1966

ПОВЕДЕНИЕ ГОЛОМОРФНОЙ В КРУГЕ ФУНКЦИИ ПРИ БОЛЬШИХ ЗНАЧЕНИЯХ ЕЕ МОДУЛЯ

А. В. НАГЯЛЕ

Введение

С целью исследования свойств аналитических решений алгебраических дифференциальных уравнений, Виман положил начало общей теории поведения целых трансцендентных функций и их производных при больших значениях их модулей. Валирон изучал те же вопросы и для функций, голоморфных в конечном круге (см. [3]). Важнейшими понятиями в этой теории являются максимальный член $\mu(r, f)$ функции

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \tag{1}$$

и центральный индекс $\nu(r, f)$. Максимальным членом ряда (1) мы называем величину

$$\mu\left(r, f\right) = \max_{n \geq 0} |c_n| r^n.$$

Только конечное число членов (в случае целой функции) последовательности $\{|c_n|r^n\}$ могут принимать значение $\mu(r,f)$ при данном r. Максимальный индекс, среди этих $|c_m|r^m$, равных $\mu(r,f)$, мы определяем как центральный индекс $\nu(r,f)$ ряда (1), так что

$$|c_{v(r,f)}|r^{v(r,f)}=\mu(r,f).$$

Валирон проводил свои исследования, пользуясь стандартным рядом, с помощью которого он строил мажорантные ряды для сравнения с модулем данной функции (1).

Валирон доказал справедливость следующего утверждения: пусть f(z) — голоморфная функция положительного порядка в круге |z| < 1 (т. е. функция, максимум модуля которой M(r), удовлетворяет условию

$$\overline{\lim_{r \to 1}} \frac{\ln M(r)}{\ln \frac{1}{1 - r}} = \infty$$

и условию

$$\overline{\lim_{r\to 1}} \frac{\ln \ln M(r)}{\ln \frac{1}{1-r}} = \rho > 0$$

Тогда существует такая последовательность значений $\{r_j\}$; $r_j \uparrow 1$, что во всех точках окружности |z|=r, в которых одно из чисел

$$|f(z)|, \quad \left|\frac{z}{v}f'(z)\right|, \quad \ldots, \quad \left|\left(\frac{z}{v}\right)^q f^{(q)}(z)\right|; \quad [v=v(r, f)]$$

более чем $v^{-\gamma}M(r, f)$, при m = 1, 2, 3, ...q имеем:

$$f^{(m)}(z) = [1 + \varepsilon_m(z)] \left(\frac{v}{z}\right)^m f(z),$$

причем $\varepsilon_m(z)$ равномерно стремится к нулю, когда r стремится к своему пределу; и γ — положительное число, зависящее от q и ρ .

В настоящей работе рассматривается голоморфная в круге |z| < 1 функция f(z) в окрестностях точек, в которых значения модуля близки к M(r, f) на концентрических окружностях |z| = r:

$$|f(\zeta)| = \max_{|z|=|\zeta|=r} |f(z)| = M(r, f).$$

Полученные нами результаты в некоторых отношениях уточняют теорему Валирона. Так, например, при дополнительных предложениях относительно порядка функции в круге радиуса R, в формулах Вимана—Валирона (см. [3]) при переходе к пределу следует пропускать на отрезке [0, R] не более, чем последовательность интервалов E с

$$\int\limits_{E} \frac{dt}{R-t} < \infty.$$

В настоящей работе мы принимаем метод, предложенный III. Стрелицем, в котором важным инструментом является теорема Бореля—Неванлинна (см. [2]) о возрастающих функциях. Эта теорема нетрудно переносится на функции, определенные на конечном отрезке. Вместо центрального индекса $\mathbf{v}(r, f)$ вводим другую функцию, которая не связана непосредственно с центральным индексом тейлоровского разложения (1), а непосредственно связана с максимумом модуля изучаемой функции. Исследование при больших значениях модуля производится нами локально.

§ 1. Вспомогательные предложения

1. Приведем сначала известную теорему Р. Неванлинна (см. [2]), которая является обобщением леммы Э. Бореля (см. [1]).

Теорема А. Пусть h(x)>0 — неубывающая и непрерывная справа на полуоси x>0 функция, стремящаяся к бесконечности вместе с x. Пусть, далее, $\varphi(t)>0$ — убывающая и непрерывная функция на полуоси t>0. Тогда, если

$$\int_{t_0}^{\infty} \varphi(t) dt < \infty,$$

то, за исключением некоторого множества интервалов E на полуоси x>0 конечной меры, верно неравенство

$$h\left[x+\varphi\left(h\left(x\right)\right)\right]-h\left(x\right)<1. \tag{1.1}$$

Если интеграл $\int_{t_0}^{\infty} \varphi(t) dt$ расходится, то можно найти такую возрастающую и непрерывную функцию h(x), для которой в каждой точке полуоси x>0

$$h\left[x+\varphi\left(h\left(x\right)\right)\right]-h\left(x\right)\geqslant1.$$

На основании этой теоремы было доказано и следующее предложение (см., например, [4]):

Лемма А. Пусть h(x)>0 — неубывающая и непрерывная справа на полуоси x>0 функция и $\lim_{x\to\infty} h(x)=\infty$. Пусть, далее, $\varphi(t)>0$ — убывающая и непрерывная на полуоси t>0 функция, причем

$$\int_{t_0}^{\infty} \varphi(t) dt < \infty.$$

Тогда, вне множества интервалов E конечной логарифмической меры, верно неравенство

 $|h(ye^{\tau}) - h(y)| < c_0,$ (1.2)

еде $|\tau| \leq \varphi[h(x)]$, $c_0 = \text{const.}$ Логарифмическая мера множества Е меньше, чем

$$3\varphi[h(y_0)] + \frac{2}{c_0} \int_{h(y_0)}^{\infty} \varphi(t) dt.$$

Докажем предложение, аналогичное теореме Р. Неванлинна, на конечном полузамкнутом интервале полуоси $x \ge 0$, считая, без ограничения общности, что рассматриваемое множество точек есть полуоткрытый отрезок [0, 1).

Теорема Б. Пусть u(x) — неубывающая u непрерывная справа на полусегменте $0 \le x < 1$ функция $u \lim_{\substack{x \to 1 \ u \le x > 0}} u(x) = \infty$. Пусть, далее, $\varphi(t) > 0$ — убывающая u непрерывная на полуоси t > 0 функция, причем

$$\int_{-\infty}^{\infty} \varphi(t) dt < \infty.$$

Тогда, вне некоторого множества интервалов E полусегмента $0 \le x < 1$, справедливо неравенство

$$u(xe^{\tau}) - u(x) < 1,$$
 (1.3)

где $\tau \leq (1-x) \varphi[u(x)]$. Множество интервалов E (число интервалов на каждом отрезке $0 \leq x \leq x_0$ конечное) удовлетворяет условие:

$$\int_{E} \frac{dt}{1-x} < \infty \quad \text{при} \quad x > x_0 > 0.$$

Доказательство. Произведем в функции u (x) замену

$$t = \frac{x}{1-x}; \quad u(x) = u\left(\frac{t}{1+t}\right) = h(t). \tag{1.4}$$

Если $x \to 1$, то $t \to \infty$, а затем и $\lim_{t \to \infty} h(t) = \infty$. Легко видеть, что функция h(t) удовлетворяет всем условиям теоремы A и поэтому имеет место неравенство:

$$h\{t+\varphi[h(t)]\}-h(t)<1,$$
 (1.5)

верное вне некоторого множества интервалов E'':

$$\{(t'_j, t''_j)\}$$
 c $\sum_{i=1}^{\infty} (t''_j - t'_j) < \infty$.

Функция $g(\sigma) = h(e^{\sigma})$ также удовлетворяет всем условиям теоремы A и поэтому, вне некоторого множества интервалов $E^*(\sigma): \{(\sigma'_j, \sigma''_j)\}$ конечной меры на полуоси $\sigma > \sigma_0 > 0$, будет справедливо соотношение:

$$g\{\sigma+\varphi[g(\sigma)]\}-g(\sigma)<1,$$

т. е.

$$h\{e^{\sigma+\phi[h(e^{\sigma})]}\}-h(e^{\sigma})<1.$$
 (1.6)

Возвращаясь к переменному $t(t=e^{\sigma})$, найдем:

$$h\{te^{\varphi[h(t)]}\}-h(t)<1.$$
 (1.7)

(1.7) справедливо вне некоторого исключенного множества интервалов $E':\{(t'_j,\ t''_j)\}$, где $\ln t'_j=\sigma'_j$ и $\ln t''_j=\sigma'_j$, причем так как $\sum_{j=1}^\infty \left(\sigma''_j-\sigma'_j\right)<\infty$, то

 $\sum_{j=1}^{\infty} (\ln t_j'' - \ln t_j') < \infty$. Последнюю сумму можем написать и следующим образом:

$$\sum_{j=1}^{\infty} (\ln t_j'' - \ln t_j') = \sum_{j=1}^{\infty} \int_{t_j'}^{t'} \frac{dt}{t} = \int_{E'}^{\infty} \frac{dt}{t} < \infty.$$
 (1.8)

По определению:

$$h(t) = u(x) = u\left(\frac{t}{1+t}\right).$$

Сейчас неравенство (1.7) принимает следующий вид:

$$u\left\{\frac{e^{\varphi\left[u\left(\frac{t}{1+t}\right)\right]}}{\frac{1}{1+t}e^{\varphi\left[u\left(\frac{t}{1+t}\right)\right]}}\right\}-u\left(\frac{t}{1+t}\right)<1$$

или

$$u\left\{\frac{\frac{x}{1-x}e^{\varphi[u(x)]}}{1+\frac{x}{1-x}e^{\varphi[u(x)]}}\right\}-u(x)=u\left\{\frac{xe^{\varphi[u(x)]}}{1-x+xe^{\varphi[u(x)]}}\right\}-u(x)<1.$$
(1.9)

Допустим теперь, что

$$\frac{xe^{\varphi \left[u\left(x\right)\right]}}{1-x+xe^{\varphi\left[u\left(x\right)\right]}}=xe^{\tau},\quad \text{T. e.}\quad \frac{e^{\varphi\left[u\left(x\right)\right]}}{1-x+xe^{\varphi\left[u\left(x\right)\right]}}=e^{\tau}.$$

Отсюда

$$e^{\tau} - 1 = \frac{e^{\phi [u(x)] - 1 + x - xe^{\phi [u(x)]}}}{1 - x + xe^{\phi [u(x)]}} = \frac{(1 - x) (e^{\phi [u(x)] - 1})}{1 + x (e^{\phi [u(x)] - 1})}.$$

Так как

$$e^{\tau} - 1 = \tau + \frac{\tau^{a}}{2!} + \frac{\tau^{a}}{3!} + \dots = \tau \left(1 + \frac{\tau}{2!} + \frac{\tau^{a}}{3!} + \dots \right) = \left(1 + o(1) \right) \tau_{1}$$

где $o(1) \to 0$, при $\tau \to 0$ и $e^{\phi [u(x)]} - 1 = \phi [u(x)] (1 + o(1))$, при $x \to 1$ ($\phi(u) - y$ бывающая функция), то в силу положительности функции $x \phi [u(x)]$

$$\left(1+o(1)\right)\tau = \frac{(1-x)\,\varphi\,[u\,(x)]\,\Big(1+o\,(1)\Big)}{1+x\,\varphi\,[u\,(x)]\,\Big(1+o\,(1)\Big)} \leqslant (1-x)\,\varphi\,[u\,(x)]\,\Big(1+o\,(1)\Big).$$

Следовательно, при $x > x_0$

$$1 + o(1) \ge \frac{1}{2} \quad \text{if } \tau \le \frac{1}{2} (1 - x) \varphi[u(x)].$$

Здесь константа $\frac{1}{2}$ не существенна, так как вместо $\varphi(u)$ мы могли взять функцию $\varphi^*(u) = \frac{1}{2} \varphi(u)$ и тогда мы получили бы $\tau \leqslant (1-x) \varphi^*[u(x)]$. Итак, нами доказано неравенство

 $u(xe^{\tau}) - u(x) < 1,$ (1.10)

где $\tau \leqslant (1-x) \varphi[u(x)]$, верное вне некоторой последовательности интервалов $E:\{(x'_j,\ x''_j)\}$, где $x'_j=\frac{t'_j}{1+t'_j}$ и $x''_j=\frac{t'_j}{1+t'_j}$. Вводя в (1.8) замену $t=\frac{x}{1-x}$; $\ln t = \ln x - \ln (1-x)$; $\frac{dt}{t} = \frac{dx}{x(1-x)}$, найдем, что

$$\sum_{j=1}^{\infty} \int_{x_j^*}^{x_j^*} \frac{dx}{x(1-x)} = \int_E \frac{dx}{x(1-x)} < \infty,$$

при $x>x_0>0$, где E — множество исключенных интервалов, соответствующее множеству E' при нашем преобразовании. Считая, что совокупности E не принадлежит интервал $(0, x_0)$ (при x=0 (1.10) имеет место) видим, что для сходимости интеграла $\int\limits_{E} \frac{dx}{x(1-x)}$ необходимо и достаточно, чтобы существовал интеграл $\int\limits_{E} \frac{dx}{1-x}$. Этим доказательство теоремы завершено.

2. На основании теоремы Б докажем следующее предложение:

Теорема В. Пусть u(x)>0 — неубывающая и непрерывная справа функция на полусегменте $0 \leqslant x < 1$ с $\lim_{x \to 1} u(x) = \infty$. Всюду на полуинтервале $0 \leqslant x < 1$, за исключением, быть может, некоторого множества интервалов E (число исключенных интервалов на каждом отрезке $0 \leqslant x \leqslant x_0$ конечное) при

$$|\tau| \leqslant \frac{1}{u^{1-\delta}(x) \ln^{(1+\alpha)(1-\gamma)} u(x)},$$

где $\alpha > 0$, $0 \leqslant \gamma < 1$, $0 \leqslant \delta < 1$, имеет место неравенство

$$|u[xe^{(1-x)\tau}] - u(x)| < u^{\delta}(x) \ln^{(1+\alpha)(1-\gamma)} u(x).$$
 (1.11)

Mножество E зависит от чисел α , γ и δ .

Доказательство. Пусть $\tau > 0$. Применим теорему Б к функции

$$v(x) = \frac{u^{1-\delta}(x)}{\ln^{(1+\alpha)(1-\gamma)}u(x)},$$

где $0<\alpha=\mathrm{const},\ 0\leqslant\gamma<1,\ 0\leqslant\delta<1.$ $\lim_{x\to 1}v\left(x\right)=\infty$, так как $\lim_{x\to 1}u\left(x\right)=\infty$. По упомянутой теореме Б

$$\frac{u^{1-\delta} \left[x e^{(1-x)} \right]}{\ln^{(1+\alpha)} (1-\gamma) u \left[x e^{(1-x)} \right]} - \frac{u^{1-\delta} (x)}{\ln^{(1+\alpha)} (1-\gamma) u (x)} < 1, \tag{1.12}$$

где

$$\tau\leqslant\frac{1}{u^{1-\delta}\left(x\right)\lg^{\left(1+\alpha\right)\left(1-\gamma\right)}u\left(x\right)}\,.$$

Обозначим

$$\psi\left(u\right)=\frac{u^{1-8}}{\ln^{\left(1+\alpha\right)\left(1-\gamma\right)}u}.$$

Тогда, положив

$$u_1 = u(x)$$
 $u_2 = u[xe^{(1-x)\tau}];$ $u_1 \le u_2,$

в соответствии с теоремой о конечных приращениях Лагранжа и (1.2) получим

$$1 > \psi(u_2) - \psi(u_1) = \psi'(c)(u_2 - u_1); \qquad u_1 \le c \le u_2.$$

Следовательно,

$$u\left[xe^{(1-x)\tau}\right] - u(x) < \frac{1}{\psi'(c)}$$
 (1.13)

Производная

$$\psi'(u) = \frac{(1-\delta) \ln u - (1+\alpha) (1-\gamma)}{u^{\delta} \ln^{(1+\alpha)} (1-\gamma) + 1 u},$$

как легко видеть, убывает при $u>u_0>0$, где u_0 достаточно велико. Имеем

$$\begin{split} &\psi'\left(c\right)\geqslant\psi'\left(u_{2}\right)=\frac{\left(1-\delta\right)\ln u\left[xe^{(1-x)}\,^{\frac{1}{2}}-\left(1+\alpha\right)\left(1-\gamma\right)}{u^{\delta}\left[xe^{(1-x)}\,^{\frac{1}{2}}\right]\ln^{(1+\alpha)}\left(1-\gamma\right)+1}u\left[xe^{(1-x)}\,^{\frac{1}{2}}\right]}=\\ &=\frac{1-\delta}{u^{\delta}\left[xe^{(1-x)}\,^{\frac{1}{2}}\right]\ln^{(1+\alpha)}\left(1-\gamma\right)}u\left[xe^{(1-x)}\,^{\frac{1}{2}}\right]}\left[1-\frac{\left(1+\alpha\right)\left(1-\gamma\right)}{\ln u\left[xe^{(1-x)}\,^{\frac{1}{2}}\right]}\right]=\\ &=\frac{1+o\left(1\right)}{u^{\delta}\left[xe^{(1-x)}\,^{\frac{1}{2}}\right]}\cdot\frac{1-\delta}{\ln^{(1+\alpha)}\left(1-\gamma\right)u\left[xe^{(1-x)}\,^{\frac{1}{2}}\right]}. \end{split}$$

(Здесь мы воспользовались тем, что $u(x) \to \infty$ при $x \to 1$.) Таким образом,

$$\psi'(c) \ge \frac{\left(1 + o(1)\right) (1 - \delta)}{u^{\delta} \left[xe^{(1 - x)\tau}\right] \ln^{(1 + \alpha)(1 - \gamma)} u \left[xe^{(1 - x)\tau}\right]}.$$
(1.14)

На основании той же теоремы Б для функции $\ln u(x)$, при τ удовлетворяющим условию

$$\tau \leqslant \frac{1}{u^{1-\delta}(x)\ln^{(1+\alpha)(1-\gamma)}u(x)},$$

находим

$$\ln u \left[x e^{(1-x)\tau} \right] < 1 + \ln u (x) = \ln \left[e u (x) \right] < \ln u (x)$$

И

$$u^{\delta}\left[xe^{(1-x)\tau}\right] < C_0 u^{\delta}(x),$$

где $C_0 = \text{const}$, которая от x не зависит. Из (1.14) делаем вывод:

$$\psi'(c) \ge \frac{\left(1 + o(1)\right) (1 - \delta)}{u^{\delta} \left[xe^{(1 - x)\tau}\right] \ln^{(1 + \alpha)(1 - \gamma)} u \left[xe^{(1 - x)\tau}\right]} \ge \frac{1}{C_0 u^{\delta}(x) \ln^{(1 + \alpha)(1 - \gamma)} u(x)},$$

где $\alpha>0,\ 0\leqslant\gamma<1,\ 0\leqslant\delta<1.$ Несколько увеличивая α , в случае необходимости, можно считать $C_0=1.$ (1.13) дает теперь:

$$u\left[xe^{(1-x)\,\tau}\right]-u\left(x\right)< u^{\delta}\left(x\right)\ln^{(1+\alpha)\,(1-\gamma)}u\left(x\right).$$

Последнее неравенство, очевидно, верно при

$$0 \le \tau \le \frac{1}{u^{1-\delta} (x) \ln^{(1+\alpha)}(1-\gamma) u(x)},$$

исключением, возможно, множества интервалов E, которое зависит от чисел α , γ , δ .

Аналогичное неравенство мы легко найдем и при $\tau < 0$ (см. [4], лемма A). Тогда получим

$$|u[xe^{(1-x)\tau}] - u(x)| < u^{\delta}(x)\ln^{(1+\alpha)(1-\gamma)}u(x)$$

при $|\tau| \leqslant \frac{1}{u^{1-\delta}(x) \ln^{(1+\alpha)}(1-\gamma) u(x)}$. Теорема доказана.

§ 2. Соотношения для голоморфной в круге функции в точках максимума ее модуля

3. Пусть f(z) — голоморфная функция в круге $|z| \le r(r < 1)$. Через ζ обозначим точку на окружности |z| = r, в котором функция |f(z)| достигает своего максимума, т.е.

$$|f(\zeta)| = M(r) = \max_{|z|=r} |f(z)|.$$

Как известно, $\ln M(r)$ есть выпуклая функция от $\ln r$ (см. [5]). Введем функцию

 $K(r) = \frac{rM'(r)}{M(r)} , \qquad (2.1)$

где под M'(r) мы будем понимать производную справа для функции M(r), которая всегда существует. Функция K(r) — возрастающая, как производная выпуклой функции $\ln M(r)$ по $\ln r$. Кроме того, в силу указанной выпуклости

$$K(r') \ln \frac{r''}{r'} \le \ln M(r'') - \ln M(r') \le K(r'') \ln \frac{r''}{r'}$$
 (2.2)

Ниже всюду мы предполагаем, что

$$\overline{\lim}_{r \to 1} (1 - r) K(r) = \infty. \tag{2.3}$$

Ж. Валирон пользуется условием

$$\overline{\lim}_{r \to 1} \frac{\ln M(r)}{\ln \frac{1}{1 - r}} = \infty. \tag{2.4}$$

Нетрудно показать, что из (2.4) следует принятое нами соотношение (2.3), так что наше условие несколько обобщено. В самом деле, из (2.4) следует, что найдется такая последовательность $\{\tilde{r}_j\}$, которая даст

$$\frac{\ln M(\tilde{r}_j)}{\ln \frac{1}{1-\tilde{r}_j}} \to \infty; \qquad \tilde{r}_j \uparrow 1. \tag{2.5}$$

Сейчас дополнительно докажем возможность найти такую последовательность точек $\{r_j\}$; $r_j \uparrow 1$, что

$$\frac{\ln M(r_j)}{\ln \frac{1}{1-r_i}} \to \infty ,$$

причем

$$\left(\frac{\ln \frac{M(r_j)}{l}}{\ln \frac{l}{r-r_j}}\right)' \geqslant 0. \tag{2.6}$$

Если функция $\frac{\ln M(r)}{\ln \frac{1}{1-r}}$ неубывающая функция для всех r при $r>r_0$,

то условие (2.6) очевидно в любой точке. Пусть теперь $\psi(r) = \frac{\ln M(r)}{\ln \frac{1}{1-r}}$

функция, о которой известно только (2.4). Рассмотрим $\psi(r)$ при $r \geqslant \tilde{r}_j$. Если в точке \tilde{r}_j имеет место (2.6), то полагаем $r_j = \tilde{r}_j$. Пусть теперь в \tilde{r}_j (2.6) не удовлетворено. Берем тогда в качестве r_j точку, ближайщую к \tilde{r}_j (при $r > \tilde{r}_j$), в которой достигается локальный максимум функции $\psi(r)$. Следовательно

 $\psi(r_j) \geqslant 0$ и, кроме того, $\psi(r_j) > \psi(\tilde{r_j})$, так что в согласии с (2.5) $\psi(r_j) \to \infty$, когда $j \to \infty$. В точке максимума $\psi(r)$ производная слева неотрицательна, и поэтому, пользуясь тем, что выражение $\frac{d \ln M(r)}{d \ln r}$ возрастает, находим:

$$\left(\frac{\ln M(r_{j})}{\ln \frac{1}{1-r_{j}}}\right)' = \frac{1}{1-r_{j}} \left[\frac{\frac{(1-r_{j})M'(r_{j})}{M(r_{j})}}{\ln \frac{1}{1-r_{j}}} - \frac{\ln M(r_{j})}{\ln^{2} \frac{1}{1-r_{j}}} \right] \geqslant$$

$$\geqslant -\frac{1}{1-r_{j}} \left[\frac{(1-r_{j})K(r_{j})}{r_{j} \ln \frac{1}{1-r_{j}}} - \frac{\ln M(r_{j})}{\ln^{2} \frac{1}{1-r_{j}}} \right] \geqslant 0.$$
(2.7)

Из (2.7) сейчас вытекает, что

$$(1-r_j)K(r_j)\geqslant \frac{r_j\ln M(r_j)}{\ln \frac{1}{1-r_j}}; \quad \frac{1}{1-r_j}>0,$$
 tak kak $r_j<1.$

Следовательно, если выполнено (2.4), то, безусловно,

$$\overline{\lim_{r\to 1}}(1-r)K(r)=\infty.$$

4. Так как функция K(r) — неубывающая непрерывная справа и $\lim_{r\to 1}K(r)=\infty$, то она удовлетворяет всем условиям теоремы В. Следовательно, справедлива

Лемма 1. Вне некоторого множества интервалов E полусегмента $0 \le r < 1$ (число интервалов из E на каждом отрезке $0 \le r \le r_0$ конечно) имеет место неравенство:

 $|K(re^{\tau}) - K(r)| < K^{8}(r) \ln^{(1+\alpha)(1-\gamma)} K(r),$ (2.8)

где

$$|\tau| \leqslant \frac{1-r}{K^{1-\delta}(r) \ln^{(1+\alpha)(1-\gamma)} K(r)}.$$

Здесь $0 < \alpha = \text{const}, \ 0 \le \gamma < 1, \ 0 \le \delta < 1$. Исключенное множество зависит от чисел α , δ , γ и

$$\int_{F} \frac{dr}{1-r} < \infty.$$

Рассмотрим сейчас функцию $f(we^n)$, где w — точка на окружности |(z) = |w| = r(r < 1), в которой

$$|f(z)| > K^{-\beta}(r) M(r),$$
 (2.9)

а β - некоторое число, которое мы определим ниже.

Определим окрестность точки $\eta = 0$, где упомянутая функция не обращается в нуль. Для этого исследуем ряд

$$\frac{f(we^{\eta})}{f(w)} e^{-\eta K(r)} = 1 + \sum_{j=1}^{\infty} A_j(w) \eta^j; \qquad \eta = \tau + i\sigma.$$
 (2.10)

Пользуясь (2.2) и (2.9), оценим левую часть равенства (2.10). Имеем:

$$\left| \begin{array}{c} \frac{f\left(we^{\eta}\right)}{f\left(w\right)} \ e^{-\eta K\left(r\right)} \ \left| \leqslant K^{\beta}\left(r\right) \cdot \frac{M\left(re^{\tau}\right)}{M\left(r\right)} \ e^{-K\left(r\right)\tau} = \\ = K^{\beta}\left(r\right) \exp\left\{ \begin{array}{c} \ln M\left(re^{\tau}\right) - \ln M\left(r\right) - K\left(r\right)\tau \right\} \leqslant \\ \leqslant K^{\beta}\left(r\right) \exp\left\{ K\left(re^{\tau}\right) \ln \frac{re^{\tau}}{r} - K\left(r\right)\tau \right\} = K^{\beta}\left(r\right) \exp\left\{ \left[K\left(re^{\tau}\right) - K\left(r\right)\tau \right\} \right\}. \end{array}$$

т. е.

$$\left| \frac{f(we^{\eta})}{f(w)} e^{-\eta K(r)} \right| \leq K^{\beta}(r) e^{|K(re^{\tau}) - K(r)||\tau|}. \tag{2.11}$$

Далее на основании леммы 1 при

$$|\tau| \leqslant \frac{1-r}{K^{1-\delta}(r) \ln^{(1+\alpha)(1-\gamma)} K(r)},$$

получим:

$$|K(re^{\tau}) - K(r)| |\tau| < \frac{(1-r) K^{\delta}(r) \ln^{(1+\alpha(1-\gamma)} K(r)}{K^{1-\delta}(r) \ln^{(1+\alpha)(1-\gamma)} K(r)} = (1-r) K^{2\delta-1}(r).$$

По теореме Коши для коэффициентов ряда (2.10) находим следующие оценки:

$$\mid A_{j} \mid < K^{\beta}(r) \exp \left\{ (1-r) \, K^{2\delta-1}(r) \right\} \, \frac{ \left[K^{1-\delta} \, (r) \, \ln^{(1+\alpha) \, (1-\gamma)} \, K \, (r) \right]^{j}}{(1-r)^{j}} \ ,$$

j = 1, 2, 3... Потребуем, чтобы

$$(1-r)K^{2\delta-1}(r)\leqslant C<\infty; \qquad r>r_0.$$

Найдем этому требованию достаточное условие, удобное для дальнейшего. Пусть

$$K(r) = \frac{1}{(1-r)^{\mu}},$$

где $\mu = \mu(r)$. Тогда должно быть

$$(1-r) K^{2\delta-1}(r) = \frac{1}{(1-r)^{(2\delta-1)\mu-1}} < C.$$

Логарифмируя это соотношение, приходим к следующему неравенству:

$$\mu(2\delta-1)-1<\frac{\ln C}{\ln \frac{1}{1-r}}$$
.

Последнее соотношение будет всегда выполнено, если $\mu \left(2\delta -1\right) -1<0$, так как $r\rightarrow 1$, то

$$\frac{\ln C}{\ln \frac{1}{1-\epsilon}} \to 0.$$

Итак, выбираем

$$\delta < \lim_{r \to 1} \frac{1 + \mu(r)}{2\mu(r)} = \omega = \frac{1 + \lambda}{2\lambda}. \tag{2.12}$$

Окончательно оценки коэффициентов ряда (2.10) можно записать так:

$$|A_j| < C^* K^{\beta}(r) \frac{[K^{1-8}(r)\ln^{(1+\alpha)}(1-\gamma)K(r)]^j}{(1-r)^j},$$
 (2.13)

 $(j=1,\ 2,\ 3,\ \dots)$, имея ввиду, что $e^{(1-r)\,K^{2\delta-1}}\!\leqslant\! e^C\!=\!C^*\,(C\!<\!\infty).$

Лемма 2. Пусть $\{w\}$ — множество точек, в которых

$$|f(w)| > K^{-\beta}(r) M(r),$$
 (2.14)

где $\beta > 0$ — произвольное постоянное число. В тождестве

$$f(we^{\eta}) = f(w) e^{K(r)\eta} \left(1 + \omega(\eta)\right)$$
 (2.15)

при

$$|\eta| \le \frac{q(1-r)}{K^{1-\delta+\beta}(r)\ln^{(1+\alpha)(1-\gamma)}K(r)},$$
 (2.16)

где q(0 < q < 1) — некоторая постоянная, справедливо неравенство:

$$|\omega(\eta)| < \frac{K^{1-\delta+\beta}(r)\ln(1+\alpha)(1-\gamma)K(r)}{q(1-r)} |\eta|. \tag{2.17}$$

Если $w=\zeta$, где ζ — точка, в которой достигается максимум функции |f(z)| на окружности |z|=r, то

$$|\omega(\eta)| < \left[\frac{K^{1-\delta}(r) \ln^{(1+\alpha)(1-\gamma)} K(r)}{q(1-r)} \right]^2 |\eta|^2. \tag{2.18}$$

Неравенства (2.17) и (2.18) верны для всех r за исключением $r \in E$ (E некоторое множество интервалов полусегмента $0 \le r < 1$) c

$$\int_{\Gamma} \frac{dr}{1-r} < \infty .$$

Доказательство. На основании оценки (2.13) из разложения

$$\frac{f(we^{\eta})}{f(w)} e^{-\eta K(r)} = 1 + \sum_{j=1}^{\infty} A_j \eta^j; \qquad \eta = \tau + i\sigma$$
 (2.19)

выводим, что при

$$|\eta| \leqslant \frac{q(1-r)}{K^{1-\delta+\beta}(r) \ln^{(1+\alpha)(1-\gamma)} K(r)}$$

$$\left| \frac{f(we^{\eta})}{f(w)} e^{-\eta K(r)} \right| \ge 1 - C^* \sum_{j=1}^{\infty} \frac{K^{\beta}(r) \left[K^{1-\delta}(r) \ln^{(1+\alpha)}(1-\gamma) K(r) \right]^j}{(1-r)^j} \left| \eta \right|^j >$$

$$> 1 - C^* K^{\beta}(r) \sum_{j=1}^{\infty} K^{-\beta j}(r) q^j = 1 - C^* \frac{q}{1 - qK^{-\beta}} > 0,$$
 (2.20)

если q < 1 и q достаточно малое положительное число, а $r > r_0$. Из (2.20) непосредственно следует (2.17). В самом деле, из (2.15) получаем, что

$$\left| \frac{f(we^{\eta})}{f(w)} e^{-\eta K(r)} \right| > 1 - \left| \omega(\eta) \right| > 1 - \frac{K^{1-\delta+\beta}(r) \ln^{(1+\alpha)}(1-\gamma) K(r)}{q(1-r)} \left| \eta \right| = 0$$

при

$$|\eta| \leqslant \frac{q(1-r)}{K^{1-\delta+\beta}(r)\ln^{(1+\alpha)(1-\gamma)}K(r)}$$
.

Неравенство (2.18) следует из того же ряда (2.19), если заметить, что при $w=\zeta$, $\frac{\zeta f'(\zeta)}{f(\zeta)}=K(r)$, $A_1=0$ и $\beta=0$. Лемма доказана.

5. Положим $g\left(\eta\right)=\ln f\left(we^{\eta}\right)$, где $\eta=\tau+i\sigma$, а $w\left(\mid w\mid=r\right)$ — точка в ко торой

$$|f(w)| > K^{-\beta}(r) M(r).$$

Имеем

$$g(0) = \ln f(w), \quad g'(0) = \frac{wf'(w)}{f(w)}, \quad g'' = w \left(\frac{wf'(w)}{f(w)}\right)', \quad \dots,$$
 $g^{(j)}(0) = w \left(w \left(\dots w \left(\frac{wf'(w)}{f(w)}\right)'\dots\right)'\right)'$ (всего $j-1$ скобка).

В окрестности точки $\eta = 0$ напишем ряд Тейлора

$$g(\eta) = g(0) + g'(0) \eta + \frac{1}{2!} g''(0) \eta^2 + \ldots + \frac{1}{n!} g^{(n)}(0) \eta^n + \ldots$$

Полученное разложение функции $g(\eta)$ можно написать иначе:

$$\ln f(we^{\eta}) = \ln f(w) + \sum_{j=1}^{\infty} \frac{1}{j!} D^{j} \ln f(w) \eta^{j}$$

или

$$\ln f(we^{\eta}) - \ln f(w) - K(r) \eta = \sum_{j=2}^{\infty} \frac{1}{j!} D^{j} \ln f(w) \eta^{j}, \qquad (2.21)$$

где по определению

$$Df(z)=z \frac{df(z)}{dz}$$
, ..., $D^{j}f(z)=D\left(D^{j-1}f(z)\right)$.

Ряд (2.21) сходится в круге

$$|\eta| < \frac{(1-r) q}{K^{1-\delta+\beta} (r) \ln^{(1+\alpha)} (1-\gamma) K(r)},$$

так как при указанных η по лемме 2 функция в нуль не обращается. Для оценки модулей коэффициентов ряда (2.21) нам понадобится следующее неравенство:

$$\operatorname{Re}\left[g\left(\eta\right) - g\left(0\right) - g'\left(0\right)\eta\right] = \operatorname{Re}\left[\ln f\left(we^{\eta}\right) - \ln f\left(w\right) - K(r)\eta\right] =$$

$$= \operatorname{Re}\left[\ln \frac{f\left(we^{\eta}\right)}{f\left(w\right)} - K(r)\eta\right] = \ln \left|\frac{f\left(we^{\eta}\right)}{f\left(w\right)}\right| - K(r)\tau \leqslant$$

$$\leqslant \ln \frac{M\left(re^{\tau}\right)}{M(r)} + \beta \ln K(r) - K(r)\tau; \qquad \tau = \operatorname{Re}\eta.$$

Из (2.2) следует, что

$$\ln M(re^{\tau}) - \ln M(r) \leqslant K(re^{\tau}) \ln \frac{re^{\tau}}{r} = K(re^{\tau}) \tau.$$

Таким образом, по лемме 1 получаем:

Re
$$[g(\eta) - g(0) - g'(0)\eta] < [K(re^{\tau}) - K(r)]\tau + \beta \ln K(r) < K^{\delta}(r) \ln^{(1+\alpha)(1-\gamma)} K(r) \cdot \tau + \beta \ln K(r).$$

Как известно (см. [5]), справедлива следующая оценка коэффициентов ряда Тейлора: если действительная часть ряда

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 (2.22)

в круге $|z| < R < \infty$ удовлетворяет неравенству $\operatorname{Re} f(z) \leqslant U$, то для коэффициентов степенного разложения (2.22) верны соотношения:

$$|a_n| < \frac{2(U - \text{Re} \, a_0)}{R^n}; \qquad n = 1, 2, 3, \dots$$
 (2.23)

В нашем случае для ряда (2.21), на основании (2.23) находим:

$$\left| \frac{1}{j!} D^{j} \ln f(w) \right| < \frac{2 \left\{ K^{\delta}(r) \ln^{(1+\alpha)} (1-\gamma) K(r) + \beta \ln K(r) \right\} |\tau|}{|\eta|^{j}} < \frac{2 \left\{ K^{\delta}(r) \ln^{(1+\alpha)} (1-\gamma) K(r) + \beta \ln K(r) \right\}}{|\eta|^{j-1}}.$$

Здесь мы пользуемся тем, что если $\operatorname{Re} \eta = \tau$, то $\left| \frac{\tau}{\eta} \right| < 1$. В круге

$$|\gamma| \le \frac{1-r}{3K^{1-\delta+\beta}(r)\ln^{(1+\alpha)(1-\gamma)}K(r)};$$
 $\left(q = \frac{1}{3}\right)$

отсюда имеем

$$\left| \frac{1}{j!} D^j \ln f(w) \right| <$$

$$< \frac{2 \cdot 3^{j} \left\{ K^{\delta}(r) \ln^{(1+\alpha)}(1-\gamma) K(r) + \beta \ln K(r) \right\} \left\{ K^{1-\delta+\beta}(r) \ln^{(1+\alpha)}(1-\gamma) K(r) \right\}^{j-1}}{(1-r)^{j-1}} ,$$

 $j=2, 3, 4, \dots$ Следовательно,

$$|D^{j} \ln f(w)| <$$

$$< \frac{2 \cdot 3^{j} \cdot j! \left\{ K^{2\delta + (1-\delta + \beta)j - \beta - 1} \cdot (r) \ln^{(1+\alpha)(1-\gamma)j} K(r) + \beta K^{(1-\delta + \beta)(j-1)} \cdot (r) \ln^{(1+\alpha)(1-\gamma)(j-1)} K(r) \right\}}{(1-r)^{j-1}} =$$

$$=\frac{2\cdot 3^{J}\cdot j!\cdot K^{2\delta+(1-\delta+\beta)J-\beta-1}(r)\ln^{(1+\alpha)(1-\gamma)}K(r)\left[1+\beta K^{-\delta}\ln^{-(1+\alpha)(1-\alpha)}K(r)\right]}{(1-r)^{J-1}}=$$

$$=\frac{2\cdot 3^{j}\cdot j!\left(1+o(1)\right)K^{2\delta+(1-\delta+\beta)j-\beta-1}(r)\ln^{(1+\alpha)(1-\gamma)j}K(r)}{(1-r)^{j-1}},$$

 $j=2,\ 3,\ 4,\ \ldots,\$ так как K(r) — возрастающая функция и $\lim_{r\to 1}K(r)=\infty$. Итак, нами доказано следующее предложение.

Лемма 3. Вне некоторого множества интервалов E на отрезке $0 \leqslant r < 1, \ c$

$$\int_{\Gamma} \frac{dr}{1-r} < \infty$$

(число исключенных интервалов на каждом отрезке $0 \le r \le r_0$ конечно) справедливы неравенства:

$$|D^{j} \ln f(w)| < \frac{2 \cdot 3^{j} \cdot j! \left(1 + o(1)\right) K^{3\delta + (1 - \delta + \beta) j - \beta - 1}(r) \ln^{(1 + \alpha)(1 - \gamma) j} K(r)}{(1 - r)^{j - 1}}, \quad (2.24)$$

 $j=2,\ 3,\ 4,\ \dots,\$ где $\ w\$ точка окружности $\ |\ w|=r\ (r<1),\ s\$ которой $\ |\ f(w)|>K^{-\beta}(r)\ M(r),\ a\ \beta>0$ — произвольное постоянное число. Множество интервалов $\ E\$ зависит от $\ \alpha,\ \delta\ u\ \gamma,\$ где $\ \alpha>0,\ 0\leqslant\delta<1,\ 0\leqslant\gamma<1.$

§ 3. Основные теоремы

6. Докажем следующее предложение.

Теорема 1. Пусть f(z) — голоморфная в круге |z| < 1 функция. Пусть, далее, $\{w\}(|w|=r)$ — множество точек, на котором

$$|f(w)| > K^{-\beta}(r) M(r); K(r) = \frac{rM'(r, f)}{M(r, f)}.$$

Тогда

а) вне множества точек Е, указанного в лемме 3 § 2 при условии

$$\lim_{r\to 1} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = \lambda > 1; \qquad \beta < \frac{\lambda-1}{2\lambda},$$

и

б) на некотором множестве точек бесконечной логарифмической меры на отрезке [0, 1) при условии

$$\overline{\lim_{r\to 1}} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = \rho > 1; \qquad \beta < \frac{\rho-1}{2\rho}$$

справедливы предельные соотношения:

$$\lim_{r \to 1} \frac{w^n f^{(n)}(w)}{f(w)} \cdot \frac{1}{K^n(r)} = 1; \qquad n = 1, 2, 3, \dots$$
 (3.1)

Замечание 1. $\overline{\lim_{r\to 1}} \frac{\ln K(r)}{\ln \frac{1}{1-r}}$ всегда больше или равно единице, т. к. из

 $\varlimsup_{r\to 1} (1-r)\,K(r) = \infty$ вытекает, что на некоторой последовательности $\{r_j\}^i;$ $r_j \uparrow 1$ $K(r_j)\,(1-r_j) \geqslant C > 1$ и $\ln K(r_j) \geqslant \ln \frac{1}{1-r_j} + \ln C$.

Замечание 2. Если

$$\lim_{r \to 1} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = \lambda > 1, \tag{3.2}$$

то всегда $\lim_{r\to 1} (1-r)\,K(r) = \infty$, так как в согласни с (3.2) при $1<\lambda'<\lambda$, $r>r_0 \ln K(r) \geqslant \lambda' \ln \frac{1}{1-r}$, и $(1-r)\,K(r) \geqslant \left(\frac{1}{1-r}\right)^{\lambda'-1} \to \infty$ при $r\to 1$ $(\lambda'>1)$. Доказательство. Пусть сначала

$$\lim_{r \to 1} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = \lambda > 1.$$

Тогда $\ln K(r) \geqslant \lambda' \ln \frac{1}{1-r}$, где $1 < \lambda' < \lambda$ и λ' настолько близко к λ , что $\frac{1}{\lambda'} \le 1 - 2\beta$ и $r > r_0$. Имеем:

$$K(r) \geqslant \left(\frac{1}{1-r}\right)^{\lambda'}$$
 или $1-r \geqslant K^{-\frac{1}{\lambda'}}(r)$.

Следовательно,

$$(1-r)^{j-1} \geqslant K^{\frac{1-j}{\lambda'}}(r). \tag{3.3}$$

В этом случае неравенство (2.24) выглядит так:

$$|D^{j} \ln f(w)| < \frac{2 \cdot 3^{j} \cdot j! \left(1 + o(1)\right) K^{2\delta + (1 - \delta + \beta) j - \beta - 1} (r) \ln^{(1 + \alpha) (1 - \gamma) j} K(r)}{K^{\frac{1 - j}{\lambda^{j}}} (r)} =$$

$$= \frac{2 \cdot 3^{j} \cdot j! \left(1 + o(1)\right) \ln^{(1+\alpha)(1-\gamma)j} K(r)}{K^{1-2\delta+\beta-(1-\delta+\beta)j+\frac{1-j}{\lambda'}}(r)}; \qquad j=2, 3, 4, \dots$$
 (3.4)

Наряду с рядом (2.21), рассмотрим также ряд

$$f(we^{\eta}) = f(w) + \sum_{j=1}^{\infty} \frac{1}{j!} D^{j} f(w) \eta^{j}.$$
 (3.5)

Нашей целью является выразить функции $D^{j} f(w)$ через $D^{j} \ln f(w)$. Из (2.21) нетрудно доказать, что (см., например, [4])

$$f(we^{\eta}) = f(w) \exp \left\{ \sum_{j=1}^{\infty} \frac{1}{j!} D^{j} \ln f(w) \eta^{j} \right\} = f(w) \sum_{m=0}^{\infty} A_{m} \eta^{m}.$$
 (3.6)

Здесь коэффициент A_m следующего вида:

$$A_{m} = \sum_{i_{1}, i_{2}, \ldots, i_{q}} B_{i_{1}, i_{2}, \ldots, i_{q}} \prod_{p=1}^{q} \left(D^{p} \ln f(w) \right)^{i_{p}} + \frac{1}{m!} K^{m}(r), \qquad (3.7)$$

где суммирование производится по всем целым неотрицательным i_1, i_2, \ldots, i_q , для которых $\sum pi_p = m; i_p < m; B_{i_1, i_2, \ldots, i_q}$ — постоянные числа. С другой стороны методом полной математической индукции легко показать, что

$$D^{j}f(w) = w^{j}f^{(j)}(w) + j! \sum_{k=0}^{i-1} C_{k} z^{k} f^{(k)}(w),$$
(3.8)

где C_k — постоянные. Из (3.5), (3.6), (3.7) и (3.8) вытекает следующее тождество:

$$\frac{w^{m} f^{(m)}(w)}{f(w)} = \sum_{i_{1}, i_{2}, \dots, i_{q}} B_{i_{1}, i_{2}, \dots, i_{q}} \prod_{p=1}^{q} \left(D^{p} \ln f(w) \right)^{i_{p}} + K^{m}(r) - \sum_{k=0}^{m-1} C_{k} \frac{w^{k} f^{(k)}(w)}{f(w)},$$
(3.9)

 $\sum pi_p = m; i_p < m$. С помощью полученного тождества (3.9) мы теперь покажем справедливость соотношения (3.1) в случае а). При m=1 равенство (3.1) следует непосредственно из (2.10), так как коэффициент A_1 этого ряда равен следующему выражению

$$A_1 = \frac{w f'(w)}{f(w)} - K(r).$$

Но по (2.13) и (3.3)

$$\left| \frac{w f'(w)}{f(w)} - K(r) \right| < \frac{C^* \ln^{(1+\alpha)}(1-\gamma) K(r)}{(1-r) K^{\beta-\beta-1}(r)} \leqslant \frac{C^* \ln^{(1+\alpha)}(1-\gamma) K(r)}{K},$$

где $C^* = \text{const.}$ Отсюда

$$\left| \frac{wf'(w)}{f(w)} \cdot \frac{1}{K(r)} - 1 \right| < \frac{C^* \ln^{(1+\alpha)(1-\gamma)} K(r)}{\delta - \beta - \frac{1}{k'}(r)}. \tag{3.10}$$

Отношение, стоящее в правой стороне, стремится к нулю, если

$$\delta - \beta - \frac{1}{\lambda'} > 0,$$

т. е.

$$\beta + \frac{1}{\lambda'} < \delta < \frac{\lambda + 1}{2\lambda} \tag{3.11}$$

(учитывая п. 4 (2.12)). Из (3.11) при $\lambda > \lambda' > 1$

$$\beta < \frac{\lambda_i - 1}{2\lambda}$$
,

как и указано в теореме. Таким образом, из неравенства (3.10) находим:

$$\lim_{r \to 1} \frac{w f'(w)}{f(w)} \cdot \frac{1}{K(r)} = 1.$$

Допустим теперь, что соотношения (3.1) имеют место при $n=1, 2, 3, \ldots, m-1$. Покажем, что предельное равенство (3.1) верно и при n=m. Оценка

(3.4) имеет место, начиная сj=2, для этого (3.9) перепишем в следующем виде:

$$\frac{w^{m} f^{(m)}(w)}{f(w)} - K^{m}(r) = \sum_{i_{1}, i_{2}, \dots, i_{q}} B_{i_{1}, i_{2}, \dots, i_{q}} \left(D \ln f(w) \right)^{i_{1}} \prod_{p=2}^{q} \left(D^{p} \ln f(w) \right)^{i_{p}} - \sum_{k=0}^{m-1} C_{k} \frac{w^{k} f^{(k)}(w)}{f(w)}.$$

Деля обе стороны последнего тождества на $K^{m}(r)$, получаем, что

$$\left| \frac{w^{m} f^{(m)}(w)}{(fw)} \cdot \frac{1}{K^{m}(r)} - 1 \right| < \sum_{i_{1}, i_{2}, \dots, i_{q}} \left| B_{i_{1}, i_{2}, \dots, i_{q}} \right| \cdot \frac{|D \ln f(w)|^{i_{1}}}{K^{i_{1}}(r)} \times \left| \prod_{p=2}^{q} |D^{p} \ln f(w)|^{i_{p}} \frac{1}{K^{m-i_{1}}(r)} + \sum_{k=0}^{m-1} |C_{k}| \frac{w^{k} f^{(k)}(w)}{f(w)} \cdot \frac{1}{K^{m}(r)}.$$
(3.12)

Теперь нам нужно показать, что правая сторона неравенства (3.12) в пределе стремится к нулю при $r \to 1$. На основании (3.4) найдем:

$$\prod_{p=2}^{q} |D^{p} \ln f(w)|^{i_{p}} \cdot \frac{1}{K^{m-i_{1}}(r)} < C \cdot \frac{\ln \frac{(1+\alpha)(1-\gamma)\sum_{p=2}^{q} p_{i_{p}}}{K}K(r)}{K} = \frac{C \cdot \ln^{(1+\alpha)(1-\gamma)(m-i_{1})}K(r)}{K} \cdot \frac{1}{k^{-2\delta+\beta+\frac{1}{\lambda'}-\left(1-\delta+\beta+\frac{1}{\lambda'}\right)\sum_{p=2}^{q} p_{i_{p}}^{i_{p}}+(m-i_{1})}K(r)}{K^{-2\delta+\beta+\frac{1}{\lambda'}-\left(\beta-\delta+\frac{1}{\lambda'}\right)(m-i_{1})}K(r)},$$

так как $\sum_{p=2}^{q} pi_p = m - i_1$. Здесь C некоторая постоянная. Таким образом, имея в виду, что

$$\lim_{r \to 1} \frac{|D \ln f(w)|^{i_1}}{K^{i_1}(r)} = 1; \quad D \ln f(w) = \frac{wf'(w)}{f(w)} = K(r),$$

из (3.12) имеем:

$$\left| \frac{w^{m} f^{(m)}(w)}{f(w)} \cdot \frac{1}{K^{m}(r)} - 1 \right| < \tilde{C}_{m} \frac{\ln^{(1+\alpha)}(1-\gamma)(m-i_{1})}{\frac{1-2\delta+\beta+\frac{1}{\lambda^{\prime}}-\left(\beta-\delta+\frac{1}{\lambda^{\prime}}\right)(m-i_{1})}{K}} + \sum_{k=0}^{m-1} \left| C_{k} \right| \frac{w^{k} f^{(k)}(w)}{f(w)} \cdot \frac{1}{K^{m}(r)},$$
(3.13)

где $\tilde{C}_m = \text{const.}$

Чтобы предел выражения, стоящего в правой стороне неравенства (3.13), был равен нулю при $r \to 1$, достаточно, чтобы было

$$1 - 2\delta + \beta + \frac{1}{\lambda'} - \left(\beta - \delta + \frac{1}{\lambda'}\right) (m - i_1) > 0, \tag{3.14}$$

так как $\lim_{r\to 1} K(r)$ существует и $K(r)\to \infty$ при $r\to 1$ в силу условия

$$\lim_{r\to 1} (1-r) K(r) = \infty.$$

Выражение (3.14) преобразуем следующим образом:

$$1 + (m-2)\delta - (m-1)\beta + \frac{1-m}{\lambda'} + \left(\beta - \delta + \frac{1}{\lambda'}\right)i_1 > 0.$$

Величина $\left(\beta-\delta+\frac{1}{\lambda'}\right)i_1\geqslant 0$, так как $i_1\geqslant 0$ и $\beta-\delta+\frac{1}{\lambda'}>0$, если только $\beta<\frac{\lambda-1}{2\lambda}$; $\lambda>\lambda'>1$ и по (2.12) при r достаточно близком к единице $\delta<\frac{\lambda+1}{2\lambda}$. Таким образом, достаточно рассмотреть случай, когда

$$1 + (m-2)\delta - (m-1)\beta + \frac{1-m}{\lambda'} > 0.$$
 (3.15)

Нетрудно сейчас подсчитать, что неравенство (3.15) будет иметь место (учитывая п. 4 (2.12)), если выбрать δ , удовлетворяющее соотношению

$$\frac{m-1}{m-2}\left(\frac{1}{\lambda'}+\beta\right)-\frac{1}{m-2}<\delta<\omega,$$

где ω определено из (2.12). Из (2.12) следует, что при r достаточно близком к единице

$$\delta < \frac{\mu(r)+1}{2\mu(r)}.$$

Следовательно,

$$\frac{m-1}{m-2}\left(\frac{1}{\lambda'}+\beta\right)-\frac{1}{m-2}<\frac{\mu+1}{2\mu};\qquad \mu=\mu(r).$$

Из записанного при $\mu > \lambda' > 1$ и m > 2 получаем:

$$: \frac{m-1}{m-2} \left(\frac{1}{\lambda'} + \beta \right) - \frac{1}{m-2} - \frac{\lambda'+1}{2\lambda'} < 0$$

или

$$\beta < \frac{\lambda'-1}{2\lambda'} \cdot \frac{m}{m-1}$$
.

Так как $\frac{m}{m-1}>1$ и λ' можно взять произвольно близко к λ , то последнее соотношение будет удовлетворено при всех m>2 и r достаточно близких r_0 , если

$$\beta < \frac{\lambda - 1}{2\lambda}$$
,

а тогда имеет место и (3.14). Следовательно, (из (3.12))

$$\lim_{r \to 1} \frac{w^m f^{(m)}(w)}{f(w)} \cdot \frac{1}{K^m(r)} = 1; \qquad m > 2$$

Случай m=1 уже рассмотрели, остается убедиться в справедливости (3.1) при m=2. Из выражения

$$D^{2} \ln f(w) = \frac{w^{2} f''(w)}{f(w)} - K^{2}(r) + K(r), \tag{3.16}$$

на основании (3.13), теперь вытекает:

$$\frac{|D^{2} \ln f(w)|}{K^{2}(r)} < \frac{2 \cdot 3^{2} \cdot 2! \left(1 + o(1)\right) \ln^{2(1+\alpha)(1-\gamma)} K(r)}{\prod_{1-2\beta - \frac{1}{\lambda'}} (r)}$$

И

$$\lim_{r \to 1} \frac{D^2 \ln f(w)}{K^2(r)} = 0, \tag{3.17}$$

так как при $\beta < \frac{\lambda-1}{2\lambda}$ будет $1-2\beta-\frac{1}{\lambda'}>0$, если только взять λ' достаточно близк им λ , ибо $1-2\beta<1-\frac{\lambda-1}{\lambda}=\frac{1}{\lambda}$, а $K(r)\to\infty$; $r\to 1$ в силу того, что

 $\overline{\lim_{r\to 1}} \ (1-r) \, K(r) = \infty$. Таким образом, учитывая сказанное, из (3.16) и (3.17) получаем:

 $\lim_{r \to 1} \frac{w^3 f''(w)}{f(w)} \cdot \frac{1}{K^3(r)} = 1.$

Итак, в случае а) теорема доказана.

Рассмотрим сейчас второй случай:

6)
$$\lim_{r \to 1} \frac{\ln K(r)}{\ln \frac{1}{1 - r}} = \rho > 1; \qquad \rho \leqslant \infty. \tag{3.18}$$

В силу этого условия существует последовательность $\{r_i\}$; $r_i \uparrow 1$ такая, что

$$\lim_{j \to \infty} \frac{K(r_j)}{\ln \frac{1}{1 - r_j}} = \rho. \tag{3.19}$$

Для постоянного числа $1 < \beta' < \rho$ найдется такой номер j_0 , что при $j > j_0$

$$K(r_j) > \left(\frac{1}{1 - r_j}\right)^{\beta'}. \tag{3.20}$$

Если произвольная последовательность $\{r_j^*\}$; $r_j^* \uparrow 1$ не принадлежит исключенному в лемме 3 множеству E и удовлетворяет неравенству

$$K(r_j) > \left(\frac{1}{1-r_j^*}\right)^{\beta'}$$

где β' то же, что и в (3.20), то при $j > j_0$ и j_0 достаточно больших справедлива оценка (2.24), а тогда, как мы видели при доказательстве случая а), справедливы на множестве $\{r_j^*\}$ предельные равенства (3.1).

Покажем теперь, что такие последовательности действительно существуют. Для этого рассмотрим наряду с последовательностью $\{r_j\}$, удовлетворяющей неравенству (3.20), последовательность интервалов

$$\frac{2r_j}{1+r_i} > r > r_j;$$
 $j=1, 2, 3, \ldots$

Убедимся в том, что для каждой точки этой системы интервалов при $j > j_{00}$ где j_0 достаточно велико, верны соотношения (3.20). В самом деле, пусть

$$\rho_j = \frac{2r}{1+r_j} > R_j > r_j.$$

Тогда, в силу возрастания функции K(r),

$$\frac{\ln K(\rho_{j})}{\ln \frac{1}{1-\rho_{j}}} > \frac{\ln K(R_{j})}{\ln \frac{1}{1-R_{j}}} \cdot \frac{\ln \frac{1}{1-R_{j}}}{\ln \frac{1}{1-r_{j}}} > \frac{\ln K(r_{j})}{\ln \frac{1}{1-r_{j}}} \cdot \frac{\ln \frac{1}{1-r_{j}}}{\ln \frac{1}{1-\rho_{j}}}.$$
 (3.21)

Далее,

$$\frac{\ln \frac{1}{1-r_j}}{\ln \frac{1}{1-\rho_j}} = \frac{\ln \frac{1}{1-r_j}}{\ln \frac{1}{1-\frac{2r_j}{1+r_j}}} = \frac{\ln \frac{1}{1-r_j}}{\ln \frac{1+r_j}{1-r_j}} =$$

$$= \frac{\ln \frac{1}{1-r_{j}}}{\ln (1+r_{j}) + \ln \frac{1}{1-r_{j}}} = \frac{1}{1 + \frac{\ln (1+r_{j})}{\ln \frac{1}{1-r_{j}}}} \xrightarrow{j \to \infty} 1,$$
(3.22)

так как при $j \to \infty$ $1+r_j \to 2$, а $\frac{1}{1-r_j} \to \infty$. Но $\frac{\ln \frac{1}{1-R_j}}{\ln \frac{1}{1-R_j}} < 1,$

так что по (3.21) и (3.22) можем писать:

$$\frac{-\frac{\ln K(R_j)}{\ln \frac{1}{1-R_j}} > \frac{-\ln K(r_j)}{\ln \frac{1}{1-r_j}} \cdot \frac{1}{1+\frac{\ln 2}{\ln \frac{1}{1-r_i}}} > \beta',$$

как это следует из (3.20), если только $j>j_0$ с достаточно большим j_0 . Получили новую последовательность $\{R_j\}$; $R_j \uparrow 1$, которую мы искали.

Вычислим теперь логарифмическую меру интервалов:

$$\left(r_j, \frac{2r_j}{1+r_i}\right).$$

Имеем:

$$\int_{r_j}^{\frac{2r_j}{1+r_j}} \frac{dt}{1-t} = \ln \frac{1}{1-\frac{2r_j}{1+r_j}} - \ln \frac{1}{1-r_j} = \ln (1+r_j).$$
 (3.23)

Значит,

$$\sum_{j=j_0+1}^{\infty} \int_{r_j}^{\frac{2r_j}{1+r_j}} \frac{dt}{1-t} = \sum_{j=j_0+1}^{\infty} \ln(1+r_j) = \infty.$$

Это означает, что логарифмическая мера множества

$$E^0 = \bigcup_{j=j_0+1}^{\infty} \left(r_j, \frac{2r_j}{1+r_j} \right)$$

бесконечна, в то время как исключенное в соответствии с леммой 3 множество E конечной логарифмической меры. Отсюда следует вывод, что существует множество точек отрезка $[0,\ 1)$ бесконечной логарифмической меры, в которых справедливо неравенство

$$K(r) > \left(\frac{1}{1-r}\right)^{\beta'}; \qquad 1 < \beta' < \rho$$

и на котором, в согласии с тем, что мы выше отметили, справедливы формулы (3.1). Теорема доказана.

Теорема 2. Пусть, f(z) — голоморфная в круге |z| < 1 функция. Пусть, далее, $\{w\}(|w|=r;\ 0 < r < 1)$ множество точек, на котором |f(w)| = M(r) и

$$\overline{\lim}_{r \to 1} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = 1.$$
(3.24)

Тогда существует некоторая последовательность точек $\{w_j\}$ $c \mid w_j \mid \to 1$, на которой справедливы предельные соотношения:

$$\lim_{r \to 1} \frac{w^n f^{(n)}(w)}{f(w)} \cdot \frac{1}{K^n(r)} = 1; \qquad n = 1, 2, 3, \dots$$
 (3.25)

Доказательство. Из условия (3.24) следует, что для некоторой последовательности $\{\tilde{r}_i\}$; $\tilde{r}_i \uparrow 1$ верны равенства

$$\frac{\ln K(\tilde{r}_j)}{\ln \frac{1}{1-\tilde{r}_i}} = 1 + \varepsilon(\tilde{r}_j); \qquad \varepsilon(\tilde{r}_j) \underset{j \to \infty}{\to} 0, \tag{3.26}$$

или, что то же самое, равенства:

$$(1 - \tilde{r}_j) K(\tilde{r}_j) = \left(\frac{1}{1 - \tilde{r}_j}\right)^{\epsilon} \tilde{r}_j^{(\tilde{r}_j)}. \tag{3.27}$$

Последовательность, в точках которой выполнено (3.26), можно выбрать таким образом, чтобы было справедливо и предельное равенство

$$\lim_{i \to \infty} (1 - \tilde{r}_i) K(\tilde{r}_i) = \infty. \tag{3.28}$$

Действительно, в согласии с условием (2.3), существует такая последовательность точек $\{r_i^*\}$; $r_i^* \uparrow 1$, что

$$(1-r_j^*) K(r_j^*) > C_j > 1;$$
 $C_j \to \infty$.

Следовательно,

$$\ln K(r_j^*) > \ln \frac{1}{1-r_j^*} + \ln C_j$$

Последнее означает, что

$$\lim_{\overline{j\to\infty}} \frac{\ln K(r_j^*)}{\ln \frac{1}{1-r_i^*}} \geqslant 1. \tag{3.29}$$

Но в силу (3.24) верно также

$$\overline{\lim_{j\to\infty}} \frac{\ln K(r_j^*)}{\ln \frac{1}{1-r_i^*}} \le 1. \tag{3.30}$$

Неравенства (3.29) и (3.30) доказывают наше утверждение о том, что

$$\lim_{j\to\infty} \frac{\ln K(r_j^*)}{\ln \frac{1}{1-r_i^*}} = 1.$$

Итак, можно в (3.26) положить $r_j^* = \tilde{r}_j$, причем на найденной последовательности справедливы, как (3.26) так и (3.27). В силу сказанного, необходимо, чтобы

$$\lim_{j\to\infty} \left(\frac{1}{1-\tilde{r}_j}\right)^{\varepsilon(\tilde{r}_j)} = \infty,$$

т. е. при $j > j_0$, $j_0 = j_0(N)$,

$$\varepsilon\left(\tilde{r}_{j}\right)\ln\frac{1}{1-\tilde{r}_{i}}>N>0.$$

Отсюда вытекает, что $\varepsilon(\tilde{r}_j) > 0$ при $j > j_0$.

Покажем теперь, что можно выбрать такую последовательность $\{r_j\}$; $r_j \uparrow 1$, в точках которой будут справедливы соотношения (3.26) и (3.27) (с заменой в них \tilde{r}_i на r_i) и, кроме того, верно неравенство

$$\varepsilon(r_j) \geqslant \varepsilon(r)$$
 (3.31)

при $r > r_j$. Чтобы в этом убедиться, обратимся к формуле (3.24), которую перепишем следующим образом:

$$\frac{\ln K(r)}{\ln \frac{1}{1-r}} = 1 + \varepsilon(r),$$

причем $\lim_{\substack{r\to 1\\r>0}} \varepsilon(r)=0$. Как мы показали, на последовательности \tilde{r}_j имеем $\varepsilon(\tilde{r}_j)>0$. На полуоси $r>\tilde{r}_j$ найдем $\sup_{r>r_j} \varepsilon(r)$. Функция K(r) непрерывна справа. Поэтому верхняя грань при $r\geqslant \tilde{r}_j$ выражения

$$\frac{\ln K(r)}{\ln \frac{1}{1-r}} = 1 + \varepsilon(r)$$

достигается и больше единицы. Действительно

$$\frac{\ln K(\tilde{r}_j)}{\ln \frac{1}{1-\tilde{r}_j}} = 1 + \varepsilon (\tilde{r}_j) > 1.$$

Найдется, далее, такая $\{\bar{r}_p\}$, что

$$\lim_{p \to \infty} \frac{\ln K(\bar{r}_p)}{\ln \frac{1}{1 - \bar{r}_p}} = 1 + \sup_{r > \tilde{r}_j} \varepsilon(r), \tag{3.32}$$

и $\lim_{\substack{p\to\infty\\ \text{Последнее с учетом (3.32)}}}$ но $\ln K(r)$ возрастающая и непрерывная справа функция.

$$\lim_{r\to r_j-0} \frac{-\ln K(r)}{\ln \frac{1}{1-r}} \leq \lim_{r\to r_j+0} \frac{-\ln K(r)}{\ln \frac{1}{1-r}} = \frac{\ln K(r_j)}{\ln \frac{1}{1-r_i}} = 1 + \sup_{r>\tilde{r_j}} \varepsilon(r),$$

что мы и утверждали. В точке г; имеем:

$$1 + \varepsilon(r_j) = \frac{\ln K(r_j)}{\ln \frac{1}{1 - r_j}} \geqslant \frac{\ln K(\tilde{r}_j)}{\ln \frac{1}{1 - \tilde{r}_j}} = 1 + \varepsilon(\tilde{r}_j), \tag{3.33}$$

т. е. $\varepsilon(r_j) \geqslant \varepsilon(\tilde{r}_j)$ и $\varepsilon(r_j) \geqslant \varepsilon(r)$; $r > r_j$ построив для каждой точки \tilde{r}_j последовательности $\{\tilde{r}_m\}$ соответствующую точку r_j указанным выше образом, получим последовательность $\{r_j\}$ точек, на которой в силу (3.33), а также (3.26) $\lim_{t \to \infty} \varepsilon(r_j) = 0$. Кроме того, так как $r_j > \tilde{r}_j$, а K(r) — возрастающая функция, то

$$(1-r_j)K(r_j) \ge (1-\tilde{r}_j)K(\tilde{r}_j) \to \infty$$

или по (3.28)

$$\left(\frac{1}{1-r_j}\right)^{\varepsilon(r_j)} \to \infty. \tag{3.35}$$

Доказательство сформулированной теоремы основано на следующей вспомогательной лемме.

Лемма 4. Справедливо неравенство

$$|K(r_j'e^{\tau})-K(r_j')| \leq C^* \left(\frac{1}{1-r_j'}\right)^{2+\varepsilon (r_j)} |\tau|$$

при $\tau = (1-r_j)\tau_0(r_j)$ с $\tau_0(r_j) \to 0$ при $j \to \infty$, где $\{r_j\}$ – построенная выше последовательность точек, в которых удовлетворено неравенство (3.31) а $r_i e^{\frac{\tau}{2}} = r_i'$.

Доказательство. Перепишем разность $K(r_j e^{\tau}) - K(r_j)$ на основании (3.27) следующим образом:

$$K(r_j e^{\tau}) - K(r_j) = \left(\frac{1}{1 - r_j e^{\tau}}\right)^{1 + \varepsilon (r_j e^{\tau})} - \left(\frac{1}{1 - r_j}\right)^{1 + \varepsilon (r_j)}.$$
 (3.36)

В силу неравенства (3.34):

$$K(r_{j}e^{\tau}) - K(r_{j}) = \left(\frac{1}{1 - r_{j}e^{\tau}}\right)^{1 + \varepsilon (r_{j}e^{\tau})} - \left(\frac{1}{1 - r_{j}}\right)^{1 + \varepsilon (r_{j})} < \left(\frac{1}{1 - r_{j}e^{\tau}}\right)^{1 + \varepsilon (r_{j})} - \left(\frac{1}{1 - r_{j}}\right)^{1 + \varepsilon (r_{j})}.$$

$$(3.37)$$

Применяя к (3.37) теорему о конечных приращениях Лагранжа, придем к соотношениям:

$$\left(\frac{1}{1-r_{j}e^{\tau}}\right)^{1+\varepsilon (r_{j})} - \left(\frac{1}{1-r_{j}}\right)^{1+\varepsilon (r_{j})} < C\left[1+\varepsilon (r_{j})\right] \left(\frac{1}{1-r_{j}e^{\tau}}\right)^{2+\varepsilon (r_{j})} (r_{j}e^{\tau} - r_{j}) =$$

$$= C\left[1+\varepsilon (r_{j})\right] r_{j} \left(\frac{1}{1-r_{j}e^{\tau}}\right)^{2+\varepsilon (r_{j})} (e^{\tau} - 1) \le$$

$$\leq \tilde{C}\tau \left(\frac{1-r_{j}}{1-r_{j}e^{\tau}}\right)^{2+\varepsilon (r_{j})} \cdot \left(\frac{1}{1-r_{j}}\right)^{2+\varepsilon (r_{j})}, \tag{3.38}$$

так как $\varepsilon^{\tau}-1=\left(1+o\left(1\right)\right)\tau$ при $\tau\to0$; здесь $\tilde{C}=\mathrm{const.}$ Убедимся сейчас в том, что

$$\left(\frac{1-r_j}{1-r_je^{\tau}}\right)^{2+\varepsilon(r_j)} \to 1 \quad \text{при} \quad r_j \uparrow 1 \quad \text{и} \quad \tau = (1-r_j)\tau_0,$$

где

$$au_0 = au_0(r_j) o 0$$
 при $j o \infty$.

Имеем:

$$1 - r_j e^{\tau} = 1 - r_j e^{(1 - r_j)^2 \tau_0} = 1 - r_j \left[1 + (1 - r_j) \tau_0 + \frac{(1 - r_j)^2}{2!} \tau_0^2 + \dots \right] =$$

$$= (1 - r_j) - (1 - r_j) \tau_0 \cdot r_j - (1 - r_j)^2 \frac{\tau_0 r_j}{2!} \dots = (1 - r_j) \left[1 - r_j \tau_0 - \frac{(1 - r_j) \tau_0 r_j}{2!} - \dots \right].$$

Таким образом:

$$\frac{1 - r_j}{1 - r_j e^{\tau}} = \frac{1}{1 - r_j \tau_0 - \frac{(1 - r_j) \dot{\tau}_0 r_j}{2!} - \dots} \to 1$$
(3.39)

при $r_j \uparrow 1$, так как $\tau_0(r_j) \to 0$. Имея это в виду, из (3.38) найдем:

$$\left(\frac{1}{1-r_{j}}e^{\tau}\right)^{1+\varepsilon\left(r_{j}\right)}-\left(\frac{1}{1-r_{j}}\right)^{1+\varepsilon\left(r_{j}\right)}< C'\left(\frac{1}{1-r_{j}}\right)^{2+\varepsilon\left(r_{j}\right)}\cdot\tau$$

или, пользуясь (3.37):

$$K(r_j e^{\tau}) - K(r_j) < C' \left(\frac{1}{1 - r_j}\right)^{2 + \varepsilon (r_j)} \tau, \tag{3.40}$$

где C' — некоторая постоянная, которая от j не зависит. Сделаем теперь в (3.40) замену $r_j e^{\frac{\tau}{2}} = r'_j$, т.е. $r_j = r'_j e^{-\frac{1}{2} \tau}$. Мы легко находим:

$$K\left(r'_{j}e^{\frac{\tau}{2}}\right) - K\left(r'_{j}e^{-\frac{\tau}{2}}\right) < C^{*}\left(\frac{1}{1 - r'_{i}}\right)^{2 + \varepsilon(r_{j})},$$
 (3.41)

где $C^* = \text{const}$, а также использовали то обстоятельство, что

$$\frac{1}{1-r' \cdot e^{-\frac{\tau}{2}}} = \frac{1}{1-r'_j \left(1-\frac{\tau}{2}+\ldots\right)} \to \frac{1}{1-r'_j}$$

при постоянном r_j' и $\tau \to 0$. Перепишем еще неравенство (3.41) так:

$$K\left(r'_{j}e^{\frac{\tau}{2}}\right) - K(r'_{j}) + K(r'_{j}) - K\left(r'_{j}e^{-\frac{\tau}{2}}\right) < C^{*}\left(\frac{1}{1 - r'_{j}}\right)^{2 + \epsilon \cdot (r'_{j})} \mid \tau \mid . \tag{3.42}$$

Мы пришли к следующей оценке:

$$|K(r_j'e^{\tau})-K(r_j')|< C^*\left(\frac{1}{1-r_j'}\right)^{2+\varepsilon(r_j)}|\tau|$$

при $|\tau| \leqslant (1-r_j)\tau_0; \ \tau_0 \to 0$, которая справедлива по (3.42) на основании того, что

$$K(r'e^{\frac{\tau}{2}}) - K(r'_j) > 0$$
 $H(r'_j) - K(r'_j) - K(r'_j) = 0$

 $(функция K(r'_i) - возрастающая).$

8. Вернемся к доказательству теоремы 2. Оценим модули коэффициентов ряда (2.21) в круге $|\eta| \leqslant (1-r_j')^{\frac{1}{2} \epsilon (r_j)}$, в котором функция $f(we^\eta)$ в нуль не обращается $\left(r_j' = r_j e^{\frac{\tau}{2}}\right)$. По прежнему (см. п. 5)

Re
$$\{ \ln f(we^{\eta}) - \ln f(w) - K(r) \eta \} < [K(re^{\tau}) - K(r)] \tau$$
.

В нашем случае, в силу доказанной леммы 4:

Re
$$\{ \ln f(we^{\eta}) - \ln f(w) - K(r_j^1) \eta \} < C^* \left(\frac{1}{1 - r_j^1} \right)^{2 + \varepsilon (r_j)} \tau^2$$
.

По (2.23) теперь получаем, заметив, что $\operatorname{Re} \eta = \tau$ и $\left| \frac{\tau}{\eta} \right| < 1$:

$$|D^{j} \ln f(w)| < \frac{2 \cdot j! C^{*} (1-r_{j}^{*})^{-(2+\epsilon(r_{j}))}}{|\eta|^{j-2}}, \qquad j=2, 3, 4, \ldots$$

В круге

$$|\eta| \leqslant (1-r_j')^{\frac{\varepsilon(r_j)}{2}}$$

находим:

$$|D^{j} \ln f(w)| < \frac{2 \cdot j! C^{*}}{(1 - r_{j}^{'})^{\frac{1}{2} \epsilon (r_{j}) \cdot j + 2}},$$
 (3.43)

где $j=2, 3, 4, \ldots$ По (3.9) на некоторой последовательности точек имеем:

$$\frac{w^{m} f^{(m)}(w)}{f^{(w)}} = \sum_{i_{1}, i_{2}, \dots, i_{q}} B_{i_{1}, i_{2}, \dots, i_{q}} \prod_{p=1}^{q} \left(D^{p} \ln f(w) \right)^{i_{p}} + K^{m}(r) - \sum_{k=0}^{m-1} C_{k} \frac{w^{k} f^{(k)}(w)}{f^{(w)}},$$
(3.44)

где суммирование производится по всем целым неотрицательным $i_1,\ i_2,\ \dots,\ i_q,$ для которых $\sum pi_p=m;\ i_p< m;\ B_{i_1},\ \dots,\ i_q;\ C_k$ — постоянные числа. Разделив неравенство (3.44) на

$$K^{m}\left(r_{j}^{\prime}\right) = \left(\frac{1}{1-r_{i}^{\prime}}\right)^{m\left(1+\varepsilon\left(r_{j}\right)\right)},\tag{3.45}$$

придем к соотношению:

$$\left| \frac{w^{m} f^{(m)}(w)}{f(w)} \cdot \frac{1}{K^{m}} - 1 \right| < \sum_{i_{1}, i_{2}, \dots, i_{q}} \left| B_{i_{1}, i_{2}, \dots, i_{q}} \right| \cdot \frac{\left| D \ln f(w) \right|^{i_{1}}}{K^{i_{1}}} \times \left| \sum_{p=2}^{q} \left| D^{p} \ln f(w) \right|^{i_{p}} \cdot \frac{1}{K^{m-i_{1}}} + \sum_{k=0}^{m-1} \left| C_{k} \right| \cdot \frac{w^{k} f^{(k)}(w)}{f(w)} \cdot \frac{1}{K^{m}}.$$

$$(3.46)$$

Аналогично, как и в теореме 1, допустим, что соотношения (3.25) имеют место при $n=1,\ 2,\ \dots (m-1)$. Покажем, что предельное равенство (3.25)

верно и при n=m. Для этого по существу остается вывести, что правая сторона неравенства (3.46) стремится к нулю при $j \to \infty$. На основании (3.43) и (3.45) находим:

$$\begin{split} \prod_{p=2}^{q} \mid D^{p} \ln f(w) \mid^{i_{p}} \frac{1}{K^{m-i_{1}}} < \prod_{p=2}^{q} \left[\frac{2 \cdot p! \ C^{*}}{(1-r'_{j})^{\frac{1}{2}\epsilon \ (r_{j}) \cdot p+2}} \right]^{i_{p}} \cdot (1-r'_{j})^{(1+\epsilon \ (r_{j})) \ (m-i_{1})} = \\ = \tilde{C}_{m} (1-r'_{j}) \end{split}$$

где \tilde{C}_m — некоторая постоянная. Следовательно, из (3.46) вытекает, что

$$\left| \begin{array}{c} \frac{w^m f^{(m)}(w)}{f^{(w)}} \cdot \frac{1}{K^m} - 1 \right| < \overline{C}_m (1 - r_j')^{\left[1 + \varepsilon \left(r_j\right)\right] \left(m - i_1\right) - \sum\limits_{p=2}^{q} p \left(\frac{1}{2} \varepsilon \left(r_j\right) + \frac{2}{p}\right) i_p} + \\ + \sum\limits_{k=0}^{m-1} \left| C_k \right| \frac{w^k f^{(k)}(w)}{f^{(w)}} \cdot \frac{1}{K^m} \underset{j \to \infty}{\to} 0, \end{array}$$

если только (как это следует из (3.35))

$$[1 + \varepsilon(r_j)](m - i_1) - \sum_{p=2}^{q} p\left(\frac{1}{2} \varepsilon(r_j) + \frac{2}{p}\right) i_p > 0.$$
 (3.47)

Легко видеть, что

$$[1+\varepsilon(r_{j})](m-i_{1}) - \sum_{p=2}^{q} p\left(\frac{1}{2}\varepsilon(r_{j}) + \frac{2}{p}\right) i_{p} \ge [1+\varepsilon(r_{j})](m-i_{1}) - \sum_{p=2}^{q} p\left[\frac{1}{2}\varepsilon(r_{j}) + 1\right] i_{p} = [1+\varepsilon(r_{j})](m-i_{1}) - \left(\frac{\varepsilon(r_{j})}{2} + 1\right) \sum_{p=2}^{q} p i_{p} = \\ = [1+\varepsilon(r_{j})](m-i_{1}) - \left(\frac{\varepsilon(r_{j})}{2} + 1\right)(m-i_{1}) = \frac{\varepsilon(r_{j})}{2}(m-i_{1}),$$

так как $\sum_{p=2}^{q} p i_{p} = m - i_{1}$. Следовательно,

$$[1+\varepsilon(r_j)](m-i_1)-\sum_{p=2}^q p\left[\frac{\varepsilon(r_j)}{2}+\frac{2}{p}\right]i_p\geqslant \frac{\varepsilon(r_j)}{2}(m-i_1).$$

Таким образом, чтобы неравенство (3.47) имело место, должно быть

$$\frac{1}{2} \varepsilon(r_j) (m-i_1) > 0,$$

а это всегда выполнено, так как $\epsilon(r_j) > 0$ (показано выше) и $m > i_1 (i_p < m)$. Заметим, наконец, что соотношение (3.25) верно и при m = 1, так как

$$D \ln f(w) = \frac{w f'(w)}{f(w)} = K(r).$$

Доказательство мы провели для последовательности $\{r_j'\}$, но теорема вполне остается в силе и для построеной нами последовательности $\{r_j\}$, потому что $r_j' = r_j e^{\frac{\tau}{2}}$, где

$$\tau = (1 - r_j) \tau_0 \quad (\tau_0 \to 0).$$

В заключение пользуюсь случаем выразить сердечную благодарность И. Ш. Стрелицу за постановку задачи и помощь, оказанную при исполнении работы.

Вильнюсский государственный университет им. В. Капсукаса

Поступило в редакцию 19.11.1966

ЛИТЕРАТУРА

- O. Blumenthal, Principes de la theorie des fonctions entières d'ordre infini, Paris, 1910
- R. Nevanlinna, Remarques sur les fonctions monotones, Bul. des Sciences Math., 55 (1931), 140-144.
- 3. Ж. Валирон, Аналитические функции, М., 1957.
- Ш. Стрелиц, Поведение аналитической функции при больших значениях ее модуля Лит. мат. сб., Ш. № 2 (1963), 357-408.
- 5. А. И. Маркушевич, Теория аналитических функций, М.—Л., 1950.

HOLOMORFINĖS FUNKCIJOS EIGA, ESANT DIDELĖMS JOS MODULIO REIKŠMĖMS

A. NAGELĖ

Darbe jrodoma

Teorema. Tegu f(z) — holomorfinė funkcija skritulyje | z | < 1. Leiskime, toliau, kad aibės { w } (| w | =r) taškuose

$$|f(w)| > K^{-\beta}(r) M(r, f); \quad K(r) = \frac{rM'(r, f)}{M(r, f)}.$$

Tada

a) išskyrus iš atkarpos $0 \le r < 1$ intervalų aibę E, kurioje

$$\int_{E} \frac{dr}{1-r} < \infty,$$

esant sąlygai

$$\lim_{r \to 1} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = \lambda > 1; \qquad \beta < \frac{\lambda - 1}{2\lambda}$$

jг

b) kokioje nors atkarpos [0; 1) begalinio logaritminio mato aibėje, esant sąlygai

$$\overline{\lim_{r\to 1}} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = \rho > 1; \qquad \beta < \frac{\rho-1}{2\rho},$$

teisingos ribinės pareinamybės:

$$\lim_{r \to 1} \frac{w^n f^{(n)}(w)}{f(w)} \cdot \frac{1}{K^n(r)} = 1; \qquad n = 1, 2, 3, \dots$$
 (1)

Parodoma, kad (1) galioja ir tada, kai

$$\overline{\lim_{r \to 1}} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = 1.$$

Minėtoji teorema patikslina Ž. Valirono teoremą (žr. [3]) ir įrodoma naudojantis Š. Strelico pasiūlytu metodu.

DAS VERHALTEN EINER HOLOMORPHEN FUNKTION BEI GROSSEN WERTEN IHRES ABSOLUTEN BETRAGES

A. NAGELĖ

(Zusammenfassung)

In der Arbeit ist der volgende Satz bewiesen.

Satz. Es sei f(z) – eine holomorphe Funktion im Kreise |z| < 1, die in den Punkten der Menge $\{w\}$ (|w| = r) die Ungleichung

$$|f(w)| > K^{-\beta}(r) M(r, f); K(r) = \frac{rM'(r, f)}{M(r, f)}$$

befriedigt. Dann gelten die Beziehungen:

$$\lim_{\substack{r \to 1 \\ r \in E_n}} \frac{w^n f^{(n)}(w)}{f(w)} \cdot \frac{1}{K^n(r)} = 1, \qquad n = 1, 2, 3, \dots,$$

wo:

a) $E=[0; 1)-E_0$ eine geeignete Intervallenmenge des endlichen logaritmischen Masses

$$\int_{F} \frac{dr}{1-r} < \infty$$

ist, wenn

$$\lim_{r \to 1} \frac{\ln K(r)}{\ln \frac{1}{1 - r}} = \lambda > 1; \qquad \beta < \frac{\lambda - 1}{2\lambda}$$

und

b) E_0 eine geeignete Intervallmenge des unendlichen logaritmischen Masses

$$\int_{E_n} \frac{dr}{1-r} = \infty$$

ist, wenn

$$\lim_{r \to 1} \frac{\ln K(r)}{\ln \frac{1}{1-r}} = \rho \ge 1 \qquad \beta < \frac{\rho - 1}{2\rho}.$$

Die erwähnten Behauptungen, die den bekannten Valironschen Satz ([3]) ergänzen, beweisen wir mit der Methode, die von S. Strelitz angemerkt wurde.