1964

ОБ ОДНОМ КЛАССЕ УРАВНЕНИЙ БЕСКОНЕЧНОГО ПОРЯДКА В ОБОБЩЕННЫХ ПРОИЗВОДНЫХ

Ю. Ф. КОРОБЕЙНИК

Пусть $\{c_k\}$ — произвольно выбранная последовательность комплексных чисел. Обобщенной производной $D_1 y$ функции $y(x) = \sum_{k=0}^{\infty} y_k \ x^k$, аналитической в начале координат, назовем, следуя А. О. Гельфонду и Л. Ф. Леонтьеву $^{(1)}$, выражение

$$D_1 y = \sum_{k=1}^{3} c_{k-1} y_k x^{k-1}.$$

Рассмотрим уравнение бесконечного порядка в обобщенных производных с полиномиальными коэффициентами

$$Ly = \sum_{k=0}^{\infty} P_k(x) \ D_1^k y(x) = f(x), \qquad D_1^0 y = y, \tag{1}$$

где

$$P_{k}(x) = \sum_{s=0}^{n_{k}} a_{s}^{k} x^{s}, \quad k = 0, 1, \ldots; \quad p = \sup_{k \ge 0} \{ n_{k} - k \}, \quad 0 \le p \le \infty.$$

В настоящей работе уравнение (1) изучается в предположении, что $p < \infty$ (в этом случае уравнение будем называть квазирегулярным). Аналитическую в круге |x| < R функцию y(x) будем считать решением уравнения (1) в этом круге, если ряд в левой части (1) сходится равномерно

внутри круга
$$|x| < R$$
 к $f(x) = \sum_{k=0}^{\infty} f_k x^k$.

Лемма 1. Если y(x) — аналитическое решение уравнения (1), удовлетворяющее ему в каком-нибудь круге |x| < R, R > 0, то его тейлоровские коэффициенты удовлетворяют бесконечной системе

$$\sum_{l=0}^{r} y_{l} \sum_{k=0}^{l} \tau_{l,k} a_{r+k-l}^{k} + \sum_{l=r+1}^{\infty} y_{l} \sum_{k=l-r}^{l} \tau_{l,k} a_{r+k-l}^{k} = f_{r}, \qquad 0 \leq r \leq p-1,$$

$$\sum_{l=r-p}^{r} y_{l} \sum_{k=0}^{l} \tau_{l,k} a_{r+k-l}^{k} + \sum_{l=r+1}^{\infty} y_{l} \sum_{k=l-r}^{l} \tau_{l,k} a_{r+k-l}^{k} = f_{r}, \qquad r \geq p,$$

$$(2)$$

где

$$\tau_{l,0} = 1$$
, $\tau_{0,0} = 1$ $\tau_{l,k} = c_{l-1} \cdot c_{l-2} \cdot \ldots \cdot c_{l-k}$, $l \ge k \ge 1$.

Для доказательства надо подставить выражения $D_1^k y\left(x\right) = \sum_{l=k}^{\infty} au_{l,k} \ y_l \ x^{l-k}$ в

(1) и сравнить коэффициенты при одинаковых степенях x слева и справа; в результате, после изменения порядка суммирования, законного в силу равномерной сходимости ряда в левой части (1), приходим к соотношениям (2).

§ 1. Неособое квазирегулярное уравнение

Всюду в этом параграфе предполагается, что величины $\gamma_n = \sum_{k=0} \tau_{n,k} \, a_{k+p}^k$ отличны от нуля при $n=0,\ 1,\ 2,\ \dots$ Уравнение (1) в этом случае назовем неособым квазирегулярным уравнением (н. к. ур.).

Пусть $\{\sigma_k\}$ — какая-либо последовательность, мажорирующая $|c_k|$, A_s^k — числа, мажорирующие $|a_s^k|$. Положим

$$\begin{split} \gamma_{r,\,m} &= \sum_{k=\{0,\,m-r\}}^{m} \tau_{m,\,k} \, a_{r+k-m}^{k}; \quad \{\,a,\,\,b\,\} = \max \, (a,\,\,b); \\ t_{m,\,k} &= \sigma_{m-1} \, \sigma_{m-2} \, \ldots \, \sigma_{m-k}, \quad m \geqslant k \geqslant 1; \quad t_{m,\,0} = 1; \\ \delta_{r,\,m} &= \sum_{k=\{0,\,m-r\}}^{m} t_{m,\,k} \, A_{r+k-m}^{k}; \quad \delta_{n} &= \sum_{k=0}^{n} t_{n,\,k} \, A_{k+\rho}^{k} = \delta_{n+\rho,\,n}; \quad \gamma_{n} = \gamma_{n+\rho,\,n}. \end{split}$$

Обозначим через (2') систему, полученную отбрасыванием первых p уравнений системы (2).

Лемма 2. Пусть последовательность положительных чисел A_k удовлетворяет условию

$$\overline{\lim}_{m\to\infty} \sum_{s=1}^{m-1} \frac{\delta_{s+p,m} A_s}{|\gamma_s| A_m} = q < 1.$$
 (3)

Тогда система (2') имеет единственное решение в классе S_A последовательностей x_k таких, что $\sum_{k=0}^{\infty} A_k \mid x_k \mid < \infty$, если только последовательность $\left\{ \frac{f_{t+p}}{\gamma_t} \right\}$ принадлежит S_A . При этом

$$\sum_{m=0}^{\infty} A_m |y_m| \leqslant B_1 \sum_{s=0}^{\infty} A_s \left| \frac{f_{s+p}}{\gamma_s} \right|, \tag{4}$$

где B_1 не зависит от $\{f_s\}$.

Для доказательства (достаточно буквально повторить доказательство леммы 2 из ⁽²⁾.

Лемма 3. Пусть положительные числа A_k удовлетворяют условиям:

1)
$$\sup_{m\geqslant 1} \frac{A_0^m t_{m,m}}{A_m} < \infty; \qquad 4) \quad \lim_{n\to\infty} \sqrt[n]{A_n} \geqslant D > 0;$$

2)
$$\overline{\lim}_{n\to\infty} \sqrt[n]{\frac{\delta_n}{A_n}} \leqslant \frac{1}{D}; \qquad 5) \quad \overline{\lim}_{m\to\infty} \sum_{s=0}^{m-1} \frac{\delta_{s+p,m} A_s}{|\gamma_s| A_m} = C < \infty.$$

3)
$$\sup_{m \ge 1} \frac{\delta_{r,m}}{A_m} = \alpha_r < \infty, \quad r = 0, 1, \ldots, p-1;$$

Пусть, далее, $K_A\left(D\right)$ — банахово пространство, состоящее из аналитических в круге $\mid x\mid < D$ функций $y\left(x\right) = \sum_{i=0}^{\infty} y_k \, x^k$ таких, что

$$\sum_{m=0}^{\infty} A_m |y_m| = ||y|| < \infty.$$

Тогда, какова бы ни была функция $y(x) \in K_A(D)$, ряд $Ly \equiv \sum_{k=0}^{\infty} P_k(x) \ D_1^k y(x)$ сходится регулярно внутри круга |x| < D. Кроме того, если $Ly = \sum_{k=0}^{\infty} l_k x^k$, то функция $L_1 y = \sum_{m=0}^{\infty} \frac{l_{m+p}}{\gamma_m} x^m$ принадлежит $K_A(D)$ и $||L_1 y|| \le \|S\| \|y\|_1$, где B не зависит от y.

Доказательство. Возьмем любое R < D и оценим сначала выражение

$$S_{R} = \sum_{r=0}^{p-1} R^{r} \sum_{l=0}^{r} \frac{A_{l} |y_{l}|}{A_{l}} \delta_{r, l} + \sum_{r=p}^{\infty} R^{r} \left\{ \frac{|y_{r-p}| A_{r-p} |\gamma_{r-p}|}{A_{r-p}} + \sum_{m=r-p+1}^{\infty} \frac{A_{m} |y_{m}|}{A_{m}} \delta_{r, m} \right\} = S_{1, R} + S_{2, R}.$$

Имеем

$$\begin{split} S_{1,R} &\leqslant \sum_{l=0}^{\infty} A_{l} |y_{l}| \cdot \frac{1}{A_{l}} \sum_{r=0}^{p-1} R^{r} \, \delta_{r,l} < (R^{p}+1) \sum_{r=0}^{p-1} \alpha_{r} \sum_{l=0}^{\infty} A_{l} |y_{l}| < \infty; \\ S_{2,R} &= R^{p} \sum_{r=p}^{\infty} |y_{r-p}| \, A_{r-p} \cdot \frac{|\gamma_{r-p}| \, R^{r-p}}{A_{r-p}} + \sum_{m=1}^{\infty} A_{m} |y_{m}| \cdot \sum_{r=p}^{m+p-1} \frac{\delta_{r,m} \, R^{r} \, A_{r-p} |\gamma_{r-p}|}{A_{m} \, A_{r-p} |\gamma_{r-p}|} \leqslant \\ &\leqslant R^{p} \sup_{r \geqslant p} \frac{\delta_{r-p} \, R^{r-p}}{A_{r-p}} \cdot \sum_{k=0}^{\infty} A_{k} |y_{k}| + R^{p} \sup_{k \geqslant 0} \frac{R^{k} \, \delta_{k}}{A_{k}} \cdot \\ &\cdot \sup_{m} \sum_{s=0}^{m-1} \frac{\delta_{s+p,m} \, A_{s}}{A_{m} |\gamma_{s}|} \cdot \sum_{s=0}^{\infty} A_{s} |y_{s}| < \infty. \end{split}$$

Нетрудно проверить, что при любом $R < \infty \sum_{k=0}^{\infty} \max_{\|x\| \le R} |P_k(x)| D_1^k y(x)| \le S_R$. Отсюда следует, что ряд $\sum_{k=0}^{\infty} P_k(x) D_1^k y(x)$ сходится равномерно внутри круга |x| < D, и его сумма Ly аналитична в этом круге.

Утверждения леммы относительно $L_1 y$ вытекают из оценок

$$\begin{split} \frac{A_{m} \mid I_{m+p} \mid}{\mid \gamma_{m} \mid} &\leq \frac{A_{m}}{\mid \gamma_{m} \mid} \sum_{=m}^{\infty} \mid y_{l} \mid \mid \gamma_{m+p, l} \mid; \qquad ||L_{1}y|| = \sum_{m=0}^{\infty} \frac{A_{m} \mid I_{m+p} \mid}{\mid \gamma_{m} \mid} \leq \\ &\leq \sum_{m=0}^{\infty} \frac{A_{m}}{\mid \gamma_{m} \mid} \sum_{l=m}^{\infty} \mid y_{l} \mid \mid \gamma_{m+p, l} \mid = \sum_{l=0}^{\infty} A_{l} \mid y_{l} \mid \cdot \frac{1}{A_{l}} \sum_{m=0}^{l} \frac{A_{m}}{\mid \gamma_{m} \mid} \mid \gamma_{m+p, l} \mid \leq \\ &\leq ||y| \mid \left[1 + \sup_{l \geq 1} \frac{1}{A_{l}} \sum_{m=0}^{l-1} \frac{A_{m} \delta_{m+p, l}}{\mid \gamma_{m} \mid} \right]; \qquad |I_{k}| \leq F_{k} \sum_{m=0}^{\infty} A_{m} \mid y_{m} \mid, \quad k = 0, 1, 2, \dots \end{split}$$

Введем подкласс K_A' (D) аналитических в круге |x| < D функций $y(x) = \sum_{k=0}^{\infty} y_k x^k$, у которых $\sum_{k=0}^{\infty} \frac{|y_{k+p}| A_k}{|\gamma_k|} < \infty$. Этот подкласс непуст и становится B — пространством, если принять

$$||y||_{K_A'} = \sum_{k=0}^{p-1} |y_k| + \sum_{k=0}^{\infty} \frac{|y_{k+p}| A_k}{|\gamma_k|}.$$

Лемма 3 утверждает, что если положительные числа A_k удовлетворяют условиям 1)-5), то оператор Ly является ограниченным оператором, действующим из $K_A(D)$ в $K_A'(D)$.

Следствие. Для разрешимости уравнения (1) в классе $K_A(D)$, порожденном последовательностью $\{A_k\}$, удовлетворяющей условиям 1)-5), необходимо, чтобы $f(x) \in K_A'(D)$.

Следующая теорема также указывает необходимые условия разрешимости, но уже иного характера.

Теорема 1. Предположим, что последовательность A_n удовлетворяет условиям 4) и (3) и что $f(x) \in K_A'(D)$.

Тогда, для того, чтобы уравнение (1) имело в круге |x| < D решение из класса $K_A(D)$, необходимо, чтобы выполнялись соотношения

$$f^{(s)}(0) = \lambda_s \left(f^{(p)}(0), \quad f^{(p+1)}(0), \quad \ldots \right), \qquad s = 0, 1, \ldots, p-1,$$
 (5)

 $\epsilon \partial e \lambda_s(x_1, x_2, \ldots) - u \exists s e c m + b e \phi y + \kappa u u.$

Доказательство. Если y(x) — решение в круге |x| < D уравнения (1), то его тейлоровские коэффициенты y_k удовлетворяют по лемме 1 системе 2. Но, числа y_k в силу леммы 2 однозначно определяются из системы (2'): $y_k = \varphi_k \Big(f^{(p)}(0), \ f^{(p+1)}(0), \ \ldots \Big)$. Подставив эти соотношения в первые p уравнений системы (2), придем к (5). Отметим, что функции φ_k и λ_x , как видно из процесса их построения линейны (аддитивны и однородны) относительно каждого своего аргумента.

Дадим теперь достаточные условня разрешимости уравнения (1) в классе $K_A\left(D\right)$.

Теорема 2. Предположим, что числа A_k удовлетворяют условиям (3) и 1)-4), $f(x) \in K'_A(D)$ и, кроме того, f(0), f'(0), ... $f^{(p-1)}(0)$ удовлетворяют p линейным связям (5).

Тогда уравнение (1) имеет решение y(x) из класса $K_A(D)$, которое удовлетворяет уравнению в этом круге. Решение единственно в классе $K_A(D)$.

Доказательство. По лемме 2 система (2') имеет единственное в S_A решение, которое удовлетворяет и полной системе (2) в силу соотношений (5). Функция $y(x) = \sum_{m=0}^{\infty} y_m x^m$ принадлежит $K_A(D)$ и поэтому аналитична в круге |x| < D. Кроме того, ряд $\sum_{k=0}^{\infty} P_k(x) \ D_1^k y(x)$ сходится регулярно внутри этого круга на основании леммы 3, которая здесь применима,

так как условие 5) следует из (3) и 1). Поэтому $Ly \equiv \sum_{k=0}^{\infty} P_k(x) \, D_1^k y(x) \equiv f(x)$ в круге |x| < D, потому что все тейлоровские коэффициенты функций Ly и f совпадают в силу системы (2).

Наконец, уравнение (1) имеет единственное решение в $K_A(D)$, так как тейлоровские коэффициенты любого такого решения образуют последовательность из S_A и удовлетворяют системе (2), а последняя имеет единственное решение в S_A .

Теорема 2 доказана. Отметим еще оценку нормы решения. Из неравенства (4) имеем $\|y\| \leqslant B_1 \|f_1\|$, где $f_1(x) = \sum_{s=0}^{\infty} \frac{f_{s+p}}{\gamma_s} x^s$. В то же время из леммы 3 следует, что $\|f_1\| \leqslant B \|y\|$, откуда

$$B_2 ||f_1|| \leq ||y|| \leq B_1 ||f_1||, \tag{6}$$

причем конечные положительные числа B_1 и B_2 не зависят от y и f.

числа c_n , определяющие данную обобщенную производную $D_1 y$, таковы, что $\lim_{n\to\infty} \sqrt[n]{|c_{n-1}|} \geqslant 1$ (в частности, для обычной производной $c_{n-1} = n$), то легко показать, что условие 4) следует из 2). Кроме того, для данного уравнения (1) всегда можно указать последовательность чисел A_k , удовлетворяющую условиям (3) и 1)—4); при этом число D можно выбрать как угодно большим, а также положить $D=+\infty$.

Условия 1)-4) не всегда являются независимыми. Например, если

Коротко остановимся на смысле условий 1)-4). Условие 4) необходимо и достаточно для того, чтобы каждая функция y(x) такая, что

 $\sum_{k=0}^\infty A_k |y_k| < \infty$. была аналитической в круге |x| < D. Чтобы охарактеризо-

вать смысл условий 1)-3), возьмем один частный, но довольно важный случай, когда $A_s^i=|a_s^k|=a_s^k$ и $\sigma_k=|c_k|$, то-есть когда мажорирующие числа A_s^k и σ_k выбраны наилучшим образом и коэффициенты многочленов $P_k(x)$ неотрицательны. В этом случае условие 1) равносильно естественному

требованию, чтобы ряд $\sum_{k=0}^{\infty} P_k\left(0\right) D_1^k y\left(x\right)\Big|_{x=0}$ сходился для любой функции $y\left(x\right)$ из $K_A\left(D\right)$.

Если еще дополнительно предположить, что числа c_k неотрицательны, то можно показать, что условие 2) необходимо для того, чтобы оператор Ly в левой части уравнения переводил любую функцию $y(x) \in K_A(D)$ в функцию, аналитическую в круге |x| < D. Наконец, условие 3) в этом же

случае необходимо для того, чтобы ряд $\sum_{k=0}^{\infty} P_k(x) \ D_1^k \ y \ (x)$ сходился для

всех у из K_A в некотором круге |x| < H, H = H(y) H > 0. Что же касается условия (3), то оно вызвано примененным методом доказательства.

Рассмотрим вопрос о приближенном решении уравнения (1), считая, что условия теоремы 2 выполнены.

Предположим сначала, что правая часть уравнения (1) имеет вид $\tilde{f}_{n+p}(x) = \sum_{s=0}^{p-1} f_s^n x^s + \sum_{s=p}^{n+p} f_s x^s$, где $f_s = f^{(s)}(0)$, $s=p,\ p+1,\ \dots$, а числа f_s^n будут определены ниже.

Решение будем искать в виде многочлена степени $n: y_n(x) = \sum_{k=1}^{n} y_k^n x^k$.

Из системы (2), учитывая, что $y_k^n = 0$ для k > n, получим, что искомые коэффициенты y_k^n удовлетворяют уравнениям

$$f_r^n = \sum_{l=0}^n y_l \gamma_{r,l}, \qquad r = 0, 1, \dots p-1;$$
 (7)

$$f_r = \sum_{l=r-p}^{n} y_l \gamma_{r,l}, \qquad r = p, \quad p+1, \dots p+n.$$
 (8)

Уравнения (8) образуют самостоятельную систему (n+1) уравнений с (n+1) неизвестными. Эта система имеет единственное решение, так как ее определитель отличен от нуля. Подставив решение системы (8) в первые p уравнений (7), определим произвольные до этого величины f_s^n , $0 \le s \le p-1$ так, чтобы выполнялись соотношения (7). Тогда функция $y_n(x) = \frac{n}{2}$

 $=\sum_{k=0}y_k^nx^k$ как многочлен входит в $K_{\mathcal{A}}\left(D
ight)$ и является решением уравнения $\sum_{k=0}^{\infty}P_k\left(x\right)D_1^ky\left(x\right)= ilde{f_{n+p}}\left(x\right),$

в котором $\tilde{f}_{n+p}(x) \in K_A'(D)$. Функция $Z_n(x) = y(x) - y_n(x)$ также принадлежит $K_A(D)$ и удовлетворяет уравнению

$$\sum_{k=0}^{8} P_k(x) D_1^k y(x) = f(x) - \tilde{f}_{n+p}(x) \equiv \sum_{s=0}^{\infty} f_{s,n} x^s = \sum_{s=0}^{p-1} (f_s - f_s^n) x^s + \sum_{s=p+n+1}^{\infty} f_s x^s.$$
 (9)

Правая часть $f(x) - \tilde{f}_{n+p}(x)$ входит в $K'_A(D)$ и удовлетворяет условиям (5), так как функция f удовлетворяет линейным связям (5) по предположению, а \tilde{f}_{n+p} —по самому способу её построения.

По теореме 2 для единственного в $K_A(D)$ решения $Z_n(x)$ уравнения (9) имеем оценку

$$\sum_{k=0}^{\infty} \frac{A_{k} |Z_{n}^{(k)}(0)|}{k!} = \sum_{k=0}^{n} A_{k} |y_{k} - y_{k}^{n}| + \sum_{k=n+1}^{\infty} A_{k} |y_{k}| \le$$

$$\leq B_{1} \sum_{k=0}^{\infty} \frac{A_{k} |f_{k+p,n}|}{|\gamma_{n}|} = B_{1} \sum_{k=n+1}^{\infty} \frac{A_{k} |f_{k+p}|}{|\gamma_{k}|}.$$
(10)

Из оценки (10) следует, что $y_n(x) \rightarrow y(x)$ равномерно внутри круга |x| < D, так как для любого R < D

$$\max_{|x| \le R} |y(x) - y_n(x)| \le \sum_{k=0}^n \frac{A_k R^k |y_k - y_k^n|}{A_k} + \sum_{k=n+1}^\infty \frac{|y_k| R^k A_k}{A_k} \le$$

$$\le C_1(R) \left(\sum_{k=0}^n A_k |y_k - y_k^n| + \sum_{k=n+1}^\infty A_k |y_k| \right) \le C_2(R) \sum_{k=n+1}^\infty \frac{A_k |f_{k+p}|}{|\gamma_k|} < \varepsilon$$
для $n > N(\varepsilon)$.

Мы получили следующий результат:

Теорема 3. Если выполнены условия теоремы 2, то для приближенного решения уровнения (1) можно воспользоваться следующим способом. Составим урезанное уравнение

$$\sum_{k=0}^{n} P_k(x) D_1^k y(x) = f_{n+p}(x) = \sum_{k=0}^{n+p} \frac{f^{(k)}(0)}{k!} x^k,$$
 (11)

где $y(x) = \sum_{k=0}^{n} y_k^n x^k -$ многочлен степени не выше n с неопределенными ко-

эффициентами. Приравнивая в обеих частях уравнения (11) коэффициенты при одинаковых степенях x, начиная с p-ой и до высшей -(n+p)-ой степени, определяем единственным образом коэффициенты y_n^n , y_1^n , ... y_n^n .

Тогда функция $y_n(x) = \sum_{k=0}^n y_n^k x^k$ может служить приближенным выражением для решения y(x) уравнения (1) из $K_A(D)$, причем $y_n(x) \to y(x)$ равномерно

внутри круга $|x| < D^*$.

Теоремами 1-2 можно пользоваться практически следующим образом. Подбираем положительные числа A_k так, чтобы выполнялись условия (3) и 1)-4). Предположим, что тейлоровские коэффициенты f(x) убывают

достаточно быстро — так, что $\sum_{k=0}^{\infty} \frac{-A_k \, |f_{k+p}|}{|\gamma_k|} < \infty$. Тогда для существова-

ния решения уравнения (1) в классе $K_A(D)$ необходимо и достаточно, чтобы числа $f^{(s)}(0)$, $0 \le s \le p-1$, удовлетворяли p условиям (5), то-есть, фактически первым p уравнениям системы (2), в которые подставлены значения y_j , найденные из остальных уравнений системы. Значит, прежде всего надо решить в S_A систему (2) и, подставив найденные значения y_m в первые p уравнений (2), проверить, удовлетворяют ли числа f_s , $s \le p-1$, соотношениям (5). Если эти соотношения выполняются, то уравнение (1) имеет единственное решение в $K_A(D)$ при данной правой части f(x).

Если же соотношения (5) не выполняются, то из них мы определим, как нужно изменить ("исправить") величины $f(0), f'(0), \ldots f^{(p-1)}(0)$, чтобы уравнение (1) было разрешимо.

Представляет интерес получить критерий разрешимости, эквивалентный условиям (5), но не требующий предварительного определения коэффициентов y_k . Этот критерий можно установить с помощью метода приближенного решения, описанного в теореме 3. Именно, можно доказать, что справедлив следующий результат.

Теорема 4. Пусть $\{A_k\}$ —произвольная последовательность положительных чисел, удовлетворяющая условиям (3) и 1 (-4), а $f(x) \in K'_A(D)$.

Указанным в предыдущей теореме способом составим последовательность многочленов $\{y_n(x)\}$. Тогда:

1) последовательность $\{y_n(x)\}$ сходится к некоторой аналитической в круге |x| < D функции Z(x) равномерно внутри круга |x| < D;

 $[\]bullet$) Стоит отметить, что функция $y_n(x)$, вообще говоря, не является решеняем уравнения (11).

- 2) существуют пределы величин $\left(Ly_n(x)\right)^{(r)}\Big|_{x=0}$, где $Ly=\sum_{k=0}^{\infty}P_k(x)\,D^ky(x)$, при неограниченном возрастании n и при любом фиксированном r=0, 1, . . . p-1;
- 3) для того, чтобы существовало решение из класса $K_A(D)$ уравнения (1) при заданной правой части f из $K_A(D)$, необходимо и достаточно выполнение следующих p условий

$$\lim_{n\to\infty} \left(L y_n(x) \right)^{(r)} \Big|_{x=0} = \frac{f^{(r)}(0)}{r!} , \qquad r=0, 1, \dots p-1;$$
 (12)

4) если условия (12) имеют место, то в классе $K_A(D)$ существует единственное решение y(x) уравнения (1), причем $y_n(x) \rightarrow y(x)$ равномерно внутри круга |x| < D. На доказательстве этой теоремы мы не будем здесь останавливаться.

В заключение остановимся на одном частном типе неособого квазирегулярного уравнения. Пусть $p=\sup_{k\geqslant 0}(n_k-k)=0$, то-есть, $n_k\leqslant k$ для всех $k\geqslant 0$. В этом случае линейные связи (5), которым должна удовлетворять правая часть f(x), отпадают; упрощаются и условия 1)-4), а именно, исчезает условие 3). Далее, как легко видеть, функция $y_n(x)$, получаемая указанным в теореме 3 процессом, будет обычным полиномиальным решением урезанного уравнения

$$\sum_{k=0}^{n} P_k(x) D_1^k y(x) = f_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k.$$

Таким образом, если для уравнения (1) p=0, $\gamma_n\neq 0$, n=0, 1, ..., а коэффициенты a_s^k , $0\leqslant s\leqslant k-1$, k=1, 2, ..., произвольны, то для такого уравнения можно построить классы $K_A(D)$ и $K_A'(D)$ так, что если $f(x)\in K_A'(D)$, то уравнение (1) имеет единственное решение в $K_A(D)$. Частным случаем рассматриваемого типа неособого квазирегулярного уравнения является так называемое регулярное уравнение

$$y(x) + \sum_{k=1}^{\infty} P_k(x) D_1^k y(x) = f(x),$$

в котором $P_k(x)$ — многочлен степени не выше k-1, k=1, 2, ... Для этого уравнения $\gamma_n\equiv 1$, n=0, 1, 2, ... и $K_A(D)=K_A(D)$. Мы получаем, что для любого регулярного уравнения можно указать свой класс M единственности и разрешимости такой, что для любой правой части f из M уравнение имеет единственное решение в M; при этом класс M содержит совокупность всех многочленов, но не сводится только к ней.

§ 2. Особое квазирегулярное уравнение

Если в квазирегулярном уравнении (1) не все коэффициенты γ_n отличны от нуля, то такое уравнение будем называть особым.

Вначале мы рассмотрим случай, когда в нуль обращается конечное число чисел γ_n , а именно k_0 коэффициентов γ_{m_1} , γ_{m_2} , ... $\gamma_{m_{k_1}}$ (индексы m_s расположены в порядке возрастания).

Возьмем какую-нибудь последовательность положительных чисел A_m , удовлетворяющих условиям 1)-4), и, кроме того, таким условиям

6)
$$\lim_{m\to\infty} \frac{1}{A_m} \sum_{\substack{n=1\\n\neq m,\\n\neq m}}^{m-1} \frac{\delta_{n+p,m} A_n}{|\gamma_n|} < 1, \qquad 7) \quad \sup_{1\leq i\leq k_0} \sup_{m} \frac{\delta_{m_i+p,m}}{A_m} = T < \infty.$$

Легко убедиться, что такую последовательность всегда можно построить. Тогда для $m\geqslant N_1>p+m_k$

$$\frac{1}{A_m}\sum_{\substack{n=1\\n\neq m}}^{m-1}\frac{\delta_{n+p,\,m}A_n}{|\gamma_n|}\leqslant q<1,$$

и система

$$y_n = \frac{f_{n+p}}{Y_n} - \sum_{m=n+1}^{\infty} \frac{Y_{n+p, m} y_m}{Y_n}, \quad n = N_1, N_1 + 1, \dots,$$

которая получается выбрасыванием из системы (2') первых N_1 , уравнений, имеет единственное решение в S_A , если $\left\{\frac{f_{n+p}}{\gamma_n}\right\} \in S_A$; при этом

$$\sum_{m=N_1}^{\infty} A_m | y_m | \leq B_1 \sum_{n=N_1}^{\infty} \frac{|f_{n+p}| A_n}{|\gamma_n|}.$$

В системе (2) остается N_1+p первых уравнений с N_1 неизвестными $(y_0,\ y_1,\ \dots\ y_{N_1-1})$ такого вида

$$\begin{cases}
\sum_{m=0}^{N_1-1} c_{m,s} y_m = f_s - \sum_{m=N_1}^{\infty} c_{m,s} y_m, & s = 0, 1, \dots, p-1, \\
\sum_{m=s-p}^{N_1-1} c_{m,s} y_m = f_s - \sum_{m=N_1}^{\infty} c_{m,s} y_m, & s = p, p+1, \dots, p+N_1-1.
\end{cases}$$
(13)

Нетрудно проверить, что все ряды в правых частях (13) сходятся в силу условий 1)-4) и 6)-7), если $\{y_m\}\in S_A$.

Из уравнений системы (13), начиная с (N_1-1+p) -го и кончая $(m_{k_0}+p+1)$ -ым, определяем последовательно и однозначно коэффициенты y_{N_1-1} , y_{N_1-2} , ... $y_{m_{k_0}+1}$ (через величины f_s и y_k , $k\geqslant N_1$). Оставшиеся числа y_s , $0\leqslant s\leqslant m_{k_0}$, удовлетворяют системе

$$\sum_{m=0}^{m_{k_0}} c_{m,s} y_m = f_s - \sum_{m=m_{k_0}+1}^{\infty} c_{m,s} y_m \equiv d_s, \qquad s = 0, 1, \dots p-1,$$

$${}^{m_{k_0}} \qquad \qquad (14)$$

$$\gamma_{s-p} y_{s-p} + \sum_{m=s+1-p}^{m_{k_0}} c_{m,s} y_m = f_s - \sum_{m=m_{k_0}+1}^{\infty} c_{m,s} y_m \equiv d_s, \quad s=p, p+1, \ldots p+m_{k_0}.$$

Мы получили систему $m_{k_0}+p+1$ уравнений с m_0+1 неизвестными. Пусть r-ранг матрицы F этой системы. Легко заметить, что $m_{k_0}+1-k_0\leqslant r\leqslant \leqslant m_{k_0}+1$. Для существования решения системы (14) необходимо, чтобы функция f(x) удовлетворяла $m_{k_0}+1+p-r$ линейным связям (на коэффициенты $f^{(k)}(0)$, $k\leqslant m_{k_0}+p$); в случае выполнения этих условий решение системы (14) существует и зависит от $m_{k_0}+1-r$ произвольных постоянных.

Каждому решению $(y_0, y_1, \ldots, y_{m_{k_0}})$ системы (14) соответствует однозначно последовательность $(y_0, y_1, \ldots, y_{m_{k_0}}, y_{m_{k_0}+1}, y_{m_{k_0}+2}, \ldots, y_{N_1-1}, y_{N_1}, y_{N_1+1}, \ldots)$, удовлетворяющая полной системе (2); при этом числа y_k , $k \geqslant m_{k_0}+1$ однозначно определены через y_s , $s \leqslant m_{k_0}$. Если составить функ-

цию $y(x) = \sum_{m=0}^{\infty} y_m x^m$, то, как нетрудно проверить, y(x) будет решением в круге |x| < D уравнения (1) из класса $K_A(D)$. Действительно,

$$\sum_{m=N_{1}}^{\infty}A_{m}\mid y_{m}\mid\leqslant B_{1}\sum_{n=N_{1}}^{\infty}\frac{-\left|f_{n+p}\mid A_{n}\right|}{\left|\gamma_{n}\right|}<\infty,\quad \text{if}\quad y\left(x\right)\in K_{A}\left(D\right).$$

Остается только установить, что выражение

$$S(R) = \sum_{r=0}^{p} R^{r} \sum_{m=r+1}^{\infty} |y_{m}| \delta_{r, m} + \sum_{r=p+1}^{\infty} R^{r} \sum_{m=r-p}^{\infty} |y_{m}| \delta_{r, m} = S_{1, R} + S_{2, R}$$

остается конечным при любом R < D. Оценка для $S_{1,R}$ получается без всяких изменений точно так же, как в лемме 3, а величина $S_{2,R}$ оценивается по тому же плану, что и в этой лемме, только используются условия 1)-4) и 6)-7). В итоге мы получили такой результат.

Теорема 5. Пусть числа γ_n обращаются в нуль конечное число раз $(\gamma_{m_1} = \gamma_{m_s} = \ldots = \gamma_{m_{k_s}} = 0)$, последовательность положительных чисел A_m удов-

летворяет условия 1)-4) u 6)-7), а правая часть $f(x)=\sum_{n=0}^{\infty}f_nx^n$ такова, что

 $\sum_{\substack{n=m_{k_0}+1\\ 8\ K_A,\ \text{необходимо}\ u}}\frac{A_n\,|f_{n+p}\,|}{|\gamma_n|}<\infty.\ \text{Тогда для того, чтобы уравнение}\ (1)\ \text{имело решение}$ ${}^{n=0}_{k_0}+1$ ${}^{n}_{k_0}+1+p-r$ линейным условиям, где $r,\ m_{k_0}+1-k_0\leqslant r\leqslant m_{k_0}+1,\ -$ некоторое число, определяемое коэффициентами многочленов $P_k(x)$ u не зависящее om f(x).

Если эти условия выполняются, то уравнение (1) разрешимо в классе K_A , причем решение зависит от $m_{k_0}+1-r$ произвольных постоянных.

Можно, как и в предыдущем параграфе, дать оценку нормы решения и указать видоизмененный способ редукции для приближенного решения, но мы уже не будем на этом останавливаться.

Следствие. Пусть квазирегулярное уравнение (1) таково, что разве лишь конечное число $(k_0\geqslant 0)$ коэффициентов γ_n обращается в нуль. Пусть, далее, $K_A(D)$ – класс функций, определенный последовательностью A_m , для которой выполняются условия 1)-4) и 6)-7) (если $k_0=0$, то условия 6)-7) заменяются условием (3)). Тогда разность между числом условий на правую часть $f(x)\in K_A'(D)$, необходимых и достаточных для разрешимости уравнения в классе $K_A(D)$, и между числом произвольных постоянных в решении из K_A , равна $p=\sup_{k\geqslant 0} \{n_k-k\}$. Этот факт найдет естественное объяснение несколько ниже, когда будет показано, что оператор L_Y является нормально-разрешимым оператором.

Для практического применения теоремы 4 важно иметь достаточно простые условия, при выполнении которых может обращаться в нуль

только конечное число чисел γ_n . Одним из таких признаков является, как легко показать, например, следующий: $\sup_{k>0} \{n_n-k\} = p$ достигается конечное число раз, а коэффициенты c_l оператора обобщенной производной $D_1 y$ таковы, что $|c_l| \to \infty$ при $l \to \infty$.

Этот признак выполняется, например, для уравнения

$$\sum_{k=0}^{\infty} \left(\sum_{s=0}^{q} a_s^k x^s \right) y^{(k)}(x) = f(x)$$

к которому применима, таким образом, теорема 5.

Квазирегулярное уравнение (1), у которого бесчисленное число коэффициентов обращается в нуль, назовем существенно особым. Исследование такого уравнения в классах типа $K_A(D)$ не позволяет получить таких простых закономерностей, вроде теорем 1, 2, 5. Более того, на примерах можно показать, что в случае существенно особого уравнения возможно любое число условий на правую часть, необходимых для разрешимости, и любое число произвольных постоянных в решении. Положим, например, $D_1 y = \frac{y(x) - y(0)}{x}$. Тогда

$$D_{1}^{k} y(x) = x^{-k} \left[y(x) - \sum_{n=0}^{k-1} \frac{y^{(n)}(0)}{n!} x^{n} \right].$$

Рассмотрим уравнение $a_0 y - x a_0 D_1 y = g(x)$, эквивалентное соотношению $a_0 y(0) = g(x)$. Очевидно, что в данном случае решение существует, если g(x) удовлетворяет счетному числу условий $\left(0 = g'(0) = g''(0) = \dots\right)$ и зависит от счетного же числа произвольных постоянных y'(0), y''(0), ...

Если же рассмотреть уравнение $a_0 y - x a_0 D_1 y + a_2 D_1^2 y = g(x)$, то оно будет эквивалентно соотношению

$$y(x) = [g(x) - a_0 y(0)] x^2 (a_2)^{-1} + y(0) + xy'(0).$$

Решение существует (при $a_2 \neq 0$) для любой аналитической в начале координат функции g(x), аналитично в том же круге, что и g(x), и зависит от двух произвольных постоянных y(0) и y'(0).

§ 3. Некоторые классы квазирегулярных уравнений

Прежде чем рассмотреть некоторые конкретные классы квазирегулярных уравнений, запишем, какой вид принимают условия 1)-4) и (3) в случае, когда

$$Dy \equiv y', \quad p = 0, \quad \sigma_k = |c_k| = k+1, \quad A_m^k = |a_m^k|.$$

Тогда $t_{m,k} = \frac{m!}{(m-k)!}$, условие 3) отпадает, а остальные запишутся так:

$$\sup_{m} \frac{|a_0^m| \, m!}{A_m} < \infty;$$

2)
$$\overline{\lim}_{n\to\infty} \sqrt[n]{\frac{\delta_n}{A_n}} \leqslant \frac{1}{D}; \qquad \delta_n = \sum_{k=0}^n \frac{n!}{(n-k)!} |a_k^k|;$$

3)
$$\overline{\lim}_{m\to\infty}\sum_{s=1}^{m-1}\frac{\delta_{s,m}A_s}{|\gamma_s|A_m}<1; \qquad \delta_{s,m}=\sum_{k=m-s}^{m}\frac{m!}{(m-k)!}|\alpha_{s+k-m}^k|.$$

4)
$$\lim_{n\to\infty} \sqrt[n]{A_n} \ge D > 0.$$

Теорема 6. Предположим, что для уравнения

$$y(x) + \sum_{k=1}^{\infty} a_k^k x^k y^{(k)}(x) + \sum_{k=1}^{\infty} P_k(x) y^{(k)}(x) = f(x), \qquad P_k(x) = \sum_{s=0}^{k-1} a_s^k x^s, \quad (15)$$

выполняются следующие условия

A)
$$\gamma_n = \sum_{k=0}^n \frac{n! \ a_k^k}{(n_k - k)!} \neq 0, \ n = 0, 1, \dots;$$
 B) функция $F(x, t) = \sum_{n=1}^\infty \frac{n! \ P_n(x)}{t^n}$

аналитична в замкнутом бицилиндре $T_{R_0}\colon |x|\leqslant R_0$, $|t|\geqslant R_1=\delta R_0$;

B)
$$\lim_{n\to\infty} \sqrt[n]{|\gamma_n|} = \alpha > 1 + \delta;$$
 Γ) $\lim_{n\to\infty} \sqrt[n]{n! |a_n^n|} = D_1 < \infty.$

Тогда, если функция f(x) аналитична в круге $|x|\leqslant R\left(\operatorname{где}R>\frac{R_0(1+\delta)}{\alpha}\right)$, то уравнение (15) имеет решение, аналитическое в круге $|x|< R\alpha$ и удовлетворяющее уравнению в круге $|x|<\frac{R\alpha}{D_1+1}$. Решение единственно в классе функций, аналитических в замкнутом круге $|x|\leqslant R_0\left(1+\delta\right)$. Последовательность решений $y_n(x)$ урезанных уравнений сходится к y(x) равномерно внутри круга $|x|<\frac{R\alpha}{D_1+1}$.

Доказательство. Положим $A_m=Q^m$, где $Q>R_0\,(1+\delta)=R_0+R_1$, и проверим выполнение условий 1), 2), 4) и (3). В силу Γ) и Γ

$$\begin{aligned} |a_k^m| &\leq B \frac{(R_1)^m}{m! (R_0)^k}; \qquad |a_k^k| \leq A \left(\varepsilon\right) \frac{(D_1 + \varepsilon)^k}{k!}, \qquad k = 0, 1, \dots; \\ 1) \qquad \qquad \sup \frac{A_0^m m!}{A_-} &\leq \sup B \left(\frac{R_1}{O}\right)^m < \infty; \end{aligned}$$

2)
$$\delta_n = \sum_{k=0}^n \frac{n!}{(n-k)!} |a_k^k| \leqslant A_*(\varepsilon) (1+D_1+\varepsilon)^n$$
, $\overline{\lim}_{n\to\infty} \sqrt[n]{\delta_n} \leqslant 1+D_1$, и $\overline{\lim}_{n\to\infty} \sqrt[n]{\frac{\delta_n}{A_n}} \leqslant \frac{1+D_1}{Q} \leqslant \frac{1}{D}$, если $D \leqslant \frac{Q}{1+D_1}$.

Выполнение условия 4) очевидно (если $D \leq Q$), и осталось проверить условие (3):

$$\begin{split} \delta_{n,m} & \leq m! \sum_{k=0}^{m} \frac{\mid a_{n+k-m}^{k} \mid}{(m-k)!} \leq m! \, B \sum_{k=0}^{m} \frac{R_{0}^{k} \, R_{0}^{m-k-n}}{(m-k)! \, k!} = B R_{0}^{-n} \, (R_{1} + R_{0})^{m} = \\ & = B \, (1 + \delta)^{m} \, R_{0}^{m-n} \, ; \\ & \frac{1}{A_{m}} \sum_{n=1}^{m-1} \frac{\delta_{n,m} \, A_{n}}{\mid \gamma_{n} \mid} \leq E \, (\varepsilon) \sum_{n=1}^{m-1} \frac{(1 + \delta)^{m} \, Q^{n-m} \, R_{0}^{m-n}}{(\alpha - \varepsilon)^{n}} \leq \\ & \leq H \, (\varepsilon) \cdot m \Big[\Big(\frac{(1 + \delta) \, R_{0}}{Q} \Big)^{m} + \Big(\frac{1 + \delta}{\alpha - \varepsilon} \Big)^{m} \Big] < \eta < 1 \end{split}$$

для $m > m_0(\eta)$. Таким образом условия (3) и 1) — 4) выполнены, если положить $D = \inf \left\{ Q, \frac{Q}{1+D_1} \right\} = \frac{Q}{1+D_1}$. По теореме 2 находим, что если $f(x) \in K_A'(D)$, то-есть, если $\tilde{f}(x) = \sum_{k=0}^{\infty} \frac{f_k}{\gamma_k} x^k \in K_A(D)$, то уравнение (15) имеет единственное в K_A решение, удовлетворяющее ему в круге |x| < D. Если через A_R обозначить пространство функций, аналитических в круге |x| < R, а через \overline{A}_R — в замкнутом круге $|x| \leqslant R$, то, очевидно, $A_Q \supset K_A(D) \supset A_Q$. Кроме того, если $\varlimsup_{k\to\infty} \sqrt[K]{|f_k|} < \frac{\alpha}{Q}$, то $\tilde{f}\in \overline{A_Q} \subset K_A$. Если решение единственно в K_A , то оно подавно единственно в $\overline{A_Q}$. Итак, если f(x) аналитична в круге $|x| \le \frac{Q}{\alpha}$, где $Q > R_0 + R_1$, то уравнение (1) имеет решение, аналитическое в круге |x| < Q и удовлетворяющее ему в круге $|x| < \frac{Q}{1+D}$. При этом однородное уравнение имеет только нулевое решение в классе функций, аналитических в круге $|x| \le Q$. Так как для однородного уравнения Q можно взять как угодно близким к $(1+\delta)$ R_0 , то единственность имеет место в классе функций, аналитических в круге $|x| \le (1+\delta) R_0$. Для завершения доказательства остается только заменить Q на $R\alpha$. Можно также показать, что если R_1 и R_2 – точные радиусы аналитичности функций y(x) и f(x), то $R_2 \alpha \leq R_1 \leq R_2 (1 + D_1)$.

Теорема 6 была доказана ранее иным методом (сведением к интегральному уравнению) в работе $^{(3)}$ (см. теорему 7 этой статьи; следует только иметь в виду, что в формулировке теоремы 7 условие 2) на стр. 117 лишнее, так как оно вытекает из условия 4), ибо, как легко показать (в обозначениях (3), $\beta \leqslant 1+D$). Кроме того, в теореме 7 получен более узкий класс единственности, чем в теореме 6 настоящей работы, а именно, класс функций, аналитических в круге $|x| \leqslant (1+D_1)R$ (имеем $1+D_1 \geqslant \alpha > 1+\delta$).

Следует отметить, что методом данной работы может быть получена и теорема 6 из ⁽³⁾, и таким образом, все результаты статьи ⁽³⁾, относящиеся к конкретным классам квазирегулярных уравнений, укладываются в схему развитой здесь общей теории.

В то же время изложенный здесь метод позволяет найти и новые результаты, которые не удалось получить методом работы ⁽³⁾. Приведем без доказательства некоторые из этих результатов.

Теорема 7. Пусть для уравнения (15) выполняются условия A (-B) и, кроме того, $\lim_{k\to\infty} \sqrt{|a_k^k|} = H < \infty$. Тогда, если f(x) – экспоненциальная функция степени $I < \frac{\alpha}{R_0 + R_1}$, то уравнение (15) имеет решение y(x) – экспоненциальную функцию типа не выше $\frac{I}{\alpha}$, удовлетворяющую ему в круге $|x| < \frac{\alpha}{HI}$. Решение единственно в классе экспоненциальных функций типа $< \frac{1}{R_0 + R_1}$. Если $y_n(x)$ – приближенное решение (полиномиальное решение урезанного уравнения) то $y_n(x) \rightarrow y(x)$ равномерно внутри круга $|x| < \frac{\alpha}{HI}$.

Теорема 8. Пусть для уравнения (15) выполняются условия A)-B) и $\overline{\lim_{n\to\infty}} \frac{\delta_n}{|\gamma_n|} < \infty$. Пусть, далее, $R_2 = \max\left\{R_1, \frac{R_0 + R_1}{\alpha}\right\}$. Тогда для любой функции f(x), аналитической в круге |x| < R, $R > R_2$, уравнение (15) имеет решение y(x), аналитическое в круге $|x| < R\alpha$ и удовлетворяющее ему в круге |x| < R. Единственность имеет место в классе функций $y(x) = \sum_{k=0}^{\infty} y_k x^k$, аналитических в круге $|x| < R\alpha$ и таких, что $\overline{\lim_{n\to\infty}} \sqrt[n]{\delta_n |y_n|} < \frac{1}{R_2}$. Если же

аналитических в круге $|x| < \kappa \alpha$ и таких, что $\lim_{n \to \infty} \gamma |\sigma_n| |\gamma_n| < \frac{1}{R_2}$. Если же f(x) — экспоненциальная- функция степени σ , то решение также является экспоненциальной функцией степени $\leq \frac{\sigma}{\alpha}$ и удовлетворяет уравнению при всех конечных x.

Можно также рассмотреть уравнение Эйлера бесконечного порядка

$$y(x) + \sum_{n=1}^{\infty} \alpha_n x^n y^{(n)}(x) = f(x)$$

и получить для него теорему 3 из ⁽⁴⁾, доказанную там несколько иным методом.

Приведем в заключение один результат для дифференциального уравнения бесконечного порядка с быстро растущими многочленными коэффициентами фиксированной степени:

 $\sum_{k=0}^{\infty} y^{(k)}(x) \sum_{s=0}^{n_k} a_s^k x^s = f(x), \tag{16}$

где

$$\infty > p' = \sup_{k \ge 0} \{ n_k \} > 0; \qquad p = \sup_{k \ge 0} \{ n_k - k \} < \infty$$
 (17)

$$\sup_{0 \le s \le p} \overline{\lim_{k \to \infty}} \sqrt[k]{\frac{|a_s^k|}{(k!)^{\mu}}} = d < \infty, \qquad \mu > 0.$$
 (18)

Обозначим через B_0 класс $\left[\frac{1}{1+\mu}, (1+\mu)\alpha^{-\frac{1}{1+\mu}}\right)$, то-есть, совокупность целых функций, у которых порядок $<\frac{1}{1+\mu}$, или порядок $=\frac{1}{1+\mu}$, но тип $<(1+\mu)\alpha^{-\frac{1}{1+\mu}}$. Из общей теории, изложенной в § 2, можно вывести следующий результат:

Теорема 9. Пусть для уравнения (16) имеют место условия (17)—(18), и $f(x) \in B_0$. Тогда для того, чтобы уравнение (16) имело решение в классе B_0 , необходимо и достаточно, чтобы правая часть f(x) удовлетворяла q+p линейным условиям; в случае, если эти условия выполняются, решение зависит от q произвольных постоянных. Число q определяется коэффициентами a_s^k (точнее, несколькими первыми из них, для $k \leqslant k_1$) и не зависит от f(x), y(x) и μ .

§ 4. Применение теории нормально-разрешимых операторов

Результаты настоящей работы становятся более прозрачными, если к исследованию квазирегулярного уравнения (1) привлечь теорию нормально-разрешимых операторов $^{(6)-(7)}$. (Мы предполагаем, что читатель знаком с этой теорией хотя бы в объёме § 11 работы $^{(7)}$ или § 2 работы $^{(6)}$.)

Начнем с неособого квазирегулярного уравнения. Вопрос о разрешимости уравнения (1) в классе K_A при условии, что соответствующая последовательность A_k удовлетворяет условиям (3) и 1)—4), а правая часть принадлежит K_A' , эквивалентен в силу лемм 1—3 вопросу о разрешимости в S_A системы (2), в которой правая часть (f_0, f_1, f_2, \ldots) принадлежит пространству S_A' последовательностей (x_0, x_1, \ldots) таких, что $\sum_{k=0}^{\infty} \frac{A_k \mid x_{k+p} \mid}{\mid \gamma_k \mid} < \infty$. Множества S_A и S_A' будут банаховыми пространствами,

если положить
$$\parallel X \parallel_{S_A} = \parallel X \parallel = \sum_{k=0}^{\infty} A_k \mid x_k \mid; \qquad \parallel X \parallel_{S_A'} = \parallel X \parallel' = \sum_{k=0}^{p-1} \mid x_k \mid + \sum_{k=p}^{\infty} \frac{\mid x_k \mid A_{k-p} \mid}{\mid \gamma_{k-p} \mid}.$$

Тогда систему (2) можно переписать коротко так

$$MY = F$$
, $Y(y_0, y_1, \ldots) \in S_A$, $F(f_0, f_1, \ldots) \in S'_A$.

где, на основании лемм 1-3, M-ограниченный оператор, действующий из S_A в S_A' , Запишем систему (2) теперь в таком виде:

$$(MY)_k \equiv \sum_{l=0}^{\infty} a_{k,l} y_l = f_k, \qquad k = 0, 1, \dots, p-1$$
 (19)

$$(MY)_k \equiv \sum_{l=k-p}^{\infty} a_{k,l} y_l = f_k, \qquad k = p, \quad p+1, \dots$$
 (20)

Представим оператор МУ в виде суммы двух операторов

$$MY = M_1 Y + M_2 Y;$$
 $M_1 Y = (0, 0, \dots 0, (MY)_p, (MY)_{p+1}, \dots);$
 $M_2 Y = ((MY)_1, (MY)_2, \dots (MY)_{p-1}, 0, 0, \dots).$

Очевидно; что $M_1 Y$ и $M_2 Y$ —ограниченные линейные операторы, действующие из S_A в S_A' .

Если числа A_k удовлетворяют условиям (3) и 1)—4), то система (20), как было показано (лемма 2), имеет единственное решение в S_A для любой последовательности $(f_p,\,f_{p+1},\,\ldots)$ такой, что $\sum_{s=0}^{\infty} \frac{A_s\,|f_{s+p}\,|}{|\gamma_s|} < \infty$. Ина-

че говоря, для разрешимости в пространстве S_A уравнения

$$M_1 Y = b$$
,

где $b \in S_A'$, необходимо и достаточно выполнение p условий

$$(b)_0 = (b)_1 = \ldots = (b)_{p-1} = 0.$$

Очевидно, что множество значений оператора M_1Y замкнуто в S_A' . Следовательно, оператор M_1Y будет ограниченным нормально-разрешимым оператором, действующим из S_A в S_A' , с конечной d—характеристикой (0, p).

Покажем, что весь оператор MY также будет нормально-разрешимым (н.-р.) оператором с той же d - характеристикой.

В силу известной теоремы Аткинсона — Крейна — Красносельского — Гохберга для оператора M_1 найдется такое число ρ , что всякий ограниченный линейный оператор R, действующий из S_A в S_A' и такой, что $\|R-M_1\|<\rho$, будет н.-р. оператором с конечной d-характеристикой (α , β), причем

 $p-\beta=0-\alpha\geqslant 0$. Но $\alpha\geqslant 0$, откуда $\alpha=0$ и $p-\beta=0$, $p=\beta$. Итак, любой ограниченный линейный оператор R такой, что $\|R-M_1\|<\rho$, имеет ту же d-характеристику $(0,\ p)$, что и M_1 .

Обозначим через QY оператор, определенный соотношениями

$$(QY)_k = \begin{cases} y_k \frac{\rho}{2 ||M_2||}, & 0 \leq k \leq p-1, \\ y_k, & k \geq p. \end{cases}$$

Очевидно, что QY преобразует взаимно-однозначно и непрерывно S_A в S_A и S_A' в S_A' . Рассмотрим уравнение

$$(QM) Y = F_1, F_1 \in S'_A.$$
 (21)

Так как $QM=QM_2+QM_1=QM_2+M_1=\frac{\rho}{2\mid\mid\mid M_2\mid\mid\mid}M_2+M_1$, то $\mid\mid\!QM-M_1\mid\mid\leqslant\frac{\rho}{2}$, и QM-н.-р. оператор с характеристикой $(0,\ p)$. Но любой элемент F_1 из S_A' можно представить единственным образом в виде $F_1=QF,\ F\in S_A'$; кроме того, если Y-любой элемент из S_A , то

$$(QM) Y = Q(MY), \qquad MY \in S'_A.$$

Поэтому уравнение (21) перепишется так

$$Q[MY-F]=0, MY-F\in S'_A$$

или, в силу того, что Q имеет обратный, MY-F=0. Итак, уравнение (21) эквивалентно уравнению MY=F, и оператор MY будет н.-р, оператором с характеристикой (0, p). Это означает, что уравнение (1) разрешимо в K_A тогда и только тогда, когда правая часть f(x) из K_A' удовлетворяет p линейным условиям; если эти условия выполнены, то решение в K_A единственно.

Выясним теперь смысл этих условий. Согласно общей теории \cdot н.-р. операторов, они имеют вид

$$\Psi_{j}(F) = 0, \quad j = 0, 1, \ldots p-1,$$

где Ψ_j – нетривиальные решения из $(S_A')^*$ "сопряженного" уравнения $M_{\tau}\Psi=0$,

в котором $M_{\tau}-$ "сопряженный" к M оператор, определяемый равенством $M_{\tau}\,\phi=\phi\,(MY), \quad \phi\in (S_A')^*, \quad M_{\tau}\,\phi\in (S_A)^*.$

Найдем матричное представление оператора $M_{\tau} \varphi$. Линейный функционал $\varphi = \varphi(X) \in (S_A')^*$ имеет вид ⁽⁶⁾

$$\varphi(X) = \sum_{k=0}^{\infty} \eta_k x_k,$$

где $X(x_k) \in S_A'$, а $\{ \eta_k \}$ — произвольная последовательность конечных чисел такая, что $\sup_{k \geqslant p} \frac{\|\eta_k\| \|\gamma_{k-p}\|}{A_{k-p}} < \infty$, то-есть последовательность из $(S_A')^0$ — пространства, взаимного с S_A' . Запишем систему (2) (то-есть, (19) и (20)) в таком виде

$$(MY)_k \equiv \sum_{l=0}^{\infty} b_{k,l} y_l = f_k, \qquad k = 0, 1, \dots$$

Тогда

$$\varphi(MY) = \sum_{k=0}^{\infty} \eta_k \sum_{l=0}^{\infty} b_{k,l} y_l = \sum_{l=0}^{\infty} y_l \sum_{k=0}^{\infty} b_{k,l} \eta_k.$$

Изменение порядка суммирования нетрудно обосновать, показав, что в силу условий $1)-5)\sum_{l=0}^{\infty}|y_l|\sum_{k=0}^{\infty}|b_{k,l}||\eta_k|<\infty$ для любых последовательностей $\{y_l\}\in S_A$ и $\{\eta_k\}$ из $(S_A')^0$ (пространства $(S_A')^*$ и $(S_A')^0$ изометричны). Отсюда

$$M_{\tau} \varphi (Y) = \sum_{l=0}^{\infty} y_{l} \sum_{k=0}^{\infty} b_{k,l} \eta_{k} = \sum_{l=0}^{\infty} t_{l} y_{l};$$

$$t_{l} = \sum_{k=0}^{\infty} b_{k,l} \eta_{k}, \qquad l = 0, 1, \ldots; \qquad \{ t_{l} \} \in (S_{A})^{0}.$$

Таким образом, сопряженный к MY оператор $M_{\tau}\psi$ порожден матрицей, транспортированной к матрице, порождающей оператор MY, то-есть, k матрице системы (2). Теперь можно сформулировать полученный результат.

Теорема 10. Предположим, что последовательность положительных чисел A_k удовлетворяет условиям (3) и 1 (-4). Тогда для того, чтобы уравнение (1) было разрешимо в классе $K_A(D)$, необходимо и достаточно выполнение следующих условий:

1)
$$f(x) = \sum_{m=0}^{\infty} f_m x^m \in K'_A(D), \quad mo\text{-ecmb} \quad \sum_{m=0}^{\infty} \frac{|f_{m+p}| A_m}{|\gamma_m|} < \infty;$$

2) имеют место р соотношений вида

$$\sum_{m=0}^{\infty} f_m \, \eta_m^{(k)} = 0, \qquad k = 0, 1, \dots p-1,$$

где $(\eta_0^{(k)},\ \eta_1^{(k)},\ \dots)$ — решение "транспортированной" κ (2) системы

$$(HZ)_l \equiv \sum_{m=0}^{\infty} b_{m,l} z_m = 0, \qquad l = 0, 1, 2, \dots$$
 (22)

из пространства последовательностей $\{z_m\}$ таких, что

$$\sup_{m\geq p}\left|\frac{z_m\gamma_{m-p}}{A_m}\right|<\infty.$$

Иначе говоря, последовательность (f_0, f_1, \ldots) тейлоровских коэффициентов правой части f(x) должна быть ортогональна к p решениям из пространства $(S_A')^0$ однородной транспонированной (относительно (2)) системы (22).

Заметим еще, что $b_{k,l} = 0$ для $k \geqslant p$ и l < k - p (см. систему (2)). Поэтому система (22) имеет вид

$$\sum_{k=0}^{l+p} b_{k,l} y_k = 0, \qquad l = 0, 1, \dots$$

откуда

Перейдем теперь к несущественно особому квазирегулярному уравнению (то-есть к особому уравнению, у которого обращается в нуль конечное число коэффициентов γ_{m_1} , γ_{m_2} , . . . γ_{m_k}).

Представим оператор MY, как и выше, в виде суммы двух операторов

 $M_2 Y = ((MY)_0, (MY)_1, \dots (MY)_{N-1}, 0, 0, \dots)$ $M_1 Y = (0, 0, \dots 0, (MY)_N, (MY)_{N+1}, \dots)$

причем $N=m_{k_1}+p+1$. Из результатов, изложенных в § 2 (стр. 53-54), следует, что оператор M_1 У является н.-р. оператором с характеристикой (N-p, N) (так как первые N координат оператора M_1 У равны нулю, то это дает N условий; в то же время, если записать выражения для координат оператора M_1 У, то заметим, что они не содержат первых N-p координат решения y_0 , y_1 , ... y_{N-p-1} , которые, таким образом, остаются произвольными).

Как и выше, в случае неособого квазирегулярного уравнения, находим, что $MY = M_1Y + M_2Y$ будет н.-р, оператором с конечной d-характеристикой (α , β), причем

 $\beta - \alpha = p; \quad N - p - \alpha = N - \beta \geqslant 0, \quad N = m_{k_0} + p + 1,$ $0 \leqslant \alpha \leqslant m_{k_0} + 1, \quad p \leqslant \beta \leqslant m_{k_0} + 1 + p.$

Мы получаем, что для того, чтобы уравнение (1) было разрешимо в K_A для данной правой части f из K_A' , необходимо и достаточно, чтобы последовательность (f_0, f_1, \ldots) была ортогональна ко всем β решениям из пространства $(S_A')^0$ однородной транспонированной системы

$$\sum_{k=0}^{l+p} b_{k,l} z_k = 0, \qquad l = 0, 1, 2, \dots$$

Ростовский государственный университет Поступило в редакцию 13,III.1964

ЛИТЕРАТУРА

- А. О. Гельфонд и А. Ф. Леонтьев. Об одном обобщении ряда Фурье, Матем. сборник, т. 29 (71): 3 (1951), 477-500.
- Ю. Ф. Коробейник. Об аналитических решениях уравнения бесконечного порядка с многочленными коэффициентами, Известия ВУЗ'ов, (1959), № 3 (10), 130-146.
- Ю. Ф. Коробейник. Ободном методе исследования дифференциального уравнения бесконечного порядка, Матем. сборник, 1962, т. 56 (98):1, 107-128.
- Ю. Ф. Коробейник. Об одном классе дифференциальных уравнений бесконечного порядка с переменными коэффициентами, Известия ВУЗ'ов, 1962, № 4 (29), 73-80.
- А. В. Аткинсон. Нормальная разрешимость линейных уравнений в нормированных пространствах, Матем. сборник, 1951, т. 28 (70): 1, 3-14.
- 6. И. Ц. Гохберг и М. Г. Крейн. Основные положения о дефектных числах, корневых числах и индексах линейных операторов, УМН, 1957, т. **XII**, в. 2 (74), 43-118.
- 7. М. Г. Крейн. Интегральные уравнения на полупрямой с ядром, зависящим от разности аргументов, УМН, 1958, т. **XIII**, в. 5 (83), 3-120.
- 9. Л. В. Канторович и И. П. Акилов, Функциональный анализ в нормированных пространствах, ГИФМЛ, 1959.

BEGALINĖS EILĖS DIFERENCIALINIŲ LYGČIŲ SU APIBENDRINTOMIS IŠVESTINĖMIS KLAUSIMU

J. F. KOROBEINIKAS

Sakysime, $\{c_k\}$ yra bet kaip fiksuota kompleksinių skaičių seka ir $y(z) = \sum_{k=0}^{n} y_k z^k -$ analizinė taške z=0 funkcija. Reiškinys

$$D_1 y = \sum_{k=1}^{\infty} c_{k-1} y_k z^{k-1}$$

yra vadinamas apibendrinta Gelfondo-Leontjevo prasme funkcijos y (z) išvestinė.

Darbe tiriami lygties

$$\sum_{k=0}^{\infty} P_k(x) D_i^k y(x) = f(x)^j$$

analiziniai sprendiniai. Leidžiame, kad

$$D_{i}^{0} y = y$$
, $D_{i}^{k} y = D_{1}(D_{i}^{k-1} y)$, $P_{k}(x) = \sum_{s=0}^{n_{k}} a_{s}^{k} x^{s}$,

 $k=0, 1, 2, \ldots \text{ ir } p=\sup_{k>0} \{n_k-k\}<+\infty.$

ONE CLASS OF THE EQATIONS OF INFINITE ORDER IN GENERALIZED DERIVATIVES

J. F. KOROBEINIK

(Summary)

Let $\{c_k\}$ be some arbitrary fixed succession of complex numbers. We shall name a generalized derivative in Gelfond-Leonteff's sence D_1y of any function y(z), analytic in the origin, the following expression:

$$D_1 y = \sum_{k=1}^{\infty} c_{k-1} y_k z^k.$$

In this article the author studies analytic solutions of the equation of infinite order in generalized derivatives:

$$\sum_{k=0}^{\infty} P_k(x) D_1^k y(x) = f(x)$$

where

$$D_1^0 y = y$$
, $D_1^k y \equiv D_1 (D_1^{k-1} y)$, $P_k (x) = \sum_{s=0}^{n_k} a_s^k x^s$, $k = 0, 1, 2, ...$

and

$$p = \sup_{k>0} \left\{ n_k - k \right\} < \infty.$$

