \frac{1}{n} = I_n \, , \end{split}$$

где $R_n(x)$ означает первый остаточный член разложения $F_n(x)$ в ряд Эджворта—Крамера. Дальнейший расчет, проводимый в интеграле I_n так же как это делается Эссеном ([4], стр. 13), приводит нас к представлению

$$\dot{\Delta}_n^2 = \rho_3^2 \left(F_n, \ \Phi \right) + \frac{1}{2 \, \sqrt{\pi}} \, \left(\frac{\alpha_3}{\sigma^3} \right)^2 \left[\frac{1}{2} \, \left(k'' \right)^2 + \left(k' - \frac{1}{12} \right)^2 - \frac{1}{144} \, \right] \, \frac{1}{n} + o \, \left(\frac{1}{n} \right).$$

Поскольку k' и k'' реализуют минимум главного поправочного члена в правой части последнего равенства, мы получаем

$$k'' = 0$$
, $k' = \frac{1}{12}$

и, следовательно.

$$b_n = 1 + o\left(\frac{1}{\sqrt{n}}\right), \quad a_n = \frac{1}{12} \quad \frac{\alpha_3}{\sigma^3} \quad n^{-1/2} + o\left(n^{-1/2}\right),$$
 (9)

$$\rho_3^2\left(F_{\mathbf{n}},\ \mathfrak{Q}\right) = \rho_3^2\left(F_{\mathbf{n}},\ \Phi\right) - \frac{1}{288\sqrt[3]{\pi}} \left(\frac{\alpha_3}{\sigma^3}\right)^2 \cdot \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Откуда

$$\overline{A}_3^2(F) = A_3^2(F) - \frac{1}{288\sqrt{\pi}} \left(\frac{\alpha_s}{\sigma^3}\right)^2.$$
 (10)

Мы должны теперь найти такую наименьшую постоянную \overline{B}_3 , что для всех $F{\in}\mathfrak{B}$

$$\overline{A}_3(F) \leqslant \overline{B}_3 \frac{\beta_3}{\sigma^3}$$
.

Это представляет собой задачу вполне аналогичную той, которая уже решалась нами при доказательстве теоремы 1. Дословно те же рассуждения

приведут нас к выводу, что максимум $\frac{\sigma^3}{\beta_4} \, \overline{A}_3 \, (F)$ достигается на симметричном двухточечном распределении, и что

$$\overline{B}_3^2 = B_3^2 = \frac{1}{6\sqrt{\pi}}$$
.

3. Новые доказательства теорем Эссеена и Рогозина

Теоремы Эссеена и Рогозина были сформулированы в пункте 1 в форме равенств (1) и (2).

Приводимые ниже доказательства, возможно, в большей степени, чем доказательства самих авторов помогут разобраться в сути явления. Эти доказательства имеют еще и то преимущество, что базируются на общих соображениях и используют один метод, тот самый, который применялся нами при доказательстве теорем 1 и 2.

Доказательство теоремы Эссеена. Мы, как и Эссеен, будем отправляться от известного разложения Эджворта—Крамера функции $F_n(x)$ и немедленно вытекающего из него равенства

$$A_2(F) = \lim_{n \to \infty} \sqrt{n} \, \rho_2(F_n, \Phi) = \begin{cases} \frac{1}{6 \, \sqrt{2\pi}} \, \frac{|\alpha_3|}{\sigma^3}, \, \text{ если } F - \text{нерешетчатое} \\ \frac{1}{6 \, \sqrt{2\pi}} \, \frac{|\alpha_3|}{\sigma^3} + \frac{1}{2 \, \sqrt{2\pi}} \, \frac{h}{\sigma}, \, \text{если } F - \text{решетчатое c шагом } h. \end{cases}$$

Мы должны найти наименьшие константы k_1 и k_2 , при которых:

- а) $|\alpha_3| \le k_1 \beta_3$, в случае нерешетчатого F;
- б) $|\alpha_3| + 3h\sigma^2 \leqslant k_2 \beta_3$, в случае решетчатого F с шагом h.

Нетрудно заметить, что $k_1=1$. Случай б) содержит только центрированные моменты, поэтому мы можем считать $M\xi_1=0$. Кроме того, не уменьшая общности наших рассуждений, мы можем предполагать $\alpha_3\geqslant 0$. Учитывая эти замечания, мы можем теперь неравенству б) придать вид

$$I(F, k_2) = \int g(x, k_2) dx \geqslant 0,$$

где

$$g(x, K) = K |x|^3 - x^3 - 3hx^2.$$

Для каждого значения K>1 в классе распределений \mathfrak{B}_0 , очевидно, существует $\inf_{\mathfrak{B}_0} I(F,K)$. По теореме В. Хефдинга [5] этот минимум может быть реализован на двухточечных распределениях, т. е.

$$\inf_{\mathfrak{B}_{\bullet}} I(F, K) = \inf_{\mathfrak{B}_{+}^{*}} I(F, K) = I^{*}(K).$$

Следовательно, для отыскания значения k_2 нам достаточно решить уравнение $I^*\left(K\right)=0$, или, что то же, найти

$$k_2 = \sup_{\mathfrak{B}_{\alpha}^*} \frac{\alpha_3 + 3h\sigma^2}{\beta_3}.$$

Поскольку, как мы видели при доказательстве теоремы 1,

$$lpha_3 = au h\, \sigma^2$$
 и $eta_3 = rac{1}{2}\, \left(1 + au^2
ight)\, h\sigma^2$, то
$$k_2 = 2 \sup_{\tau \geqslant 0} \, rac{(\tau + 3)}{\tau^2 + 1} = 2\, rac{\tau + 3}{\tau^2 + 1} \, \left|_{\tau = \, \sqrt{\,10} \, - 3} = \sqrt{\,10} \, + 3,$$
 $B_2 = rac{1}{6\, \sqrt{\,2\pi}} \, \max \, \left(k_1, \, k_2\right) = rac{\sqrt{\,10} \, + 3}{6\, \sqrt{\,2\pi}} \, \, .$

Отсюда видно также, что экстремум B_2 достигается на несимметричном распределении Бернулли со скачками в точках $-h(4-\sqrt{10})/2$, $h(\sqrt{10}-2)/2$, со скачками соответственно $(\sqrt{10}-2)/2$ и $(4-\sqrt{10})/2$, т. е. то, что было указано Эссееном в [1].

Доказательство теоремы Рогозина. Приводимое ниже доказательство более громоздкое и сложное чем доказательство самого Рогозина. Однако прием им используемый, будучи очень изящным, вряд ли может составить основу для универсального метода в такого рода задачах. Кроме того, он ничего не позволяет сказать ни о точном выражении $\overline{A_2}(F)$, ни об асимптотике параметров минимизирующего распределения $\rho_2(F_n, \mathfrak{Q}) = \rho_2\left(F_n, \Phi\left(b_n x + a_n\right)\right)$, что, как мы увидим далее, является не очень простой задачей.

Элементарные соображения показывают, что a_n и $\delta_n = b_n - 1$ могут быть представлены в виде

$$\cdot a_{n} = k_{1} \frac{\alpha_{3}}{\sigma^{3}} n^{-1/s} \left(1 + o(1)\right), \quad \delta_{n} = k_{2} \frac{\alpha_{3}}{\sigma^{3}} n^{-1/s} \left(1 + o(1)\right).$$

Отсюда делается вывод, что

$$\rho_2(F_n, \ \mathfrak{Q}) \sim \rho_2\left(F_n, \ \Phi + (k_2 x + k_1) \frac{\alpha_3}{\sigma^3} \ \Phi' \ n^{-1/s}\right)$$

И

$$\overline{A}_{2}(F) = \frac{1}{2\sqrt{2\pi}\sigma} \inf_{\lambda, \gamma} \sup_{x} Q(x, \lambda, \gamma) = \frac{1}{2\sqrt{2\pi}\sigma} \sup_{x} Q(x, 6k_{1}, 6k_{1} - 1),$$

где

$$Q(x, \lambda, \gamma) = (\omega \mid x^2 + \lambda x + \gamma \mid + h) e^{-\frac{x^4}{2}}, \quad \omega = \frac{\mid \alpha_3 \mid}{3\sigma^2}$$

h>0 — величина шага в случае решетчатого F и h=0 в случае нерешетчатого F.

Заметим, что, не уменьшая общности, мы можем считать $\lambda\geqslant 0$, поскольку sup Q берется по всей оси x, а распределение F несимметричным, ибо для симметричных F задача отыскания $\overline{A_2}(F)$, k_1 , k_2 решается почти тривиально. Именно $k_1=k_2=0$ и

$$\overline{A}_2(F) = \frac{h}{2\sqrt{2\pi}\sigma}.$$

Случай несимметричных F (для них $\omega > 0$) значительно сложнее.

Обозначим

$$X^{+} = \left\{ x: \ x^{2} + \lambda x + \gamma \geqslant 0 \ \right\}, \quad X^{-} = \left\{ x: \ x^{2} + \lambda x + \gamma < 0 \ \right\}.$$

Очевидно, если X^- не пусто, то оно разделяет X^+ на две части X_1^+ и X_2^+ (мы условимся отождествлять X_2^+ с X^+ если X^- пусто). На каждом из множеств X^+ и X^- мы можем интересоваться существованием внутренних точек x_0 , в которых достигается относительный максимум. Такие точки будут корнями уравнения $\frac{\partial Q}{\partial x}=0$, причем, как нетрудно заметить, число корней не превосходит трех. Пусть $x_0=x_0\left(\lambda,\,\gamma\right)$ один из корней. Тогда для функции $Q_0=Q\left(x_0,\,\lambda,\,\gamma\right)$ имеем

$$\frac{\partial Q_0}{\partial \lambda} = \begin{cases} \omega x_0 \exp\left(-\frac{x_0^2}{2}\right), & \text{если} \quad x_0 \in X^+ \\ -\omega x_0 \exp\left(-\frac{x_0^2}{2}\right), & \text{если} \quad x_0 \in X^-. \end{cases}$$
 (11)

Мы начнем с того, что вычислим $\sup Q$ при фиксированном значении γ и $\lambda = 0$. Простой подсчет показывает, что

$$e^{\frac{x^{2}}{2}} \frac{\partial}{\partial x} \ \mathcal{Q}\left(x,\ 0,\ \gamma\right) = \left\{ \begin{array}{rcl} -\omega\,x\left[x^{2}-2+\gamma+\frac{h}{\omega}\right], & \text{если} & x\in X^{+}, & \text{т. e. } x^{2}\geqslant -\gamma\\ & \omega\,x\left[x^{2}-2+\gamma-\frac{h}{\omega}\right], & \text{если} & x\in X^{-}, & \text{т. e. } x^{2}<-\gamma. \end{array} \right.$$

Следовательно, уравнение $\frac{\partial Q}{\partial x}=0$ всегда имеет корнем $x_1=0$. Этот корень остается единственным, если $2-\frac{h}{\omega}<0$ или же $\gamma\geqslant 2-\frac{h}{\omega}$. В том случае, когда $2-\frac{h}{\omega}\geqslant 0$ и $\gamma<2-\frac{h}{\omega}$, к x_1 добавляются еще два корня

$$x_{2,3} = \pm \sqrt{2 - \gamma - \frac{h}{\omega}}.$$

Таким образом в первом случае

$$\sup_{\alpha} Q = \omega | \gamma | + h,$$

а во втором

$$\sup_{x} Q = \max \left\{ (\omega \mid \gamma \mid + h), \quad 2\omega \exp\left(-1 + \frac{\gamma}{2} + \frac{h}{\omega}\right) \right\}.$$

Рассмотрим теперь случай $\lambda > 0$ и установим предварительно некоторые свойства корней уравнения

$$P(x) = \frac{\partial Q}{\partial x} = 0. {12}$$

- 1°. Если множество X_2^+ содержит точку x=0, то в этом множестве находится по крайней мере один положительный корень уравнения (12).
- 2°. Если X^- не пустое, то множество $X^- \cup X_2^+$ содержит по крайней мере один корень, причем все корни из X^- отрицательны.

3°. Множество X_1^+ может содержать только отрицательные корни P(x). Первое свойство получается из соотношений $P_1(0) = \omega \lambda > 0$, $P(x) \to -\infty$ и $x \to \infty$ и того очевидного факта, что P является непрерывной функцией на каждом интервале целиком входящего в X^+ или X^- .

Пусть X^- не пусто, тогда

$$y_1 = -\frac{\lambda}{2} - \sqrt{\frac{\lambda^2}{4} - \gamma}$$
 H $y_2 = -\frac{\lambda}{2} + \sqrt{\frac{\lambda^2}{4} - \gamma}$

являются его границами. Из отрицательности y_1 следует свойство 3. Поскольку

$$P(y_1 + 0) = (2\omega + h) \sqrt{\frac{\lambda^2}{4} - \gamma} + \frac{\lambda}{2} h > 0,$$

$$P(y_2 - 0) = -\omega \sqrt{\frac{\lambda^2}{4} - \gamma} - y_2 h,$$

то в случае $y_2>0$ множество X^- содержит по крайней мере один корень, а в случае $y_2\leqslant 0$ множество X_2^+ , согласно свойству 1° , содержит по крайней мере один положительный корень. Если x_0 корень P из множества X^- , то из представления положителной величины

$$Q\left(x_{0},\ \lambda,\ \gamma\right)=-\omega\left(2+rac{\lambda}{x_{0}}
ight)\,\exp\,\left(-rac{1}{2}\ x_{0}^{2}
ight)$$
 ,

следует, что этот корень должен быть отрицательным.

Приведенные свойства $1^{\circ}-3^{\circ}$ вместе с выражением (11) производной $\frac{\partial Q_0}{\partial \lambda}$ позволяют сделать вывод, что для корней из множества X^- и для положительных корней множества X_2^+ соответствующие значения относительных максимумов (мы их будем обозначать $M_k(x)$) монотонно убывают с убыванием λ , а значения относительных максимумов, соответствующие остальным корням (обозначим их $N_I(\lambda)$), монотонно возрастают с убыванием λ .

Поскольку, как мы видели выше при разборе случая $\lambda = 0$,

$$\max_{l} N_l(0) \leqslant \max_{k} M_k(0),$$

то для $\lambda > 0$

$$\max_{l} N_{l}(\lambda) \leqslant \max_{k} M_{k}(\lambda)$$

(при этом число корней, входящих в ту или другую группу, может меняться при изменении λ , но, как видно из свойств 1° , 2° , число корней образующих максимумы M_k не меньше одного).

Следовательно, при фиксированном значении ү

$$\inf_{\lambda} \sup_{x} Q = \sup_{x} Q(x, 0, \gamma).$$

Дальнейшая минимизация по ү уже не представляет труда и дает нам в итоге

$$\overline{A}_{2}\left(F\right) = \left\{ \begin{array}{ll} \frac{h}{2\sqrt{2\pi}\,\sigma}\,, & \text{если} \quad h \geqslant \frac{2\mid\alpha_{3}\mid}{3\,\sigma^{3}} \\ \\ \frac{h}{2\sqrt{2\pi}\,\sigma} + \frac{\Theta}{3\sqrt{2\pi}} \quad \frac{\mid\alpha_{3}\mid}{\sigma^{3}}\,, & \text{если} \quad h < \frac{2\mid\alpha_{3}\mid}{3\,\sigma^{3}}, \end{array} \right.$$

где h мы понимаем как величину равную нулю в случае нерешетчатого F, как величину шага в случае решетчатого F и Θ — неотрицательный корень уравнения

 $\Theta + \frac{3h\sigma^2}{2|\alpha_3|} = \exp\left(\frac{3h\sigma^2}{2|\alpha_3|} - 1 - \Theta\right).$

Для параметров k_1 , k_2 соответственно получаем значения $k_2 = 0$ и

$$k_1 = \left\{ \begin{array}{ll} \frac{1}{6} \; , & \text{ если } \; \; h \geqslant \frac{2 \mid \alpha_3 \mid}{3 \, \sigma^3} \; , \\ \\ \frac{1}{6} \; (1 - \Theta), & \text{ если } \; \; h < \frac{2 \mid \alpha_3 \mid}{3 \, \sigma^3} \; . \end{array} \right.$$

Из найденного выражения величины $\overline{A}_2(F)$ получаем оценки

$$\begin{split} \overline{A}_2\left(F\right) \leqslant & \frac{1}{3\sqrt{2\pi}} \quad \frac{\left|\alpha_3\right|}{\sigma^3} \leqslant \frac{1}{3\sqrt{2\pi}} \quad \frac{\beta_3}{\sigma^3}, \quad \text{если} \quad h < \frac{2\left|\alpha_3\right|}{3\sigma^3} \\ \overline{A}_2^{'}\left(F\right) = & \frac{h}{2\sqrt{2\pi}\sigma} \leqslant \frac{1}{\sqrt{2\pi}} \quad \frac{\beta_3}{\sigma^3} \,, \qquad \qquad \text{если} \quad h \geqslant \frac{2\left|\alpha_3\right|}{3\sigma^3} \,. \end{split}$$

Последняя оценка следует из неравенства Мизеса и достигается не симметричных распределениях Бернулли. Поэтому $\bar{B_2} = \frac{1}{\sqrt{2\pi}}$.

Поступило в редакцию 15.I.1964

ЛИТЕРАТУРА

- C. G. Esseen. A moment inequality with an application to the central limit theorem Skand, Aktuar, 1956, 3-4, 160-170.
- А. Н. Колмогоров. Некоторые работы последних лет в области предельных теорем теории вероятностей, вестник МГУ, 10, 1953, 29-39.
- Б. А. Рогозин. Одно замечание к работе Эссеена, "Моментное неравенство с применением к центральной предельной теореме", Теор. вер. и ее прим., 1960, V, 1, 125—128.
- C. G. Esseen. On Mean Central Limit Theorems Kungl, Tekniska Hogskolans Handlingar, 1958, N 121, p. 1-30.
- W. Hoeffding. The Extrema of the Expected Value of a Function of Independent Random Variables, Ann. of Math. Stat., v 26, N 2, 1955, 268-275.
- W. Hoeffding, S. S. Shrikhande. Bounds for the Distribution Function of a Seem of Independent, Identically Distributed Random Variables, Ann. Math. Stat., v 26, N 3 (1955), 439-449.

APIE VIENĄ RIBINIŲ TEOREMŲ, NEPRIKLAUSOMŲ ATSITIKTINIŲ DYDŽIŲ SUMOMS, EKSTREMALINĮ UŽDAVINĮ

V. M. ZOLOTARIOV

(Reziumė)

Tegu $\mathfrak B$ pasiskirstymo funkcijų F(x) klasė su

$$\int x dF = m, \quad \sigma^{3} = \int (x - m)^{2} dF, \quad \beta = \int |x - m|^{3} dF$$

 $\Phi_{a,b}$ – normalinis pasiskirstymas su parametrais a, b ir $F_n(x) = F^n * (\sigma \sqrt[n]{n})$. Kvadratinėjevidurkinėje metrikoje ρ_n nagrinėjamos asimptotiškai tikslios konstantos

$$A_3(F) = \lim_{n \to \infty} \sqrt{n} \, \rho_3(F_n, \, \Phi_{0, 1})$$

$$\overline{A}_3(F) = \lim_{n \to \infty} \sqrt{n} \, \rho_3(F_n, \, \Phi_{a_n, b_n}),$$

kur a_n ir b_n realizuoja $\inf_{a,b} \rho_3(F_n, \Phi_{a,b})$,

$$B_3 = \sup_{\mathfrak{R}} \frac{\beta}{\sigma^3} A_3(F), \quad \overline{B_3} = \sup_{\mathfrak{R}} \frac{\beta}{\sigma^3} \overline{A_3}(F).$$

Darbe randamas konstantų A_3 , A_3 , B_3 , B_3 išraiškos ir konstantų a_n , b_n asimptotika. Taip pat duodamos naujas Eseno [1] ir Ragozino [3] teoremų įrodymas.

ON AN EXTREMAL PROBLEM IN THE CENTRAL LIMIT THEOREMS FOR SUMS OF INDEPENDENT RANDOM VARIABLES

V. M. ZOLOTAREV

(Summary)

Let $\mathfrak B$ be a class of distribution functions F(x) with finite third moment and let

$$\int x dF = m, \quad \sigma^2 = \int (x - m)^2 dF, \quad \beta = \int |x - m|^3 dF$$

Let further $\Phi_{a,b}$ be (a, b) - normal distribution and $F_n(x) = F^{n*}(\sqrt[n]{n})$. Defining $\rho_n(F, G)$ as

 $\left(\int \left(F(x)-G(x)\right)^2 dx\right)^{\frac{1}{2}}$

we investigate

$$A_3(F) = \lim_{n \to \infty} \sqrt{\frac{n}{n}} \rho_3(F_n, \Phi_{0, 1})$$

$$\overline{A_3}(F) = \lim_{n \to \infty} \sqrt[n]{n} \rho_3(F_n, \Phi_{a_n, b_n})$$

where a_n and b_n minimize $\rho_3(F_n, \Phi_{a,b})$,

$$B_3 = \sup_{\mathfrak{R}} \frac{\beta}{\sigma^3} A_3(F), \quad \overline{B}_3 = \sup_{\mathfrak{R}} \frac{\beta}{\sigma^3} \overline{A}_3(F).$$

For A_3 , $\overline{A_3}$, B_3 , $\overline{B_3}$ explicit formulas are given and asymptotic behavior of $a_{n_{\frac{1}{2}}}$ b_n is established.

We also give hew proofs of well-known results due to Esseen [1] and Ragozin [3], based on the method used for ρ_3 -metric.