1965

УДК-518.9

ТЕОРЕТИКО-МНОЖЕСТВЕННЫЙ ПОДХОД К ИГРАМ ПРЕСЛЕДОВАНИЯ

Б. А. ШОЙХЕТ, Л. А. ПЕТРОСЯН

1. Определение игры "простое преследование"

Игра "простое преследование" происходит следующим образом. Два игрока — преследователь P и преследуемый E, обладая ограниченными по модулю скоростями $|\phi| \leqslant u$ и $|\psi| \leqslant v$ перемещаются в некотором выпуклом, замкнутом множестве $S \subset R^n$, имея возможность в каждый момент времени изменять направление своего движения. Целью P является минимизация времени сближения с E на расстояние $\leqslant l$ (радиус поимки), игрок E преследует противоположную цель.

Кинематические уравнения имеют вид

$$\dot{x}_i = \varphi_i,$$
 $|\varphi| \leq u,$ $i = 1, ..., n,$
 $\dot{y}_i = \psi_i,$ $|\psi| \leq v,$

где u = const, v = const, u > v.

Функция выигрыша определяется следующим образом. Пусть x(t), y(t) траектории игроков P и E в ситуации (φ, ψ) из начальных позиций x_0, y_0 и пусть

$$t_p = \min \left\{ t : \rho \left(x(t), y(t) \right) \leq e \right\},$$

где $\rho(x, y)$ — евклидово расстояние между точками x, y, тогда

$$K(x_0, y_0; \varphi, \psi) = t_0$$

Получившаяся игра зависит от двух параметров, местоположения P и E в момент начала игры, x_0 , y_0 . Поэтому мы будем ее обозначать Γ (x_0 , y_0).

2. Одновременная дискретная игра

Пусть

$$0 < \delta < l/v + u. \tag{1}$$

Назовем величину δ рангом дробления времени. Дискретная игра происходит следующим образом. В начале игры (на первом шаге) игроки P и E в позициях x_0 , y_0 выбирают одновременно управляющие переменные, подчиненные ограничения и $|\phi_0| \leqslant u$, $|\psi_0| \leqslant v$, и переходят в позиции

$$x_1 = x_0 + \delta \varphi_0,$$

$$v_1 = v_0 + \delta \psi_0$$

(при этом управляющие переменные выбираются таким образом, чтобы позиции x_1 , y_1 принадлежали бы множеству S). Далее в позициях x_k , y_k игроки

P и *E* выбирают одновременно управляющие переменные подчиненные ограничениям $|\phi_k| \leqslant u$, $|\psi_k| \leqslant v$ и переходят в позиции

$$x_{k+1} = x_k + \delta \varphi_k,$$

$$y_{k+1} = y_k + \delta \psi_k$$

(при этом управляющие переменные выбираются таким образом, чтобы позиции x_{k+1}, y_{k+1} принадлежали бы множеству S). Пусть $x_0, y_0, \ldots, x_k, y_k, \ldots$ реализовавшаяся последовательность позиций (все $x_k, y_k \in S$) и пусть

$$k_P = \min \{ k \cdot \rho (x_k, y_k) \leq e \}$$

(если такого k не существует, то k_P полагаем равным $+\infty$), тогда выигрыш игрока E равен $k_P\delta$. Выигрыш игрока P равен $-k_P\delta$ (игра антагонистическая).

На каждом шаге игры игроки имеют полную информацию о позициях x_k , y_k . Обозначим, получившуюся таким образом игру через Γ_{δ} (x_0 , y_0).

3. Дискретные игры с полной информацией

Игра $\Gamma_{\delta}^{l}(x,y)$. Игра $\Gamma_{\delta}^{l}(x,y)$ отличается от игры $\Gamma_{\delta}(x,y)$ состоянием информации игрока E. Игроку E на каждом шаге помимо местоположений x_k , y_k известно управление ϕ_k игрока P на этом шаге. Кроме того на каждом шаге множество допустимых управлений игрока P удовлетворяет ограничению $|\phi| = u$ (в отличие от $|\phi| \le u$ в игре $\Gamma_{\delta}(x,y)$).

Игра $\Gamma_\delta^2(x, y)$. Игра $\Gamma_\delta^2(x, y)$ отличается от игры $\Gamma_\delta(x, y)$ состоянием информации игрока P. Игроку P на каждом шаге помимо местоположений x_k, y_k известно управление игрока E на этом шаге. Кроме того на каждом шаге множество допустимых управлений игрока E удовлетворяет ограничению $|\psi| = v$ (в отличие от $|\psi| \le v$ в игре $\Gamma_\delta(x, y)$).

Игра $\Gamma_b^*(x, y)$. Игра $\Gamma_b^{**}(x, y)$ отличается от игры $\Gamma_b(x, y)$ только состоянием информации игрока E. Игроку E помимо местоположений x_k , y_k известно управление φ_k выбираемое игроком P на каждом шаге. (Отличие от игры $\Gamma_b^*(x, y)$ только в том, что на множество допустимых управлений игрока P никаких дополнительных ограничений не накладывается.)

Игра Γ_8^{2*} (x, y). Игра Γ_8^{2*} (x, y) отличается от игры Γ_8 (x, y) только состоянием информации игрока P. Игрок у P помимо местоположений x_k , y_k известно управление ψ_k выбираемое игроком E на каждом шаге. (Отличие от игры Γ_8^2 (x, y) только в том, что на множество допустимых управлений игрока E никаких дополнительных ограничений не накладывается.)

4. Некоторые теоретико-множественные леммы

Определение 1. Обозначим через $M^1_y(k,S)$ множество тех начальных позиций игрока P в игре $\Gamma^1_b(x,y)$, из которых он гарантирует l-поимку (сближение на расстояние l) не более чем за k шагов при условии, что E в начальный момент находится в точке y и преследование происходит в множестве S. Аналогичным образом определяются множества $M^2_y(k,S)$, $M^1_y(k,S)$, $M^2_y(k,S)$.

Через D_z (R) мы будем обозначать n-мерный замкнутый шар радиуса R с центром в точке z. Через S_z (R), n-1-мерную сферу с центром в точке z и с радиусом R.

Множество тех позиций преследователя P, из которых он может перейти в заданное множество A за 0 шагов или за один шаг обозначим через

$$\{x:x\stackrel{P}{\longrightarrow}A\}.$$

Можно легко показать, что в игре $\Gamma^l_\delta\left(x,\,y\right)$ при $S=R^n$ (то есть во всем пространстве)

$$M_y^1(k, R^n) = D_y(l+k(u-v)\delta),$$

и существует значение игры $V_{\delta}^1(x, y)$ и имеет место равенство $V_{\delta}^1(x, y) = k\delta$ при

$$x \in M_{\nu}^{1}(k, R^{n})\backslash M_{\nu}^{1}(k-1, R^{n}).$$
 (2)

Кроме того, $M_y^!(k, R^n) = M_y^2(k, R^n) = M_y^*(k, R^n) = M_y^*(k, R^n) = M_y^*(k, R^n)$ и из (2) следует тогда, что значения игр $\Gamma_\delta^!$, Γ_δ^{1*} , Γ_δ^2 , Γ_δ^{2*} , V_δ^1 , V_δ^2 , V_δ^{1*} , V_δ^{2*} равны между собой.

Лемма 1. Пусть A_1 , A_2 выпуклые, замкнутые множества и пусть далее

$$B_1 = \{ x : x \in A_2, \quad \rho(x, A_1) \leq b \},$$

$$B_2 = \{ x : x \in A_2, \quad \rho(x, A_1 \cap A_2) \leq b \},$$

тогда если $A_1 = D_z$ (R) и $z \in A_2$, то имеет место $B_1 = B_2$.

Доказательство. Очевидно всегда $B_2 \subset B_1$. Пусть теперь $x_1 \in A_1$. Это означает, что ρ $(x_1, A_1) \le b$, $x_1 \in A_2$, так как A_2 выпукло, отрезок $[x_1, z]$ принадлежит A_2 . Если \bar{x} точка пересечения отрезка $[x_1, z]$ с S_2 (R), то

$$\rho(x_1, A_1) = \rho(x_1 \bar{x}) = \rho(x_1, A_1 \cap A_2)$$

отсюда следует, что $x_1 \in B_2$. Лемма доказана.

Лемма 2. Для любого выпуклого, замкнутого множества S из R^n имеют место включения

$$M_{\nu}^{1}(k, S) \supset M_{\nu}^{1}(k, R^{n}) \cap S$$

$$M_{\nu}^{1*}(k, S) \supset M_{\nu}^{1*}(k, R^n) \cap S$$
,

$$M_{\nu}^{2}(k, S) \supset M_{\nu}^{2}(k, R^{n}) \cap S$$

$$M_{\nu}^{2*}(k, S) \supset M_{\nu}^{2*}(k, R^n) \cap S.$$

Доказательство. Докажем первое включение

$$M_{\nu}^{1}(0, S) = D_{\nu}(l) \cap S$$

$$M_{\nu}^{1}(1, S) = \left\{x : x \xrightarrow{P} \bigcap_{\eta \in D_{\mu}(v\delta) \cap S} D_{\eta}(l) \cap S\right\} \supset$$

$$\supset \left\{ x : x \xrightarrow{P} \left[\bigcap_{\eta \in D_{\gamma}(e\delta)} D_{\eta}(l) \right] \cap S = \left\{ x : x \xrightarrow{P} D_{\gamma}(l - v\delta) \cap S \right\}$$

(здесь мы использовали лемму 1),

$$M_{y}^{1}(1, S) \supset D_{y}(l+(u-v)\delta) \cap S = M_{y}^{1}(1, R^{n}) \cap S.$$

Далее по индукции $M_{\nu}^{1}(k, S) \supset M_{\nu}^{1}(k, R^{n}) \cap S$

$$\begin{split} &M_{y}^{1}(k+1, S) = \left\{x: x \xrightarrow{P} \bigcap_{\eta \in D_{y}(v\delta) \cap S} M_{\eta}^{1}(k, S)\right\} \supset \\ &\supset \left\{x: x \xrightarrow{P} \bigcap_{\eta \in D_{y}(v\delta)} M_{\eta}^{1}(k, R^{n}) \cap S\right\} \supset \\ &\supset \left\{x: x \xrightarrow{P} \bigcap_{\eta \in D_{y}(v\delta)} D_{\eta}(l+k(u-v)\delta - u\delta) \cap S\right\} = \\ &= D_{y}\left(l+(k+1)(u-v)\delta\right) \cap S = M_{y}^{1}(k+1, R^{n}) \cap S. \end{split}$$

И первое включение доказано. Очевидно, что множество $M^1_{\nu}(k,S)$ выпукло (см., например, задачу 38 в [1]). Остальные включения доказываются вполне аналогично, принимая во внимание что

$$M_{y}^{1*}(0, S) = D_{y}(l) \cap S,$$

$$M_{y}^{1*}(k, S) = \left\{ x : x \xrightarrow{P} \bigcap_{\eta \in D_{y}(v\delta) \cap S} M_{\eta}^{1*}(k, S) \right\},$$
(4)

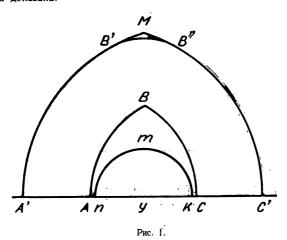
$$M_{\nu}^{2}(0, S) = D_{\nu}(l) \cap S,$$

$$M_{\gamma}^{2}(k, S) = \bigcap_{\eta \in S_{\gamma}(v\delta) \cap S} \left\{ x : x \xrightarrow{P} M_{\eta}^{2}(k, S) \right\}, \tag{5}$$

$$M_y^{2*}(0, S) = D_y(l) \cap S,$$

$$M_{y}^{2*}(k, S) = \bigcap_{\eta \in D_{y}(\epsilon\delta) \cap S} \left\{ x : x \xrightarrow{P} M_{y}^{2*}(k, S) \right\}. \tag{6}$$

Лемма доказана:



Из формул (3), (4) следует, что множества $M_y^{1*}(k,S)$ и $M_y^{2*}(k,S)$ не совпадают. Рассмотрим постейший пример. Пусть S полуплоскость (см. рис.). В начальный момент времени E расположен в точке y на границе мно-

жества S. nmk-дуга окружности радиуса $v\delta$ с ценром в точке y, AB — дуга окружности S_k (l), BC — дуга окружности S_n (l), A'B', A'M — дуги окружности S_k $(l+u\delta),$ B'B'' — дуга окружности $S_B(u\delta),$ B''C', MC' — дуги окружности S_n $(l+u\delta).$ Можно просто показать, что ABC — граница множества $\bigcap_{n \in D_n} \{o\delta\} \cap S D_n(l) \cap S,$ A'B'B''C' — граница множества

$$M_{y}^{1*}\left(1,\ S\right) = \left\{x : x \xrightarrow{P} \bigcap_{\eta \in D_{y}\left(\mathfrak{sh} \cap S\right)} D_{y}\left(l\right) \cap S\right\},\,$$

А' В' МВ" С' - граница множества

$$M_{y}^{2*}\left(1,\ S\right)=\bigcap_{\eta\in D_{y}\left(v\delta\right)\ \cap\ S}D_{\eta}\left(l+u\delta\right)\cap S.$$

Криволинейный треугольник $B'MB'' = M_y^{2*}(1,S)\backslash M_y^{1*}(1,S)$. Таким образом из начальных позиций x,y, где $x\in B'MB''$ информация о выборе управления противника оказывается существенной уже в одношаговой игре, а это означает, что в соответствующей одновременной игре не существует значения в чистых стратегиях (когда обоим игрокам известны только местоположения друг друга). Из того что

$$M_{\nu}^{1*}(1, S) \neq M_{\nu}^{2*}(1, S)$$

в одношаговой игре, конечно, следует, что

$$M_{\nu_{1}}^{1*}(k, S) \neq M_{\nu}^{2*}(k, S)$$

при всех k=2, 3, ...

Лемма 3. $M_{\nu}^{1}(k, S) = M_{\nu}^{1*}(k, S)$.

Доказательство. Очевидно, $M_y^1(k, S) \subset M_y^{1*}(k, S)$. Пусть [теперь $x \in M_y^{1*}(k, S)$, тогда существует такая точка

$$x_1 \in \bigcap_{\eta \in D_{\mathcal{V}}(v\delta) \cap S} D_{\eta}(l) \cap S,$$

что $\rho(x_1, x) \le u\delta$. Если $\rho(x, y) < l$, тогда

$$x \in D_{\nu}(l) \cap S \subset M^{1}_{\nu}(1, S).$$

Пусть $\rho(x,y) \geqslant l$, тогда по непрерывности расстояния и вследствие (1) (условия на ранг дробления δ) на отрезке $[y, x_1]$ найдется такая точка x_2 , что $\rho(x_1, x_2) = u\delta$, следовательно, $x \in M^1_y(1, S)$. То есть мы имеем $M^1_y \supset M^1_y$. Доказательство $M^1_y(k, S) \supset M^1_y$, (k, S) может быть проведено далее по индукции. Лемма 3 доказана.

Теорема 1. Игры Γ_{δ}^{1} , Γ_{δ}^{1*} , Γ_{δ}^{2*} , Γ_{δ}^{2*} имеют значения в чистых стратегиях и имеет место неравенство

$$V_8^1 = V_8^{1*} \geqslant V_8^{2*} \geqslant V_8^2. \tag{7}$$

Доказательство. Существование значения игры в чистых стратегиях Γ^1_δ следует из того, что если $x \in M^1_{\mathfrak{p}}(k,S)\backslash M^1_{\mathfrak{p}}(k-1,S)$, то существует стратегия игрока E которая гарантирует ему время поимки $\geqslant k$ δ . То же справедливо и для игр Γ^1_δ , Γ^2_δ , Γ^2_δ .

Докажем неравенство (7). Мы имеем, что значение игр

$$V_{\delta}^{1}(x, y) = k\delta$$
, если $x \in M_{\gamma}^{1}(k, S) \backslash M_{\gamma}^{1}(k-1, S)$,

$$V_{\delta}^{1*}(x, y) = k\delta$$
, если $x \in M_{\nu}^{1*}(k, S) \backslash M_{\nu}^{1*}(k-1, S)$,

$$V_{\delta}^{2}(x, y) = k\delta$$
, если $x \in M_{\gamma}^{2}(k, S) \backslash M_{\gamma}^{2}(k-1, S)$,

$$V_{\delta}^{2}(x, y) = k\delta$$
, если $x \in M_{y}^{2*}(k, S) \backslash M_{y}^{2*}(k-1, S)$.

По лемме 3 $M_{J}^{1}(k, S) = M_{J}^{1*}(k, S)$, следовательно, $V_{b}^{1} = V_{b}^{1*}$. Неравенство $V_{b}^{2*} \geqslant V_{b}^{2}$ следует из очевидного включения $M_{b}^{2*}(k, S) \subset M_{b}^{2}(k, S)$. Докажем неравенство $V_{b}^{1} \geqslant V_{b}^{2*}$, для этого достаточно показать, что имеет место включение $M_{J}^{1}(k, S) \subset M_{b}^{2*}(k, S)$. Действительно

$$M_{y}^{1}(1, S) = \left\{x : x \xrightarrow{P} \bigcap_{\eta \in D_{y}(v\delta) \cap S} D_{\eta}(l) \cap S\right\},\,$$

$$M_{y}^{2*}\left(1,\;S\right)=\bigcap_{\eta\;\in\;D_{y}\;\left(\varpi\delta\right)\;\cap\;S}\;D_{\eta}\left(l+u\delta\right)\cap S.$$

Отсюда получаем сразу, что $M^1_y(1,S) \subset M^2_y(1,S)$, дальнейшие включения $M^1_y(k,S) \subset M^{2*}_y(k,S)$ могут быть легко получены по индукции. Теорема 1 доказана.

Теорема 2.

$$\lim_{n\to\infty} V^1_{\frac{\delta}{2n}}(x, y) = \lim_{n\to\infty} V^{1*}_{\frac{\delta}{2n}}(x, y) = \lim_{n\to\infty} V^2_{\frac{\delta}{2n}}(x, y) = \lim_{n\to\infty} V^{2*}_{\frac{\delta}{2n}}(x, y) = V(x, y).$$

Прежде чем приступить к доказательству теоремы докажем несколько предварительных лемм.

Лемма 4.

$$V_{\frac{\delta}{2n}}^{1}(x, y) \ge V_{\frac{\delta}{2n+1}}^{1}(x, y).$$

Доказательство. Если оптимальная стратегия P в игре $\Gamma_{\frac{8}{20}}^{1}$ (x, y)

предписывает ему на первом шаге совершить ход из x в x_1 , то пусть в игре с рангом дробления $\frac{\delta}{2^{n+1}}$ он за два шага переходит из x в x_1 (не "обращая внимания" на действия игрока E). Следующие два шага P опять осуществляет в соответствии со своей оптимальной стратегией в игре $\Gamma \frac{\delta}{2^n} (x_1, y_1)$ и попадает в x_2 и т. д. Из определения оптимальной стратегии в игре $\Gamma \frac{\delta}{2^n} (x, y)$ действуя таким образом P обеспечивает себе поимку при любых действиях E за время $T \leqslant V_{\frac{1}{2^n}}^1 (x, y)$, однако, очевидно, что $V_{\frac{1}{2^{n+1}}}^1 (x, y) \leqslant T$ и лемма 4 доказана.

Из леммы 4 следует, что существует предел

$$\lim_{n\to\infty} V^1_{\frac{\delta}{2^n}}(x, y) = V(x, y).$$

Лемма 5. Значения игр $\Gamma^1_\delta(x,\ y),\ \Gamma^1_\delta(x,\ y),\ \Gamma^2_\delta(x,\ y),\ \Gamma^2_\delta(x,\ y)$ не превосходят

$$\max \left\{ \frac{\rho(x, y) - l}{u - v} + \delta, \ 0 \right\}.$$

Доказательство следует из того, что множество $M_{\mathbf{y}}\left(k,S\right)$ содержит множество

$$D_{y}\left(l+k\ (u-v)\ \delta\right)\cap S.$$

Лемма 6. Для игр Γ_{δ}^{l} , Γ_{δ}^{l*} , Γ_{δ}^{2} , Γ_{δ}^{2*} имеет место оценка

$$|V(x_1, y) - V(x_2, y)| \le c_1 \rho(x_1, x_2) + c_2 \delta.$$
 (8)

Доказательство. Проведем доказательство для игры $\Gamma_b^{**}(x, y)$. Пусть в некоторой ситуации E выбирает оптимальную стратегию ψ^* , а P выбирает стратегию $\bar{\phi}$, которая определяется следующим образом:

1. На первом шаге перемещаться из x_1 , в x_2 (по прямой, с максимальной скоростью), затратив при этом время

$$t_1 \leqslant \frac{\rho(x_1, x_2)}{u} + \delta.$$

- 2. Из позиции x_2 (то есть начиная с момента времени t_1) применять оптимальную стратегию ϕ^* в игре $\Gamma_\delta^{l*}(x_2,y)$ по отношению к «следу» игрока E с запаздыванием t_1 , то есть преследовать точку E^* , местоположение \tilde{y} (t) которой в момент времени $t\geqslant t_1$ совпадает с $y^*(t-t_1)$, где $y^*(t)$ траектория игрока E в ситуации ($\bar{\phi}$, ψ^*). Преследование «следа» E^* продолжается до его l-поимки. Время преследования следа обозначим через t_2 , очевидно, что $t_2\leqslant \leqslant V_\delta^{l*}(x_2,y)$.
- 3. Начиная с момента времени $t_1 + t_2$ оптимально в игре Γ_δ^{**} преследовать игрока E.

Очевидно, что

$$\rho\left(y^{*}\left(t-t_{1}\right),\ y^{*}\left(t\right)\right)\leqslant vt_{1}\leqslant v\left(\frac{\rho\left(x_{1},\ x_{2}\right)}{u}+\delta\right),$$

поэтому в момент поимки "следа", $t = t_1 + t_2$, из неравенства треугольника будем иметь

$$\rho\left(x\left(t\right), y^{*}\left(t\right)\right) \leq l + v\left(\frac{\rho\left(x_{1}, x_{2}\right)}{u} + \delta\right)$$

(здесь x (t), y^* (t) траектории игроков P и E в ситуации ($\bar{\phi}$, ψ^*). По лемме 5 I-поимка в ситуации ($\bar{\phi}$, ψ^*) произойдет за время

$$T \leq \frac{\rho(x_1, x_2)}{u} + \delta + V_{\delta}^{1*}(x_2, y) + \frac{v}{u - v} \left(\frac{\rho(x_1, x_2)}{u} + \delta \right) + \delta = c_1 \rho(x_1, x_2) + c_2 \delta + V_{\delta}^{1*}(x_2, y).$$

Стратегия $\overline{\phi}$ не принадлежит классу допустимых стратегий игрока P в игре Γ_δ^{+*} , поскольку для ее реализации на каждом шаге используется информация о местоположении игрока E на предыдущих шагах. Построим стратегию $\overline{\phi}$, являющуюся допустимой в игре Γ_δ^{+*} и такую, что время преследования в ситуациях $(\overline{\phi}, \psi^*)$ и $(\overline{\phi}, \psi^*)$ одно и то же. Пусть $\left((x(t), y^*(t))\right)$ траектории игроков в ситуации $(\overline{\phi}, \psi^*)$. Тогда положим $\overline{\phi} = \overline{\phi}$ вдоль траектории $(x(t), y^*(t))$, а в остальных точках значения $\overline{\phi}$ могут быть произвольными. Очевидно, что стратегия $\overline{\phi}$ обладает требуемым свойством, следовательно,

$$T(\overline{\varphi}, \psi^*) = T(\overline{\overline{\varphi}}, \psi^*) \geqslant V_{\delta}^{1*}(x_1, y).$$

Отсюда получаем, что

$$V_{\delta}^{1*}(x_1, y) \leq c_1 \rho(x_1, x_2) + c_2 \delta + V_{\delta}^{1*}(x_2, y),$$

таким же образом можно показать, что

$$V_{\delta}^{1*}(x_2, y) \leq c_1 \rho(x_1, x_2) + c_2 \delta + V_{\delta}^{1*}(x_1, y),$$

что дает нам

$$|V_{\delta}^{1*}(x_1, y) - V_{\delta}^{2*}(x_2, y)| \le c_1 \rho(x_1, x_2) + c_2 \delta.$$

Вследствие леммы 3 та же оценка справедлива и для игры Γ_δ^1 . Доказательство леммы для игр Γ_δ^2 , Γ_δ^{2*} вполне аналогично приведенному. Лемма доказана.

Приведем без доказательства следующую лемму.

Лемма 7. Для любой траектории игрока E, y (t), e игре Γ_{δ} найдется ломанная траектория c длиной звена $v\delta$, y_{δ} (t) такая, что $\rho\left(y\left(t\right),\ y_{\delta}\left(t\right)\right)\leqslant2v\delta$, для ecex $t\geqslant0$ и $y\left(0\right)=y_{\delta}\left(0\right)$.

Траекторию $y_{\delta}(t)$ мы будем называть сопутствующей траектории y(t), а точку, перемещающуюся согласно закону $y_{\delta}(t)$ — сопутствующим убегающим. Сопутствующего убегающего будем обозначать \tilde{E} .

Доказательство теоремы 2. Пусть E выбирает оптимальную стратегию ψ^* в игре $\Gamma_b^1(x,y)$, а P выбирает стратегию $\bar{\phi}$, которая определяется следующим образом:

- 1. Первый шаг делается произвольно из x в x_1 . При этом E переходит в точку y_1 .
- 2. Из позиции x_1 P начинает оптимально в игре Γ_8^2 (x_1, y) преследовать какой-либо след \tilde{E}^* (с запаздыванием δ) сопутствующего убегающего \tilde{E} (такая стратегия действительно осуществима в игре Γ_8^l (x, y), если предположить, что игрок P имеет информацию о предыдущих шагах игрока E). Тогда через время $t_1 \leq V_8^2$ (x_1, y) произойдет l-поимка \tilde{E}^* , то есть будет ρ $(P, \tilde{E}^*) \leq l$. Так как

$$ho(\tilde{E},\ \tilde{E}^*) < v\delta$$
 н $ho(\tilde{E},\ E) < 2v\delta$,

m

$$\rho(P, E) < 3v\delta + l$$
.

3. Начиная с момента времени $\delta+t_1$ преследовать оптимально игрока E (в игре Γ^1_δ). По лемме 5 l-поимка игрока E произойдет за время $t_2 < \frac{3v\delta}{1-v} + \delta$.

Итак, в ситуации ($\bar{\phi}$, ψ^*), P ловит E за время

$$T(\bar{\varphi}, \ \psi^*) = \delta + t_1 + t_2 \le V_{\delta}^2(x_1, \ y) + \frac{3v\delta}{u - v} + 2\delta.$$

По лемме 6

$$V_{\delta}^2(x_1,\ y)\leqslant V_{\delta}^2(x,\ y)+c_1\,\rho\,(x_1,\ x_2)+c_2\,\delta=V_{\delta}^2(x,\ y)+c_1\,v\delta+c_2\,\delta,$$

отсюда

$$T(\bar{\varphi}, \psi^*) \leq V_{\delta}^2(x, y) + c\delta.$$

Стратегия $\bar{\phi}$ не принадлежит классу допустимых стратегий игрока P в игре Γ_b^1 , поскольку для ее реализации на каждом шаге используется информация о местоположении игрока на предыдущих шагах, однако, так же как и при доказательстве леммы 6 можно утверждать, что существует такая допустимая стратегия $\bar{\phi}$ (см. определение стратегии $\bar{\phi}$ в лемме 6), что

$$T(\bar{\varphi}, \psi^*) = T(\bar{\varphi}, \psi^*),$$

и поскольку

$$T(\overline{\Phi}, \ \psi^*) \geqslant V_{\delta}^1(x, y),$$

 $T(\overline{\Phi}, \ \psi^*) \geqslant V_{\delta}^1(x, y),$

то есть

$$V_{\delta}^{1}(x, y) \leq V_{\delta}^{2}(x, y) + c\delta$$
,

однако

$$V_{\delta}^{2}(x, y) \leq V_{\delta}^{1}(x, y),$$

отсюда

$$|V_{\delta}^{1}(x, y) - V_{\delta}^{2}(x, y)| < c\delta.$$
 (9)

Поскольку по лемме 4 существует

$$\lim_{n\to\infty}V_{\frac{8}{2^n}}^1(x, y)=V(x, y),$$

то из (9) и теоремы 1 следует утверждение теоремы 2.

Если существует значение одновременной игры $\Gamma_{\delta},\ V_{\delta}$ (в смещанных стратегиях), то очевидно

$$V_{\delta}^2(x, y) \leqslant V_{\delta}(x, y) \leqslant V_{\delta}^1(x, y).$$

Поскольку из теоремы 2 имеем

$$\lim_{\delta \to 0} V_{\delta}^{1}(x, y) = \lim_{\delta \to 0} V_{\delta}^{2}(x, y),$$

TO

$$\lim_{\delta\to 0} V_{\delta}(x, y) = V(x, y).$$

Предельную функцию V(x,y) естественно назвать обобщенным значением (см. по этому поводу [2], [3]) дифференциальной игры "простое преследование".

Предложенный теоретико множественный подход к игровым задачам преследования позволяет доказать сходимость (существование обобщенного значения игры) и для более общих дифференциальных игр преследования в ограниченных областях. Существенным является допущение (1), которое является условием на радиус поимки (оно исключает почечную поимку); условие u > v (скорость преследователя превосходит скорость преследуемого), которое в более общих дифференциальных играх (с независимыми движениями) должно быть сохранено и существование значения игры преследования во всем пространстве (без наличия ограничения на возможные перемещения игроков), которое использовалось для оценок в леммах 5 и 6.

Задача для исследования 1.

Используя предыдущие замечания показать, что сходимость (существование обобщенного значения игры) может быть доказана и для более общих дифференциальных игр преследования с независимыми движениямы.

Задача для исследования 2.

Являются ли оптимальные стратегии в одновременной игре Γ_{δ} , ϵ — оптимальными в дифференциальной игре (как это имеет место, например, в [4])?

г. Ленинград

Поступило в редакцию 8. VII. 1967

ЛИТЕРАТУРА

- 1. И. М. Яглом, В. Г. Болтянский, Выпуклые фигуры, М., 1951.
- 2. Л. А. Петросян, Обобщенные решения дифференциальных игр преследования на выживание, Экономика и математические методы, № 3, 1967.
- W. H. Fleming, The convergence problem for differential games, Ann. Math. Studies, N 52, 1964.
- 4. W. H. Fleming, Differential games with prescribed duration. Ann. Math. Studies, N 37, 1957.

AIBIU TEORIJA IR PERSEKIOJIMO UŽDAVINIAI

B. Šojchetas, L. Petrosianas

(Reziumé)

Nagrinėjami "paprasto judėjimo" n-matėje Euklido erdvėje diferencialiniai lošimai. Naudojantis aibių teorijos metodais, įrodomas diskretinių lošimų reikšmių konvergavimas. Jų ribą galima laikyti diferencialinio lošimo reikšme.

THE SET THEORETICAL APPROACHE TO THE PROBLEMS OF PURSUIT

B. Shoykhet, L. Petrosjan

(Summary)

We investigate the simple motion differential pursuit games in a closed convex set in the \mathbb{R}^n space. Using set theoretical argumentation we prove that the values of the discrete versions of the game converge to a limit which can be assumed as generalized value of the differential game.