1968

УДК-519. 281

НЕКОТОРЫЕ ТЕОРЕМЫ О ХАРАКТЕРИЗАЦИИ ГАММА - РАСПРЕДЕЛЕНИЯ И БЛИЗКИХ К НЕМУ

Φ. Μ. ΚΑΓΑΗ

Введение

Предлагаемая работа посвящена выяснению связи между некоторыми свойствами статистики $\bar{x}=\frac{x_1+\ldots+x_n}{n}$, построенной по повторной выборке (x_1,\ldots,x_n) из совокупности с функцией распределения $(\phi,p.)$ $F\left(\frac{x}{\sigma}\right)$, зависящей от параметра масштаба $\sigma\in R^1_+=(0,+\infty)$, и видом $\phi,p.$ F(x).

При некоторых (впрочем, довольно слабых) ограничениях на F(x) мы выясняем условия, необходимые и достаточные для того, чтобы выборочное среднее \bar{x} являлось достаточной статистикой для семейства распределений

$$P_{\sigma}(A) = \int \dots \int dF \left(\frac{x_1}{\sigma}\right) \dots dF \left(\frac{x_n}{\sigma}\right), \tag{1}$$

A — борелевское подмножество R^n . Мы исследуем также естественное обобщение понятия достаточности и условия, накладываемые на F(x) "обобщенной достаточностью" статистики \bar{x} .

T

Отметим, что аналитические задачи, аналогичные рассматриваемым в работе, изучались ранее в работах [1, 5, 6]. Метод, используемый здесь, отличен от методов, которыми пользовались в указанных работах. Для семейства с параметром сдвига задача характеризации изучалась в работах [2, 3].

Напомним теперь определение достаточности [7]. Пусть $\{P_{\sigma}\}$ — семейство распределений на пространстве (X,A), зависящих от параметра $\sigma \in \Omega$. Статистика T(x) называется достаточной для семейства $\{P_{\sigma}\}$, если какова бы ни была ограниченная функция $\varphi(x)$,

$$M_{\sigma}(\varphi \mid T) = \tilde{\varphi}$$

почти наверное (п.н.) P_{σ} . Символом M_{σ} мы обозначаем математическое ожидание, в том числе и условное, отвечающее распределению P_{σ} .

Теорема 1. Пусть (x_1, \ldots, x_n) — повторная выборка объема $n \ge 2$ из совокупности c ф.р. $F\left(\frac{x}{\sigma}\right)$, $\sigma \in R^1_+$, удовлетворяющей условию F(+0) = 0.

Если: 1) при некотором $\delta > 0$ $\int\limits_0^\infty x^\delta \, dF(x) < \infty$, 2) n-ая свер m ка $F^{*n}(x) \phi.p$.

F(x) абсолютно непрерывна по мере Лебега, 3) статистика \bar{x} достаточ-

на для семейства (1), то F(x) — функция некоторого гамма-распределения

$$F(x) = \begin{cases} \frac{\alpha^{\lambda}}{\Gamma(\lambda)} \int_{0}^{x} u^{\lambda - 1} e^{-\alpha u} du, & ecnu \ x > 0, \\ 0, & ecnu \ x \le 0, \end{cases}$$
 (2)

 $e\partial e \propto > 0, \lambda > 0.$

Замечание. По-видимому, от условия 1 можно избавиться, в то время как пример показывает, что снять условие 2 нельзя.

Доказательство. Центральное место в доказательстве теоремы занимает следующая лемма.

Лемма 1. В условиях теоремы $1 \phi.p.$ F(x) имеет конечные моменты всех порядков.

Действительно, ввиду достаточности \bar{x} и условия 1 имеем

$$M_{\sigma}(x_1^{\delta} x_2^{\delta} | \bar{x}) = \psi(\bar{x}) \quad \text{п.н.} \quad P_{\sigma}. \tag{3}$$

Из (3) получаем, что для вещественных t

$$M_{\sigma}(x_1^{\delta} x_2^{\delta} e^{it\bar{x}}) = M_{\sigma}(\psi(\bar{x}) e^{it\bar{x}}),$$

откуда непосредственно следует такое соотношение:

$$M_1\left(\sigma^{2\delta} \, x_1^{\delta} \, x_2^{\delta} \, e^{it\sigma \bar{x}}\right) = M_1\left(\psi\left(\sigma \, \bar{x}\right) \, e^{it\sigma \bar{x}}\right) \tag{4}$$

Фиксируем σ и положим $\tau = t\sigma$; тогда (4) примет вид:

$$M_1\left(\frac{\psi\left(\sigma\bar{x}\right)}{\sigma^{2\delta}}e^{i\tau\bar{x}}\right) = M_1\left(x_1^{\delta}x_2^{\delta}e^{i\tau\bar{x}}\right). \tag{5}$$

Обозначим через μ распределение статистики \bar{x} , когда $\sigma=1$, то есть положим для борелевских множеств $B\subset R^1$

$$\mu(B) = P_1(\bar{x} \in B).$$

Тогда соотношение (5) перепишется так:

$$M_1\left(\frac{\psi\left(\sigma\bar{x}\right)}{\sigma^{4\delta}}\ e^{i\tau\bar{x}}\right) = \int\limits_0^\infty \ \frac{\psi\left(\sigma\,u\right)}{\sigma^{4\delta}}\ e^{i\tau u}\ d\mu\left(u\right) = M_1\left(x_1^\delta\,x_2^\delta\,e^{i\tau\bar{x}}\right).$$

Отсюда, полагая $\sigma = 1$, получим

$$\int_{0}^{\infty} \left[\frac{\psi(\sigma u)}{\sigma^{2\delta}} - \psi(u) \right] e^{i\tau u} d\mu(u) = 0.$$
 (6)

По теореме единственности для преобразования Фурье заключаем, что при каждом $\sigma \in R^i_+$

$$\frac{\psi(\sigma u)}{\sigma^{2\delta}} = \psi(u) \text{ п.н. } \mu, \tag{7}$$

где исключительное множество может зависеть от σ . Учитывая, что u>0, из (7) получаем

$$\frac{\psi(\sigma u)}{\sigma^{2\delta}u^{2\delta}} = \frac{\psi(u)}{u^{2\delta}} \text{ п.н. } \mu,$$

или

$$h\left(\sigma u\right) = h\left(u\right),\tag{8}$$

где мы положили

$$\frac{\psi(u)}{u^{2\delta}} = h(u).$$

Предположим, что равенство

$$h(u) = c$$
 п.н. μ

не имеет места ни при какой постоянной c > 0.

Тогда

vrai sup
$$h(u) > \text{vrai inf } h(u)$$

и можно указать такое число h_0 , что

$$\mu(B) > 0$$
 и $\mu(\overline{B}) > 0$,

где

$$B = \{u: h(u) > h_0\}.$$

Так как по условию μ абсолютно непрерывна по мере Лебега, то и лебегова мера множеств B и \overline{B} положительна:

mes
$$B > 0$$
, mes $\overline{B} > 0$.

Стандартными рассуждениями, основанными на аппроксимации множеств B и \overline{B} интервалами, показывается, что можно найти такое $\sigma > 0$, для которого

$$\mu \left(\sigma B \cap \overline{B}\right) > 0, \tag{9}$$

где, как обычно,

$$\sigma B = \left\{ u \colon \frac{u}{\sigma} \in B \right\}$$

Но условия (9) и (8) противоречивы, так как по выбору множества B мы имеем:

$$h(u) > h_0, u \in \sigma B$$

и в то же время

$$h(u) \leq h_0, u \in \overline{B}.$$

Итак, мы показали, что для некоторой постоянной с

$$h(u)=c$$
 п.н. μ ,

или

$$\psi (u) = cu^{2\delta}$$
 п.н. μ .

Вернемся к исходному соотношению (3). Мы можем теперь записать его в виде

$$M_{\sigma}(x_1^{\delta} x_2^{\delta} | \bar{x}) = c\bar{x}^{2\delta}.$$

Но в силу условия 1 теоремы 1

$$M_{\sigma}\left[M_{\sigma}\left(x_{1}^{\delta}x_{2}^{\delta}\mid\bar{x}\right)\right]=M_{\sigma}x_{1}^{\delta}\cdot M_{\sigma}x_{2}^{\delta}<\infty.$$

Поэтому и

$$M_{\sigma} \, \overline{x}^{2\delta} < \infty$$
,

откуда следует, что ф.р. F(x) имеет конечный момент порядка 28. Повторяя эти рассуждения, устанавливаем, что F(x) имеет конечные моменты всех порядков. Лемма 1 доказана.

Обозначим теперь через f(t) характеристическую функцию (х.ф.) распределения F(x).

Лемма 2. Пусть 1) $\int\limits_0^\infty x^2\,dF(x)<\infty$, 2) $F^{*n}(x)$ абсолютно непрерывна по мере Лебега, 3) $M_\sigma(x_1^2|\bar{x})$ не зависит от σ . Тогда в достаточно малой окрестности нуля f(t) совпадает с $x.\phi$. некоторого гамма-распределения.

Действительно, из условия 3) находим, что при некоторой функции $\psi\left(\bar{x}\right)$

$$M_{\sigma}(x_1^2 \mid \bar{x}) = \psi(\bar{x}) \quad \text{п.н.} \quad P_{\sigma}. \tag{10}$$

С помощью рассуждений, полностью совпадающих с теми, которые мы использовали при доказательстве леммы 1, из соотношения (10) выводим, что

$$\psi(u) = cu^2 \text{ п. н. } \mu$$

при некоторой постоянной с. Тогда имеем

$$M_1(x_1^2 \mid \bar{x}) = c\bar{x}^2 \quad \text{п.н.} \quad P_1.$$
 (11)

Из (11) получаем:

Простыми преобразованиями (12) приводится к виду:

$$cf''(t)[f(t)]^{n-1} = \frac{1}{n^2} \left\{ nf''(t)[f(t)]^{n-1} + n(n-1)[f'(t)]^2[f(t)]^{n-2} \right\}.$$
 (13)

При достаточно малом $\varepsilon > 0$ $f(t) \neq 0$ для $|t| < \varepsilon$. Поэтому в области $|t| < \varepsilon$ (13) эквивалентно такому соотношению:

$$c_1 f''(t) f(t) - [f'(t)]^2 = 0.$$
 (14)

Уравнение (14) легко интегрируется. Если принять во внимание, что f(0) = 1, то решение уравнения (14) можно записать в виде

$$f(t) = \beta^{\lambda} (\beta - t)^{-\lambda}, \qquad |t| < \varepsilon. \tag{15}$$

Для того, чтобы f(t) была характеристической функцией некоторого распределения на $(0, +\infty)$, необходимо, чтобы в (15) было $\lambda > 0$, $\beta = \frac{\alpha}{i}$, где $\alpha > 0$. Но

$$f(t) = \left(\frac{\alpha}{i}\right)^{\lambda} \left(\frac{\alpha}{i} - t\right)^{-\lambda} = \frac{1}{\left(1 - \frac{it}{\alpha}\right)^{\lambda}}$$

как раз является х.ф. гамма-распределения (2). Лемма 2 доказана.

Лемма 3. Для гамма-распределения проблема моментов имеет единственное решение.

Действительно, если
$$\alpha_i = \int\limits_0^\infty x^i \, dF(x)$$
 и $F(x)$ имеет вид (2), то
$$\alpha_i = \frac{\lambda \, (\lambda + 1) \, \dots \, (\lambda + i - 1)}{\alpha^i} \, . \tag{16}$$

Для моментов α_i , определенных формулой (16),

$$\overline{\lim_{k\to\infty}} \frac{(\alpha_k)^{\frac{1}{k}}}{k} < \infty,$$

откуда следует утверждение леммы (см., например, [4]).

Теорема 1 получается теперь совсем просто. Действительно, из леммы 1 следует, что $\int\limits_0^\infty x^2\,dF(x)<\infty$. Тогда по лемме 2 $f(t)=\int\limits_0^\infty e^{itx}\,dF(x)$ совпадает при $|t|<\varepsilon$ с x.ф. некоторого гамма-распределения. Следовательно, все моменты ф.р. F(x) совпадают с соответствующими моментами это-

го гамма-распределения. Но тогда из леммы 3 выводим, что $F\left(x\right)$ является функцией гамма-распределения. Теорема 1 доказана.

Замечание. Мы показали, что если \bar{x} достаточная статистика для семейства (1), то (при определенных условиях) F(x) необходимо функция гамма-распределения.

Тот факт, что для семейства (1), порожденного повторной выборкой из совокупности с ф.р. (2), \bar{x} действительно является достаточной статистикой, очевидным образом следует из вида функции правдоподобия:

$$L(x_1, \ldots, x_n; \sigma) = \begin{cases} \frac{\alpha^{n\lambda}}{[\sigma^{\lambda} \Gamma(\lambda)]^n} \prod_{1=1}^n x_i^{\lambda-1} e^{-\frac{\alpha}{\sigma} \sum_{i=1}^n x_i}, & \min_{1 \le i \le n} x_i > 0, \\ 0, & \min_{1 \le i \le n} x_i \le 0. \end{cases}$$

TT

В этом пункте будет показано, что условие независимости $M_{\sigma}\left(Q/\bar{x}\right)$ от σ для какого-нибудь одного полинома достаточно общего вида накладывает довольно сильные ограничения на ф. р. $F\left(x\right)$. При некоторых априорных условиях на $F\left(x\right)$ мы получим, что из $M_{\sigma}\left(Q/\bar{x}\right) = \psi\left(\bar{x}\right)$ следует, что $F\left(x\right)$ — функция гамма-распределения.

Введем прежде всего некоторые обозначения. Если $Q(x_1, \ldots, x_n)$ — некоторый полином, то через \overline{Q} будем обозначать полином, который симметризует Q, то есть

$$\overline{Q}(x_1, \ldots, x_n) = \frac{1}{n!} \sum_{i=1}^n Q(x_{i_1}, \ldots, x_{i_n}),$$

где суммирование ведется по всем n! перестановкам (i_1, \ldots, i_n) чисел $1,\ldots, n$. Очевидно, что полином \bar{Q} степени $\leqslant k$ всегда можно записать в виде:

$$\vec{Q} = \vec{q}_k + \ldots + \vec{q}_0,$$

где $ar q_i = ar q_j \, (x_1, \, \dots, \, x_n)$ — однородный полином степени j. Будем говорить, что полином Q степени $\leqslant k$ обладает свойством $S_1^{(j)}$, если при некотором $j, \, 2 \leqslant j \leqslant k, \, \, ar q_j$ имеет вид

$$\bar{q}_j = c \sum_{k=1}^n x_k^j, \qquad c \neq 0;$$

и обладает свойством $S_2^{(j)}$, если при некотором $j,\ 2\leqslant j\leqslant k,\ \bar{q}_j>0$ (или $\bar{q}_j<0$) и коэффициент при $\sum_{k=1}^n x_k^j$ у полинома \bar{q}_j равен нулю.

Теорема 2. Пусть (x_1, \ldots, x_n) — повторная выборка объема $n \ge 2$ из совокупности c $\phi.p.$ $F\left(\frac{x}{\sigma}\right)$, для которой F(+0)=0. Предположим,

что 1) $\int\limits_{0}^{\infty} x^{k} dF(x) < \infty$, 2) $F^{*n}(x)$ абсолютно непрерывна по мере Лебега 3) для какого-нибудь полинома Q степени $\leq k$, обладающего при некотором j, $2 \leq j \leq k$, свойством $S_{j}^{(j)}$ или $S_{j}^{(j)}$,

$$M_{\pi}(O/\bar{x}) = \psi(\bar{x})$$

не зависит от σ п.н. P_{σ} . Тогда 1) ф.р. F(x) имеет моменты всех порядков, причем моменты α_j при $j \geqslant k+1$ однозначно определяются моментами $\alpha_1, \ldots, \alpha_k$ 2) Если моменты $\alpha_1, \ldots, \alpha_k$ такие же, как у некоторого гамма-распределения, то F(x) — функция гамма-распределения.

Доказательство теоремы 2. По соображениям симметрии из условия

$$M_{\sigma}(Q/\bar{x}) = \psi(\bar{x})$$

следует, что

$$M_{\sigma}\left(\bar{Q}/\bar{x}\right) = \psi\left(\bar{x}\right),\tag{17}$$

где $ar{Q}$ — определенная выше симметризация полинома Q. Из соотношения (17) получаем

$$M_{\sigma}\left(e^{it\bar{x}}\;\bar{Q}\right)=M_{\sigma}\left(\psi\left(\bar{x}\right)e^{it\bar{x}}\right),$$

что можно также записать в виде

$$M_1 \left(e^{it\sigma \bar{x}} \sum_{j=0}^k \sigma^j \, \bar{q}_j \right) = M_1 \left(\psi \left(\sigma \, \bar{x} \right) e^{it\sigma \bar{x}} \right). \tag{18}$$

Пусть, как и раньше, $\mu B = P_1 \ (\bar{x} \in B), \ \tau = t\sigma$. Так как

$$M_1\left(\psi\left(\sigma\,\bar{x}\right)e^{it\sigma\bar{x}}\right) = \int\limits_0^\infty \,\psi\left(\sigma\,u\right)e^{i\tau u}\,d\,\mu\left(u\right),$$

a

$$\begin{split} &M_1\left(e^{i\tau\bar{x}}\;\bar{q}_j\right) = M_1\left[e^{i\tau\bar{x}}\;M_1\left(\bar{q}_j\mid\bar{x}\right)\right] = \\ &= M_1\left[e^{i\tau\bar{x}}\;\varphi_j(\bar{x})\right] = \int\limits_{-\infty}^{\infty}\;e^{i\tau u}\,\varphi_j\left(u\right)d\,\mu\left(u\right), \end{split}$$

где мы положили $\varphi_i(\bar{x}) = M_1(\bar{q}_i/\bar{x})$, то из (18) получаем:

$$\int_{0}^{\infty} e^{i\tau u} \psi(\sigma u) d\mu(u) = \int_{0}^{\infty} e^{i\tau u} \sum_{j=0}^{k} \sigma^{j} \varphi_{j}(u) d\mu(u). \tag{19}$$

По теореме единственности для преобразования Фурье из (19) выводим, что при каждом $\sigma \in R^1_+$

$$\psi(\sigma u) = \sum_{j=0}^{k} \sigma^{j} \varphi_{j}(u) \text{ n.H. } \mu, \qquad (20)$$

причем исключительное множество и-меры 0 может зависеть от о.

Мы теперь займемся анализом соотношения (20).

Лемма 4. Если µ абсолютно непрерывна по мере Лебега и соотношение (20) имеет место, то необходимо должно быть

$$\varphi_0(u) = \text{const } \pi.\text{H. } \mu. \tag{21}$$

Доказательство леммы. Предположим, что (21) не выполняется, тогда vrai sup $\varphi_0(u) > \text{vrai inf } \varphi_0(u)$, (22)

где символы vrai sup и vrai inf относятся к мере μ . Из соотношения (22) следует существование таких постоянных $l_1 > l_2$, что множества

$$B_1 = \{ u: \varphi_0(u) > l_1 \}, \quad B_2 = \{ u: \varphi_0(u) < l_2 \}$$

имеют положительную μ -меру: $\mu B_1>0$, $\mu B_2>0$. Далее, очевидно, что для любого $\epsilon>0$ можно указать такую постоянную C, что для множества

 $B'=\{u\colon |\varphi,(u)|< C,\ldots,|\varphi_k(u)< C\}$ μ $B'>1-\varepsilon$. Пусть теперь $\{\sigma_i\}$ — множество всех положительных рациональных чисел. Обозначим через U_i множество тех u, для которых соотношение (20) не выполняется при $\sigma=\sigma_i$, и положим $U=\bigcup_{i=1}^\infty U_i$. Так как μ $U_i=0,\ i=1,\ 2,\ldots$, то μ U=0. Рассмотрим теперь множества $B_1'=B_1\cap B'\cap U$ и $B_2'=B_2\cap B'\cap U$. Ясно, что при достаточно малом $\varepsilon>0$ μ $B_1'>0,\ \mu$ $B_2'>0$. Ввиду абсолютной непрерывности μ по мере Лебега должно быть также mes $B_1'>0$, mes $B_2'>0$. Для любого наперед заданного $\delta>0$ можно указать такие рациональные $0<\sigma'<\delta$ и $0<\sigma''<\delta$, что mes $(\sigma'$ $B_1'\cap\sigma''$ $B_2')>0$ и, следовательно, множество σ' $B_1'\cap\sigma''$ B_2' непусто. Другими словами, найдутся такие $u\in B_1'$, $v\in B_2'$, что $\sigma'u=\sigma''v$. Из соотношения (20) получим:

$$\psi(\sigma' u) = \varphi_0(u) + \sum_{j=1}^{k} (\sigma')^j \varphi_j(u),$$

$$\psi(\sigma'' v) = \varphi_0(v) + \sum_{j=1}^{k} (\sigma'')^j \varphi_j(v),$$

$$\varphi_0(u) + \sum_{j=1}^{k} (\sigma')^j \varphi_j(u) = \varphi_0(v) + \sum_{j=1}^{k} (\sigma'')^j \varphi_j(v).$$
(23)

Но при достаточно малом $\delta>0$ соотношение (23) не может выполняться, так как $\sum\limits_{j=1}^k \; (\sigma')^j \, \phi_j \; (u)$ и $\sum\limits_{j=1}^k \; (\sigma'')^j \, \phi_j \; (v)$ могут быть сделаны сколь угодно малыми, а $\phi_0 \; (u) > l_1 > l_2 > \phi_0 \; (v)$. Полученное противоречие доказывает, что $\phi_0 \; (u) = \mathrm{const} \; \mathrm{п.н.} \; \mu$. Лемма 4 доказана.

Лемма 5. Если μ абсолютно непрерывна по мере Лебега и выполнено соотношение (20), то ψ (и) совпадает п.н. μ с некоторым полиномом степени k.

Доказательство леммы. Будем рассуждать по индукции. При $k\!=\!0$ требуемое утверждение доказано в лемме 4. Предположим теперь, что оно выполняется для $k\!=\!l\!-\!1$ и докажем его справедливость при $k\!=\!l$. Итак, пусть

$$\psi(\sigma u) = \sum_{j=0}^{I} \sigma^{j} \varphi_{j}(u) \text{ fi.h. } \mu. \tag{24}$$

Согласно лемме 4 $\varphi_0(u)$ = const = c п.н. μ . Тогда из соотношения (24) выводим:

$$\frac{\psi(\sigma u) - c}{\sigma u} = \sum_{j=1}^{I} \sigma^{j-1} \tilde{\varphi}_j(u), \tag{25}$$

где мы положили $\tilde{\phi}_j(u) = \frac{\phi_j(u)}{u}, \ j=1, \ldots, \ l.$ Пусть $\bar{\psi}(u) = \frac{\psi(u)-c}{u}.$ При таком обозначении (25) запишется в виде

$$\bar{\psi}(\sigma u) = \sum_{j=0}^{l-1} \sigma^j \bar{\varphi}_{j+1}(u)$$

откуда

и по индуктивному предположению должно быть

$$\bar{\psi}(u) = \frac{\psi(u) - c}{u} = \sum_{j=0}^{l} a_j u^j \text{ п.н. } \mu,$$

откуда следует утверждение леммы.

Вернемся теперь к доказательству теоремы 2. Соотношение (19) мы можем записать как

$$\int_{0}^{\infty} e^{i\pi u} \sum_{j=0}^{k} a_{j} \sigma^{j} u^{j} d\mu(u) = \int_{0}^{\infty} e^{i\pi u} \sum_{j=0}^{k} \sigma^{j} \varphi_{j}(u) d\mu(u),$$

откуда следует, что

$$\varphi_i(u) = a_i u^j \quad \Pi.H. \quad \mu$$

то есть

$$M_1(\bar{q}_i|\bar{x}) = a_i\bar{x}^j, \qquad j = 0, 1, ..., k.$$
 (26)

Предположим теперь, что Q обладает при некотором j свойством $S_1^{(j)}$, то есть при этом j, $2 \le j \le k$, $\bar{q}_j = c \sum_{i=1}^n x_i^i$, $c \ne 0$. Очевидно, можно считать c = 1. Тогда из (26) получаем

$$M_{1}\left(e^{it\sum_{i=1}^{n}x_{i}}\cdot\sum_{i=1}^{n}x_{i}^{i}\right)=a_{j}^{\prime}M_{1}\left[l^{t\sum_{i=1}^{n}x_{i}}\cdot\left(\sum_{i=1}^{n}x_{i}\right)^{j}\right],\tag{27}$$

где мы обозначили $a'_i = \frac{a_i}{n^j}$. Положив в соотношении (27) t=0, убеждаемся в том, что $a'_i < 1$. Из (27) выводим:

$$ni^{-j}f^{(j)}(t)[f(t)]^{n-1} = a'_j i^{-j}f(t)^{(j)}[f(t)]^{n-1} + \Phi[f(t)^{(j-1)}, \ldots, f(t)],$$

где $f(t) = \int\limits_0^\infty e^{itx} \, dF(x)$, а $\Phi(y_1, ..., y_j)$ — полином. Отсюда в достаточно малой окрестности нуля имеем:

$$f(t)^{(j)} = \frac{\Phi\left[f_{(j)}^{(j-1)}, \dots, f(t)\right]}{n\left(1 - a_j'\right) \left[f(t)\right]^{n-1}} \cdot \tag{28}$$

Из формулы (28) следует, что все производные $f^{(j)}(0)$, то есть все моменты ф.р. F(x), конечны. Если моменты α_1,\ldots,α_j ф.р. F(x) фиксированы, то тем самым из соотношения (26) определено значение постоянной a_j' , и последовательное дифференцирование (28) позволяет однозначно определить моменты $\alpha_{j+1},\ \alpha_{j+2},\ \ldots$ Если моменты $\alpha_1,\ \ldots,\alpha_j$ такие же, как соответствующие моменты некоторого гамма-распределения, то, поскольку для гамма-распределения соотношение (26) заведомо выполнено, однозначно определяемые моменты $\alpha_{j+1},\ \ldots$ должны совпадать с соответствующими моментами гамма-распределения. В том случае F(x) — функция гамма-распределения.

Пусть теперь Q обладает при некотором j свойством $S_2^{(j)}$, то есть при этом $j,\ 2 \leqslant j \leqslant k,$

$$\bar{q}_j = \sum_{j_1 + \ldots + j_n = j}^* a_{j_1 \ldots j_n} x_1^{j_1} \ldots x_n^{j_n} > 0,$$

где звездочка у суммы означает, что коэффициенты при членах x_i^j , $i=1,\ldots,n$, равны 0. В этом случае (27) запишется в виде:

$$M_{1}\left(e^{it\sum_{i=1}^{n}x_{i}}\cdot\sum_{j_{1}+\ldots+j_{n}=j}^{\bullet}a_{j_{1}\ldots j_{n}}x_{1}^{j_{1}}\ldots x_{n}^{j_{n}}\right)=$$

$$=a_{j}^{n}M_{1}\left[e^{it\sum_{i=1}^{n}x_{i}}\cdot\left(\sum_{i=1}^{n}x_{i}\right)^{j}\right],$$
(29)

где $a_j''>0$ ввиду условия $\bar{q}_j>0$. Из соотношения (29) с учетом свойства $S_2^{(j)}$ получаем:

$$nf^{(j)}(t)[f(t)]^{n-1} = \Psi[f(t)^{(j-1)}, \ldots, f(t)],$$

где $\Psi(y_1, ..., y_j)$ — полином. Дальнейшие рассуждения точно такие же, как в том случае, когда Q обладает свойством $S_i^{(j)}$. Теорема 2 доказана.

Следствие. Пусть $(x_1, ..., x_n)$ — повторная выборка объема $n \ge 2$ из совокупности c $\phi.р.$ $F\left(\frac{x}{\sigma}\right)$, для которой F(+0)=0. Если

1) $\int\limits_0^\infty x^2\,dF(x)<\infty$, 2) $F^{*n}(x)$ абсолютно непрерывна по мере Лебега, 3) $M_\sigma(x_1^2/\bar{x})$ не зависит от σ , то F(x) — функция некоторого гамма-распределения.

Действительно, пусть α_1 и α_2 — два первых момента ф.р. F(x). Ввиду условия 2 $\alpha_2 > \alpha_1^2$ и мы всегда можем подобрать такое гамма-распределение, первые два момента которого будут как раз α_1 и α_2 . Но тогда по теореме 2 F(x) должна быть функцией гамма-распределения.

III

Перейдем теперь к обобщению понятия достаточности. Пусть (x_1, \ldots, x_n) — повторная выборка из совокупности с ф.р. $F\left(\frac{x}{\sigma}\right)$. Всюду в дальнейшем будем считать, что при некотором целом $k\geqslant 1$

$$\int_{0}^{\infty} x^{2k} dF(x) < \infty. \tag{30}$$

При этом условии совокупность всех полиномов $Q(x_1,\ldots,x_n)$ степени $\leqslant k$ образует гильбертово пространство, если определить скалярное произведение элементов Q_1 и Q_2 как $(Q_1,Q_2)_{\rm o}=M_{\rm o}$ (Q_1Q_2) . Это пространство обозначим через $L_k^{(2)}$, а его подпространство, порожденное всеми полиномами от выборочного среднего $q(\bar{x})=a_0\,\bar{x}^k+\ldots+a_k$ — через T_k . Следуя работе [3], введем определение.

Будем говорить, что T_k служит $L_k^{(2)}$ — достаточным подпространством для семейства (1), если для любого $Q \in L_k^{(2)}$ найдется не зависящий от $\sigma \in R_+^1$ элемент $q \in T_k$ с условием

$$\hat{M}_{\sigma}(Q \mid T_k) = q, \quad \sigma \in R_+^1, \tag{31}$$

где $\hat{M}_{\sigma}\left(\,\cdot\,/T_{k}
ight)$ — оператор проектирования на подпространство T_{k} , когда скалярное произведение в $L_{k}^{(2)}$ введено с помощью меры P_{σ} .

Выясним теперь условия, при которых T_k служит $L_k^{(2)}$ – достаточным подпространством для семейства (1).

Теорема 3. Если первые 2k моментов $\phi.p.$ F(x) совпадают c соответствующими моментами некоторого гамма-распределения, то T_k является $L_k^{(2)}$ — достаточным подпространством для семейства (1).

Теорема 4. Eсли ф.р. F(x) удовлетворяет условию (30) и, кроме того, F(+0)=0, а T_k служит $L_k^{(2)}-$ достаточным подпространством для семейства (1), то F(x)- либо несобственная ф.р., либо первые 2k моментов F(x) совпадают с соответствующими моментами некоторого гамма-распределения.

При доказательстве теоремы 3 нам потребуется следующая лемма. **Лемма 6.** Пусть (x_1, \ldots, x_n) — повторная выборка объема $n \ge 2$ из гамма-распределения (2). Тогда вектор $\left(\frac{x_1}{\bar{x}}, \ldots, \frac{x_n}{\bar{x}}\right)$ и статистика \bar{x} независимы.

Доказательство леммы. Пусть $\varphi(u)$ произвольная ограниченная функция, причем

$$M_{\sigma} \varphi(\bar{x}) = 0$$
 п.н. P_{σ} , $\sigma \in R^{1}_{+}$. (32)

Покажем, что тогда

$$\varphi(\bar{x}) = 0$$
 п.н. P_{σ} , $\sigma \in R_{+}^{l}$.

Действительно, если величины x_1, \ldots, x_n имеют одно и то же гамма-распределение (2), то легко проверить, что величина $\sum_{i=1}^{n} x_i$ имеет гамма-распределение с плотностью

$$p(u) = \begin{cases} \frac{\alpha^{n\lambda}}{\Gamma(n\lambda)} u^{n\lambda - 1} e^{-\alpha u}, & u > 0, \\ 0, & u \leq 0. \end{cases}$$
 (33)

Если выполнено условие (32), то при всех $\sigma \in R_+^1$

$$\int_{0}^{\infty} \varphi(u) u^{n \lambda - 1} e^{-\frac{\alpha u}{\sigma}} du = 0.$$

Так как $\frac{\alpha}{\sigma}$ пробегает $R_+^{\rm I}$, то по теореме единственности для преобразования Лапласа

 $\phi(u) = 0$ п.н. по мере Лебега, откуда

 $\varphi(\bar{x}) = 0$ п.н. P_{σ} , $\sigma \in \mathbb{R}^1_+$.

Пусть теперь (x_1, \ldots, x_n) — повторная выборка из совокупности с ф. р. $F\left(\frac{x}{\sigma}\right)$, где F(x) задана формулой (2), а $A = \left\{\left(\frac{x_1}{\bar{x}}, \ldots, \frac{x_n}{\bar{x}}\right) \in B\right\}$, где B — произвольное борелевское множество. Так как в этом случае \bar{x} служит достаточной статистикой для семейства (1), то

$$P_{\sigma}(A/\bar{x}) = \psi(\bar{x})$$
 п.н. P_{σ} .

Далее, $P_{\sigma}\left(A\right)=c$, откуда следует, что

$$M_{\sigma}[\psi(\bar{x})-c]=0, \ \sigma\in R^1_+.$$

По доказанному выше должно быть

$$\psi(\bar{x}) = c \text{ п.н. } P_{\sigma}$$

то есть

$$P_{\sigma}(A/\bar{x}) = c$$
 п.н. P_{σ} .

В частности,

$$P_1(A/\bar{x}) = c$$
.

Тем самым лемма 6 доказана.

Доказательство теоремы 3. Предположим сначала, что F(x) — функция гамма-распределения и рассмотрим $M_{\sigma}(x_1^{j_1}\dots x_n^{j_n}/\bar{x})$, где $j_1+\dots+j_n=j\leq k$. Имеем

$$M_{\sigma}(x_{n}^{j_{1}} \dots x_{n}^{j_{n}}/\bar{x}) = M_{\sigma}\left(\frac{x_{1}^{j_{1}} \dots x_{n}^{j_{n}}}{\bar{x}^{j}} \; \bar{x}^{j}/\bar{x}\right) =$$

$$= \bar{x}^{j} M_{\sigma}\left[\left(\frac{x_{1}}{\bar{x}}\right)^{j_{1}} \dots \left(\frac{x_{n}}{\bar{x}}\right)^{j_{n}}/\bar{x}\right].$$

Применяя теперь лемму 6, получим:

$$M_{\sigma}(x_1^{j_1} \ldots x^{j_n}/\bar{x}) = c \,\bar{x}^j. \tag{34}$$

Отсюда для любого многочлена $Q \in L_k^{(2)}$ $M_\sigma\left(Q/\bar{x}\right) \in T_k$. Следовательно, $\hat{M}_\sigma\left(Q/T_k\right) = M_\sigma\left(Q/\bar{x}\right)$ и T_k является $L_k^{(2)}$ — достаточным подпространством для семейства (1), если только F(x) — функция гамма-распределения. Но два распределения, у которых первые 2k моментов одинаковы, индуцируют одно и то же скалярное произведение в $L_k^{(2)}$. Поэтому для ф.р. F(x), удовлетворяющей условиям теоремы 3, будем иметь

$$\hat{M}_{\sigma}\left(Q/T_{k}\right) = q\left(\bar{x}\right)$$

и не зависет от о. Теорема 3 доказана.

Отметим следствие из теоремы 3, являющееся по существу аналогом известной теоремы Рао — Блекуэла — Колмогорова.

Следствие. Если первые 2k моментов ф.р. F(x) совпадают с соответствующими моментами некоторого гамма-распределения, то всякий полином $Q \in L_k^{(2)} \backslash T_k$ недопустим в классе несмещенных оценок своего математического ожидания $g(\sigma) = M_\sigma Q$, если качество оценок измеряется их дисперсией. Другими словами, в этом случае для всякого полинома $Q \in L_k^{(2)} \backslash T_k$ можно указать такой полином $q \in T_k$, что

$$M_{\alpha} q = M_{\alpha} Q$$

$$M_{\sigma} (q - M_{\sigma} q)^2 < M_{\sigma} (Q - M_{\sigma} Q)^2, \ \sigma \in R_{+}^{l}.$$

Действительно, в условиях теоремы 3 можно построить статистику

$$q(\bar{x}) = \hat{M}_{\sigma}(Q/T_k).$$

Так как $1 \in T_k$, то $(q-Q, 1)_{\sigma} = 0$, то есть

$$M_{\sigma} q = M_{\sigma} Q = g(\sigma).$$

Далее имеем

$$\begin{split} & M_{\sigma} [Q - g(\sigma)]^2 = M_{\sigma} [Q - q + q - g(\sigma)]^2 = \\ & = M_{\sigma} (Q - q)^2 + M_{\sigma} [q - g(\sigma)]^2 + 2 \ M_{\sigma} [(Q - q)(q - g(\sigma)]. \end{split}$$

Но $Q-q\perp T_k$ при любом σ , задающем скалярное произведение в $L_k^{(2)}$. Поэтому

$$M_{\sigma} [(Q-q)q] = 0,$$

$$M_{\sigma} [(Q-q)g(\sigma)] = 0.$$

Таким образом, если $Q \in T_k$, то при всех $\sigma \in R^1_+$

$$D_{\alpha}Q > D_{\alpha}q$$
.

Доказательство теоремы 4. Пусть T_k является $L_k^{(2)}$ — достаточным подпространством для семейства (1). Покажем, что в этом случае моменты α_3 , ..., α_{2k} ф. р. F(x) однозначно определяются по моментам α_1 и α_2 . Действительно, пусть моменты α_3 , ... α_l , l < 2k уже определены. Если $l \le k$, то рассмотрим полином $x^l - ax_1^{l-1}x_2$, где постоянную a определим из условия:

$$M_1(x_1^l-ax_1^{l-1}x_2)=0$$
,

то есть

$$a = \frac{\alpha_l}{\alpha_{l-1} \cdot \alpha_1}$$

Мы видим, что a выражается через уже известные моменты. Условие $L_{k}^{(2)}$ — достаточности дает:

$$\hat{M}_{\sigma}(x_1^l - ax_2^{l-1} x_2 / T_k) = \sum_{j=0}^k a_j \, \bar{x}^j.$$

Отсюда

$$M_{\sigma}(x_1^l - ax_1^{l-1} x_2) = M_{\sigma} \left(\sum_{j=0}^k a_j \vec{x}^j \right)$$

Ho

$$M_{\sigma}(x^{l}-ax_{1}^{l-1}x_{2})=\sigma^{l}M_{1}(x_{1}^{l}-ax_{1}^{l-1}x_{2})=0$$

по выбору постоянной а и

$$M_{\sigma}\left(\sum_{j=0}^{k} a_{j} \bar{x}^{j}\right) = \sum_{j=0}^{k} a_{j} M_{1} \bar{x}^{j} \cdot \sigma^{j}.$$

Так как $M_1 \bar{x}^j > 0$, j = 0, 1, ..., k, то должно быть $a_j = 0$. Следовательно,

$$M_{\sigma}(x_1^l - ax_1^{l-1}x_2/T_k) = 0. (35)$$

Из условия (35) получаем

$$M_1[(x_1^l-ax_1^{l-1}x_2)\bar{x}]=0,$$

откуда (однозначно) определяем α_{l+1} .

Если $l\!>\!k$, то рассмотрим полином $x_1^k\!-\!bx_1^{k-1}\,x_2$, где b выберем из условия

$$M_1(x_1^k - bx_1^{k-1}x_2) = 0.$$

Рассуждая аналогично, из условия $L_k^{(2)}$ — достаточности получим:

$$M_1[(x_1^k-bx_1^{k-1}x_2)\bar{x}^{l-k+1}]=0,$$

откуда определяем α_{l+1} .

Предположим теперь, что моменты α_1 и α_2 связаны соотношением $\alpha_2=\alpha_1^2$. Легко видеть, что это имеет место только для несобственной ф.р. F(x), для которой, конечно, T_k является $L_k^{(2)}$ — достаточным подпространством. Если же $\alpha_2 > \alpha_1^2$, то мы всегда можем подобрать такое гамма-распределение, первые два момента которого будут как раз α_1 и α_2 . Так как для ф.р. F(x), у которой первые 2k моментов совпадают с соответствующими моментами некоторого гамма-распределения, T_k является по теореме 3 $L_k^{(2)}$ — достаточным подпространством, то однозначно определяемые по α_1 и α_2 момен-

ты $\alpha_3, \ldots, \alpha_{2k}$ должны быть такими же, как у некоторого закона гамма. Теорема 4 доказана.

Приведем теперь теорему, аналогичную теореме 2.

Теорема 5. Пусть (x_1,\ldots,x_n) — повторная выборка объема $n\geqslant 2$ из совокупности с ф.р. $F\left(\frac{x}{\sigma}\right)$, F(+0)=0, удовлетворяющей условию (30). Если для какого-нибудь полинома $Q\in L_k^{(2)}$, обладающего свойством $S_1^{(k)}$ или $S_2^{(k)}$, $\hat{M}_{\sigma}\left(Q/T_k\right)=q$ не зависит от $\sigma\in R_+^1$, то моменты $\alpha_{k+1},\ldots,\alpha_{2k}$ ф.р. F(x) одноэначно определяются предыдущими моментами α_1,\ldots,α_k . Если при этом α_1,\ldots,α_k такие же, как у некоторого гамма-распределения, то $\alpha_{k+1},\ldots,\alpha_{2k}$ будут совпадать с соответствующими моментами этого гамма-распределения и тем самым T_k будет $L_k^{(2)}$ — достаточным подпространством.

Доказательство теоремы 5. Пусть

$$\hat{M}_{\sigma}\left(Q/T_{k}\right) = q = \sum_{j=0}^{K} a_{j} \bar{x}^{j}. \tag{36}$$

Тогда по соображениям симметрии

$$\hat{M}_{\sigma}\left(\bar{Q}/T_{k}\right) = \sum_{j=0}^{k} a_{j}\,\bar{x}^{j},\tag{36}$$

где \bar{Q} — симметризация полинома Q. Из условия (36) получаем, что для всех $l,\ 0\leqslant l\leqslant k,$

$$M_{\sigma}(\bar{Q}\cdot\bar{x}^l) = M_{\sigma}\left(\sum_{i=0}^k a_i\,\bar{x}^j\,\bar{x}^l\right).$$

Отсюда

$$M_1\left(\sum_{j=0}^k \sigma^{j+l} \, \bar{q}_j \, \bar{x}^l\right) = M_1\left(\sum_{j=0}^k a_j \, \sigma^{j+l} \, \bar{x}^{j+l}\right)$$

и, таким образом,

$$M_1(\bar{q}_j \bar{x}^l) = M_1(a_j \bar{x}^j \bar{x}^l), \qquad j, l = 0, 1, \dots, k.$$
 (37)

Пусть теперь Q обладает свойством $S_1^{(k)}$, то есть

$$\bar{q}_k=c\sum_{i=1}^n x_i^k, c\neq 0.$$

Можно считать, конечно, c=1. Тогда из соотношения (37), полагая l=0, получаем, что

$$M_1\left(\sum_{i=1}^n x_i^k\right) = a_k' M_1\left(\sum_{i=1}^n x_i\right)^k,$$

откуда $0 < a_k' < 1$, причем a_k' определяется моментами $\alpha_1, \ldots, \alpha_k$ ф.р. F(x). Далее, из того же соотношения (37) выводим:

$$M_1\left(\sum_{i=1}^n x_i^k \cdot \bar{x}^l\right) = a_k' M_1\left[\left(\sum_{i=1}^n x_i\right)^k \bar{x}^l\right],$$

что и позволяет последовательно выразить моменты $\alpha_{k+1}, \ldots, \alpha_{2k}$ через предыдущие.

Пусть Q обладает свойством $S_2^{(k)}$, тогда

$$\bar{q}_k = \sum_{k_1 + \ldots + k_n = k}^{*} a_{k_1 + \ldots + k_n} x_1^{k_1} \ldots x_n^{k_n},$$

звездочка у суммы означает, что коэффициенты при членах x_i^k равны 0. Левая часть соотношения

$$M_{1}\left[\left(\sum_{k_{1}+\ldots+k_{n}=k}^{*}a_{k_{1}}\ldots k_{n}x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}\right)\bar{x}^{l}\right]=$$

$$=a'_{k}M_{1}\left[\left(\sum_{i=1}^{n}x_{i}\right)^{k}\bar{x}^{l}\right], \qquad l=1, \ldots, k,$$
(38)

содержит только моменты порядка $\leq l+k-1$. Поэтому из (38) можно последовательно определить моменты $\alpha_{k+1},\ldots,\alpha_{2k}$. Если моменты α_1,\ldots,α_k ф.р. F(x) такие же, как у некоторого гамма-распределения, то моменты $\alpha_{k+1},\ldots,\alpha_{2k}$ должны совпадать с соответствующими моментами этого же гамма-распределения. Теорема 5 доказана.

Институт математики им. В. И. Романовского Академии наук Узбекской ССР Поступило в редакцию 13.VI.1967

ЛИТЕРАТУРА

- Е. Б. Дынкин, Необходимые и достаточные статистики для семейства распределений вероятностей, Успехи матем. наук, VI, I (1951).
- А. М. Каган, О. В. Шалаевский, Характеризация нормального закона свойством частичной достаточности, Теория верояти. и прим., XII (1967).
- А. М. Қаган, Частичная достаточность и несмещенное оценивание полиномов от параметра сдвига, ДАН СССР (1967).
- 4. М. Кендалл, А. Стьюарт, Теория распределений, "Наука", М., 1966.
- B. Koopman, On distributions admitting a sufficient statistic, Trans. Amer. Math. Soc., Vol. 39 (1936).
- T. Ferguson, Location and scale parameters in exponential families of distributions, Ann. Math. Stat., 33, 3 (1962).
- 7. P. Halmos and L. Savage, Application of the Radon-Nikodym theorem to the theory of sufficient statistics, Ann. Math. Stat., 20, 2 (1949).

KELETAS TEOREMŲ APIE GAMA IR JAM ARTIMŲ PASISKIRSTYMO ,... DĖSNIŲ CHARAKTERIZAVIMĄ

F. Kaganas

(Reziumė)

Įrodoma keletas teoremų apie gama ir jam artimų pasiskirstymo dėsnių charakterizavimą, remiantis prabos vidurkio savybėmis.

SOME THEOREMS CONCERNING THE CHARACTERIZATION OF \{\} GAMMA-DISTRIBUTION AND NEAR TO IT ONES

F. Kagan

(Summary)

In this paper author proves some theorems concerning the characterization of gamma-distribution by use of properties of sample mean.