1965

О КЛАССЕ ПРЕДЕЛЬНЫХ РАСПРЕДЕЛЕНИЙ ДЛЯ РЕДЕЮЩИХ ПОТОКОВ ОДНОРОДНЫХ СОБЫТИЙ

и. н. коваленко

Пусть имеется поток однородных событий рекуррентного типа, т. е. интервалы между псследовательными событиями — независимые, одинаково распределенные случайные величины. Дспустим, что каждое событие потока, независимо от прочих, с вероятностью ε , $0 < \varepsilon < 1$, порождает событие вторичного потока. Затем осуществляется преобразование оси времени $t' = \delta t$. Спрашивается: каков класс предельных потоков, если исходить из фиксированного рекуррентного потока и допустить, что $\delta \to 0$ и $\varepsilon = \varepsilon(\delta) \to 0$?

В случае, если интервалы между событиями исходного потока обладают конечной средней длительностью, вопрос решается теоремой А. Реньи [1]: при нормировке $\varepsilon = c\delta$, где c — положительная константа, предельный поток будет простейшим. (Данная теорема позднее была обобщена Ю. К. Беляевым [2] на более общие потоки.) В настоящей заметке исследуется случай произвольной нормировки.

Обозначим через ϕ (s) пресбразование Лапласа—Стильтьеса распределения длительности интервала между событиями исходного потока. Тогда как легко видеть, вторичный поток будет рекуррентным, и соответствующее преобразование для него (с учетом изменения масштаба времени) будет иметь вид

$$\varphi_{\varepsilon}(s) = \frac{\varepsilon\varphi(\delta s)}{1 - (1 - \varepsilon)\varphi(\delta s)}.$$
 (1)

Обозначим

$$\varphi_{0}(s) = \lim_{\delta \to 0} \frac{\varepsilon(\delta) \varphi(\delta s)}{1 - [1 - \varepsilon(\delta)] \varphi(\delta s)}, \qquad (2)$$

если этот предел существует.

Теорема. Введенная функция может иметь только следующий вид:

$$\varphi_0(s) = \frac{1}{1 + cs^{\beta}}, \qquad \text{Re } s \geqslant 0, \quad c > 0,$$
(3)

где $0 < \beta \le 1$, либо

$$\varphi_0(s) \equiv 1. \tag{4}$$

Для тего, чтобы $\varphi_0(s)$ имела вид (3), необходимо и достаточно выполнение равенства

$$\varphi(s) = 1 - a(s) s^{\beta} + o(a(s) s^{\beta}) \qquad (s \to 0, s > 0),$$

где a(s) > 0 — медленно меняющаяся функция при $s \to 0$;

$$\lim_{\delta \to 0} \frac{\varepsilon(\delta z)}{\varepsilon(\delta)} = z^{\beta}.$$

Для того, чтобы $\varphi_0\left(s\right)$ имела вид (4), необходимо и достаточно равенство

$$1 - \varphi(\delta s) = o\left(\varepsilon(\delta)\right) \qquad (\delta \to 0).$$

Доказательство. Запишем (2) в следующем виде:

$$\varphi_0(s) = \lim_{\delta \to 0} \frac{1}{1 + \frac{1 - \varphi(\delta s)}{\varepsilon(\delta) \varphi(\delta s)}}.$$

При $\delta \to 0$ также $\varphi(\delta s) \to 1$ (если s фиксировано). Поэтому

$$\varphi_{\mathbf{0}}(s) = \frac{1}{1 + \alpha(s)} , \qquad (5)$$

где

$$\alpha(s) = \lim_{\delta \to 0} \frac{1 - \varphi(\delta s)}{\varepsilon(\delta)}.$$
 (6)

Пусть $\alpha(s) \neq 0$ при s > 0 (невырожденное распределение). Тогда

$$\alpha\left(s'\right) = \lim_{\delta \to 0} \frac{1 - \varphi\left(\delta s'\right)}{\varepsilon\left(\delta\right)} = \lim_{\delta \to 0} \frac{1 - \varphi\left(\delta \frac{s'}{s} \cdot s\right)}{\varepsilon\left(\delta \frac{s'}{s}\right)} \cdot \frac{\varepsilon\left(\delta \frac{s'}{s}\right)}{\varepsilon\left(\delta\right)} =$$

$$= \alpha (s) \cdot \lim_{\delta \to 0} \frac{\varepsilon \left(\delta \frac{s'}{s}\right)}{\varepsilon (\delta)} = \alpha (s) K\left(\frac{s'}{s}\right). \tag{7}$$

Поскольку α (s) при Re s > 0, очевидно, аналитическая функция, мы можем применить формулу Тейлора:

$$\alpha(s') = \alpha(s) + \alpha'(s)(s'-s) + o(s'-s).$$

Подставив это равенство в (7), получим:

$$\alpha'(s)(s'-s) = \alpha(s)\left[K\left(\frac{s'}{s}\right) - 1\right] + o(s'-s).$$

Разделив это равенство на $\alpha(s)(s'-s)$ и устремив s' к s, придем к уравнению

$$\frac{\alpha'(s)}{\alpha(s)} = \frac{\beta}{s} , \qquad (8)$$

где

$$\beta(s) = K'(1). \tag{9}$$

Решение уравнения (8) имеет вид

$$\alpha(s) = cs^{\beta}. \tag{10}$$

где с - произвольная постоянная.

Вспомним теперь, что $\varphi_0\left(s\right)=\frac{1}{1+\alpha\left(s\right)}$ — преобразование Лапласа— Стильтьеса неотрицательной невырожденной случайной величины. При s>0 $\varphi_0\left(s\right)$ должна быть убывающей функцией.

Подставим (10) в (5):

$$\varphi_0(s) = \frac{1}{1 + cs^{\beta}}. \tag{11}$$

Для этого необходимо, чтобы $c\beta>0$. Но при c<0, $\beta<0$ функция (11) будет иметь полюс в точке $s=\left(-\frac{1}{c}\right)^{\frac{1}{\beta}}>0$, что невозможно. Остается только случай c>0, $\beta>0$. Далее, поскольку при s>0 $\phi_{\mathbf{0}}(s)$ — выпуклая

функция, не может быть $\beta > 1$: иначе $\varphi_0'(0) = 0 \leqslant \varphi_0'(s) \leqslant 0$, а, следовательно, $\varphi_0(s) \equiv 1$. Таким образом, c > 0, $0 < \beta \leqslant 1$.

Если подставить (10) в (7), мы придем к формуле

$$s'^{\beta} = s^{\beta} K\left(\frac{s'}{s}\right),$$

откуда $K(z) = z^{\beta}$ или, что то же,

$$\lim_{\delta \to 0} \frac{\varepsilon(\delta z)}{\varepsilon(\delta)} = z^{\beta}.$$

Теперь очевидно выполнение условия сходимости, фигурирующего в теореме.

Проверим, теперь, достаточность данного условия.

Пусть

$$\varphi(s) = 1 - a(s) s^{\beta} + o[a(s) s^{\beta}],$$

где a(s) - медленно меняющаяся функция. Тогда

$$\varphi_{\varepsilon}(\delta s) \sim \frac{1}{1 + \frac{a(\delta s)\delta^{\beta}}{\varepsilon} s^{\beta}}.$$

Положим

$$\varepsilon = \frac{1}{c} a(\delta) \delta^{\beta}.$$

Так как a(s) — медленно меняющаяся функция при $s \to 0$, то $a(\delta s) \sim a(\delta)(\delta \to 0)$, и

$$\varphi_{a}\left(\delta s\right) \xrightarrow{\delta \to 0} \Rightarrow \varphi_{0}\left(s\right) = \frac{1}{1+cs^{\beta}}$$

что и требовалось.

Случай сходимости к вырожденному распределению (4) тривиален, и мы не будем на нем останавливаться.

Следствие. Предельное распределение для редеющего потока будет показательным (при соответствующей нормировке) тогда и только тогда, когда — $\varphi'(0) < \infty$, т. е. интервалы между восстановлениями исходного процесса имеют конечное математическое ожидание.

Возникает вопрос: существуют ли распределения неотрицательных случайных величин, для которых $1-\varphi(s)=s^{\beta}a(s)+o\left[s^{\beta}a(s)\right](s\to 0,\ s>0)$, где a(s) — медленно меняющаяся функция, а β принадлежит интервалу $(0,\ 1)$? Ответ получается положительный. Проще всего в этом убедиться, рассмотрев распределение с плотностью

$$p(x) = \begin{cases} 0, & \text{если } x < 1, \\ \frac{\beta}{x^{\beta+1}}, & \text{если } x > 1. \end{cases}$$

В этом случае

$$\varphi(s) = \beta \int_{-\infty}^{\infty} \frac{e^{-sx}}{x^{\beta+1}} dx.$$

Подставим в эту формулу s' вместо s и сделаем замену s'x = sy. Получим:

$$\varphi(s') = \left(\frac{s'}{s}\right)^{\beta} \left[\varphi(s) - \beta \int_{s}^{\frac{s'}{s}} \frac{e^{-sy}}{y^{\beta+1}} dy\right].$$

Произведя предельный переход при s' o s, придем к дифференциальному уравнению

 $\varphi'(s) = \frac{\beta}{s} \varphi(s) - \frac{\beta}{s} e^{-s}.$

Положим

$$\varphi(s) = 1 - s^{\beta} f(s).$$

Тогда легко получим

$$f'(s) = \frac{\beta}{s^{\beta+1}} \left(e^{-s} - 1 \right) = -\frac{\beta}{s^{\beta}} + o\left(\frac{1}{s^{\beta}}\right) \qquad (s \to 0),$$

откуда

$$f(s) = c + o\left(\frac{1}{s^{\beta - 1}}\right)$$

И

$$\varphi(s) = 1 - cs^{\beta} + o(s) \qquad (s \to 0).$$

 $c \neq 0$, поскольку в противном случае было бы $\varphi(s) = 1 + o(s)$, в противоречии с расходимостью интеграла $\int\limits_{-\infty}^{\infty} \frac{dx}{x^{\beta}}$ $(\beta \leqslant 1)$.

К этому же выводу можно было бы придти и на основании тауберовой теоремы.

В действительности сходимость к предельному процессу восстановления с функцией F(x), преобразование Π пласа—Стильтьеса которой имеет вид (3), имеет место в значительно более широком классе случаев, чем в предположении о том, что исходный процесс — процесс восстановления. Однако, мы не имеем возможности здесь на этом останавливаться.

Интересна также следующая постановка. Исследовать класс S распределений, получающихся в результате следующего предельного процесса:

$$\varphi_0(s) = \lim_{n \to \infty} \frac{\varepsilon_n \varphi_n(s)}{1 - (1 - \varepsilon_n) \varphi_n(s)}.$$
 (12)

Эта постановка аналогична задаче нахождения предельных распределений для последовательностей серий независимых бесконечно-малых случайных величин.

Класс предельных распределений в данной постановке значительно шире, чем в предыдущем случае. Мы ограничимся только тем, что приведем две интересные леммы.

Лемма 1. Если $n \ge 1$, $c_i > 0$, $0 < \beta_i \le 1$, $1 \le i \le n$, то

$$\varphi_0(s) = \frac{1}{1 + \sum_{i=1}^n c_i s^{\beta_i}} \in S.$$

Лемма 2. Если ϕ (*s*) — преобразование Лапласа—Стильтьеса неотрицательной случайной величины, то

$$\varphi_0\left(s\right)=\dfrac{1}{1+c\left[1-\varphi\left(s\right)
ight]}\in S$$
, где $c\geqslant 0$.

Лемма 1 вряд ли требует объяснения. Докажем лемму 2. Возьмем в качестве $\varphi_n(s)$ функцию

$$\varphi_n(s) = 1 - \gamma_n + \gamma_n \varphi(s), \tag{13}$$

где $0 < \gamma_n < 1$, $\phi(s)$ — преобразование Лапласа — Стильтьеса некоторой неотрицательной случайной величины. Формула (12) приводит к равенству

$$\varphi_0(s) = \lim_{n \to \infty} \frac{1}{1 + \frac{\gamma_n}{\epsilon_n} \cdot \frac{1 - \varphi(s)}{1 - \gamma_n [1 - \varphi(s)]}}.$$
 (14)

Положим теперь $\gamma_n = c \varepsilon_n$ и заставим ε_n стремиться к нулю при $n \to \infty$. В пределе получим $\varphi_0(s) = \{ 1 + c \ [1 - \varphi(s)] \}^{-1}$. Лемма доказана.

Небезинтересно отметить, что в случае последовательности серий для сходимости предельного процесса к потоку Пуассона существование математического ожидания интервала между восстановлениями исходного процесса не является необходимым. Более того, может существовать положительная вероятность того, что интервал между восстановлениями будет равен ∞ . Чтобы убедиться в этом, возьмем $\varphi_n(s)$ в виде

$$\varphi_n(s) = \frac{1 - \gamma_n}{1 + \varepsilon_n s} \qquad (0 < \gamma < 1) \tag{15}$$

(,,случайная величина" с вероятностью $1-\gamma_n$ равна показательно-распределенной случайной величине и с вероятностью γ_n равна бесконечности). Подстановка (15) в (12) дает равенство

$$\varphi_0(s) = \lim_{n \to \infty} \frac{1 + \varepsilon_n s}{1 + (1 + \varepsilon_n) s + \gamma_n/\varepsilon_n}.$$

Если $\varepsilon_n \to 0$ и $\gamma_n = 0$ (ε_n) ($n \to \infty$) (например, $\gamma_n = \varepsilon_n^2$), то $\varphi_0(s) = \frac{1}{1+s}$. При каждом фиксированном n процесс будет обрывающимся, но при неограниченном возрастании n момент обрыва с вероятностью 1 уходит в бесконечность.

Поступило в редакцию 26.X11.1964

ЛИТЕРАТУРА

- 1. A. Rényi. A. Poisson-folyamat egy jellemzése; Тр. Матем. ин-та, АН Венгрия, 1:4, 1956, 519-527.
- Ю. К. Беляев, Предельные теоремы для редеющих потоков, Теория вероятн. и ее прим., 8:2, 1963.

APIE HOMOGENINIŲ ĮVYKIŲ RETĖJANČIŲ SRAUTŲ RIBINIŲ PASISKIRSTYMU KLASE

I. N. KOVALENKO

(Reziumé)

Surasta retėjančių rekurentinio tipo homogeninių įvykių srautų galimų ribinių pasiskirstymų klasė. Formuluojamas ir bendresnis uždavinys.

ON THE CLASS OF LIMIT DISTRIBUTIONS FOR THINNING CURRENTS OF HOMOGENIOUS EVENTS

I. KOVALENKO

(Summary)

The class of possible limit distributions for thinning homogenious currents of recurrent type is found. A more general problem is formulated.