1968

УДК - 512.25+519.3:30.115

ДИХОТОМИЧЕСКАЯ ЗАДАЧА ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ ДЛЯ СТРОГО ВЫПУКЛЫХ ФУНКЦИЙ. II

В. Б. БИСТРИЦКАС

Рассматриваются некоторые свойства областей решения и их границ для дихотомического процесса f(x, y), определенного в [1], когда функции A(x) и B(y) — строго выпуклые. Обозначения и определения, которые здесь при водятся, даны в [1]. Формулы (N) и леммы N из [1] обозначим (N), и N_t .

Аналогично лемме 6, доказывается следующая лемма

Лемма 1. Пусть $\alpha(x_1) \geqslant \beta(y_1)$

1) тогда и только тогда существует такая однозначная функция $y=ar{q}(x),\ y_1\leqslant ar{q}(x)\leqslant ar{Y},\$ что

$$p_1 A(x) = (1 - p_1) \beta(\bar{q}(x))$$
 (1)

для некоторого $x \in [x_0 \ \overline{X}]$, когда $(1-p_1)\beta$ $(\overline{Y}) \geqslant p_1 A$ (x_0) . Функция $y = \overline{q}$ (x) — непрерывная монотонно возрастающая в интервале $[\overline{x_q}, \ \overline{x_q}]$, где

$$\begin{split} x_{q}^{-} &= \min \left\{ \ x : x_{0} \leqslant x < x_{2}, \quad p_{1} A \left(x \right) \geqslant \left(1 - p_{1} \right) \ \beta \left(y_{1} \right) \ \right\}, \\ \bar{x}_{q}^{-} &= \max \left\{ x : x_{2} \leqslant x \leqslant \overline{X}, \quad p_{1} A \left(x \right) \leqslant \left(1 - p_{1} \right) \ \beta \left(\overline{Y} \right) \ \right\}; \end{split}$$

2) в области $[x_0, \ \overline{X}] \times (y_1, \ \overline{Y}]$ выполняются соотношения

$$f_{AB^{\infty}}(x, y) \geqslant f_{B^{\infty}}(x, y) \rightleftarrows y_1 \leqslant y \leqslant \bar{q}^*(x)$$
 (2)

и

$$f_{AB^{\infty}}(x, y) < f_{B^{\infty}}(x, y) \rightleftharpoons \bar{q}^*(x) < y \leqslant \overline{Y},$$
 (3)

причем

$$f_{AB^{\infty}}(x, y) = f_{B^{\infty}}(x, y) \rightleftharpoons \mathbb{E} \bar{q}(x) \quad \text{if} \quad y = \bar{q}(x), \tag{4}$$

где непрерывная функция $ar{q}^*$ (x) определена соотношениями

$$\bar{q}^*\left(x\right) = \left\{ \begin{array}{ll} y_1 & \partial \varLambda \pi & x_0 \leqslant x < x_q^* \,, \\ \bar{q}\left(x\right) & \partial \varLambda \pi & x_q^* \leqslant x \leqslant \bar{x}_q^* \,, \\ \overline{Y} & \partial \varLambda \pi & \bar{x}_q^* < x \leqslant \overline{X} \end{array} \right.$$

 $npu (1-p_1)\beta (\overline{Y}) \geqslant p_1 A(x_0) u$

$$\bar{q}^*(x) = \bar{Y} \quad \partial_{\Lambda} x \quad x_0 \leqslant x \leqslant \bar{X}$$

 $npu (1-p_1)\beta(\vec{Y}) < p_1A(x_0);$

3) кроме того,

$$\bar{q}^*(x) \leqslant \bar{\varphi}^*(x) \quad \partial_{\Lambda} g \quad x_0 \leqslant x \leqslant x_2$$
 (5)

и

$$\bar{q}^*(x) \geqslant \bar{\varphi}^*(x) \quad \partial_{\Lambda R} \quad x_2 \leqslant x \leqslant \bar{X}.$$
 (6)

Лемма 2. Пусть $\alpha(x_1) \geqslant \beta(y_1)$. Тогда

$$\psi^*(x) \geqslant \varphi^*(x_1) \quad \partial_{\Lambda R} \ \textit{scex} \quad 0 \leqslant x \leqslant \overline{X}. \tag{7}$$

Доказательство. В силу утверждения 1) и определения $\psi^*(x)$

$$\min_{0\leqslant x\leqslant \bar{X}}\psi^*(x)=\psi^*(x_1).$$

Следовательно, остается показать, что

$$\psi^*\left(x_1\right) \geqslant \varphi^*\left(x_1\right). \tag{8}$$

На основании допущения $\alpha(x_1) \geqslant \beta(y_1)$ из $(9)_T$ заключаем

$$y_1 \geqslant \varphi^*(x_1)$$
.

Если не существует $\psi(x_1)$, то

$$\psi^*(x_1) = \overline{Y} \geqslant y_1 \geqslant \varphi^*(x_1).$$

Если не существует $\varphi(x_1)$, то из утверждения 1) леммы 3_1 и соотношения $(12)_r$ выводим

$$\psi^* (x_1) \geqslant y_0 \geqslant 0 = \varphi^* (x_1).$$

Докажем неравенство (8), когда $\exists \varphi (x_1)$ и $\exists \psi (x_1)$.

Выделим два случая:

а) $\phi(x_1) \leqslant r_2 y_1$. Согласно соотношению (II')_I

$$f_{A^{\infty}}(x, r_2 y) = f_{B^{\infty}}(x, r_2 y) \rightleftharpoons \exists \varphi(x) \quad \forall \quad y = \frac{\varphi(x)}{r_2}$$

Так как

$$f_{R\infty}(x, y) = p_2 B(y) + p_2 f_{R\infty}(x, r_2 y)$$

И

$$f_{BA^{\infty}}(x, y) = p_2 B(y) + p_2 f_{A^{\infty}}(x, r_2 y),$$

то ввиду последнего соотношения

$$f_{BA^{\infty}}(x, y) = f_{B^{\infty}}(x, y) \rightleftarrows \exists \varphi(x) \quad \mathsf{H} \quad y = \frac{\varphi(x)}{r_1}.$$

Поэтому

$$f_{BA} \propto \left(x_1, \frac{\varphi(x_1)}{r_2}\right) = f_{B} \propto \left(x_1, \frac{\varphi(x_1)}{r_2}\right).$$

Так как $\varphi(x_1) \leqslant \frac{\varphi(x_1)}{r_1} \leqslant y_1$, то из последнего и (9')₁ соотношений вытекает, что

$$f_{BA^{\infty}}\left(x_{1}, \frac{\varphi\left(x_{1}\right)}{r_{1}}\right) = f_{B^{\infty}}\left(x_{1}, \frac{\varphi\left(x_{1}\right)}{r_{1}}\right) \leqslant f_{A^{\infty}}\left(x_{1}, \frac{\varphi\left(x_{1}\right)}{r_{1}}\right)_{\text{onp.}} \equiv \alpha\left(x_{1}\right). \tag{9}$$

На основании (30)1

$$f_{BA^{\infty}}\left(x_1, \ \psi\left(x_1\right)\right) = f_{A^{\infty}}\left(x_1, \ \psi\left(x_1\right)\right)_{\text{one.}} \equiv \alpha\left(x_1\right).$$

Так как функция

$$f_{BA} \propto (x, y) = p_2 B(y) + p_2 \alpha(x)$$

монотонно возрастает по y при фиксированном x, то, сравнивая последнее и (9) неравенства, заключаем, что

$$\psi(x_1) \geqslant \frac{\varphi(x_1)}{r_2} \geqslant \varphi(x_1).$$

б) $r_2y_1 < \varphi(x_1)$. Так как $y_1 \geqslant \varphi(x_1)$, то в силу $(9')_1$ $f_{R^{\circ}}(x_1, y_1) \leqslant f_{A^{\circ}}(x_1, y_1)$.

Очевидно, в силу (10'),

$$f_{BA^{\infty}}(x, y) < f_{B^{\infty}}(x, y) \rightleftharpoons 0 \leqslant y < \frac{\varphi^*(x)}{r_0}$$

при $(x, r_2, y) \in [0, \bar{x}] \times [0, y_1]$. Таким образом, по предположению б)

$$f_{BA^{\infty}}(x_1, y_1) < f_{B^{\infty}}(x_1, y_1).$$

Отсюда и из предыдущего соотношения следует, что

$$f_{BA^{\infty}}(x_1, y_1) < f_{A^{\infty}}(x_1, y_1) \equiv \alpha(x_1).$$

Таким образом, из $(28)_{\rm I}$, $(30)_{\rm I}$ и $(9)_{\rm I}$ получаем

$$\psi(x_1) > y_1 \geqslant \varphi(x_1).$$

Лемма доказана.

Лемма 3. Пусть $\alpha(x_1) \geqslant \beta(y_1)$. Тогда

1) $ecnu f(x, y) = f_A(x, y), mo$

$$f_{\mathbf{A}}(x, y) = f_{\mathbf{A}^{\infty}}(x, y), \quad \kappa \circ \partial a(x, y) \in [0, x_0] \times [0, \overline{Y}]; \tag{10}$$

2) $ecnu f(x, y) = f_B(x, y)$, mo

$$f_B(x, y) = f_{B^{\infty}}(x, y), \ \kappa o z \partial a(x, y) \in [0, \overline{X}] \times [0, y_0];$$
 (11)

3) $ecnu(x, y) \in [0, \bar{X}] \times [0, \psi^*(x)], mo$

$$f(x, y) \neq f_{B^{m}A^{\infty}}(x, y)$$

$$m=1, 2 \dots$$
(12)

Замечание. Неравенство $f(x, y) \neq f_{\overline{S}}(x, y)$ означает, что либо $f(x, y) > f_{\overline{S}}(x, y)$, либо существует поведение $\overline{S} \neq S$, что

$$f(x, y) = f_{\tilde{S}}(x, y) = f_{S}(x, y).$$

Доказательство. Утверждения 1) и 2) следуют из соответствующих лемм 1 и 2 (см. [2]).

Для доказательства утверждения 3) достаточно показать неравенство

$$f_{B^m A^\infty}(x, y) \le \max \left[f_{B^\infty}(x, y), f_{B^{m-1} A^\infty}(x, y) \right],$$
 (12a)

когда

$$(x, y) \in [0, \overline{X}] \times [0, \psi^*(x)]; m = 1, 2, \dots, \text{ при } f(x, y) = f_{B^m A^\infty}(x, y).$$

По определению

$$f_{B^m A^\infty}(x, y) = p_2 B(y) + \cdots + p_2^{m-1} f_{BA^\infty}(x, r_2^{m-1} y)$$

и $0 \le r_2^{m-1} y \le \psi^*(x)$. В силу соотношений (28), и (11)

$$f_{BA^{\infty}}(x, r_2^{m-1}y) \leq f_{A^{\infty}}(x, r_2^{m-1}y)$$
, когда $y_0 \leq r_2^{m-1}y \leq \psi^*(x)$,

И

$$f_{BA^{\infty}}(x, r_2^{m-1}y) \leqslant f_{B^{\infty}}(x, r_2^{m-1}y)$$
, когда $0 \leqslant r_2^{m-1}y \leqslant y_0$,

при $0 \le x \le \bar{X}$. Отсюда вытекает соотношение (12a).

Лемма 4. Если $\alpha(x_1) \geqslant \beta(y_1)$, то

$$f(x, y) = \begin{cases} f_{B^{\infty}}(x, y) & \partial \Lambda R & 0 \leq y < \varphi^{*}(x), \\ f_{A^{\infty}}(x, y) & \partial \Lambda R & \varphi^{*}(x) \leq y \leq c, \\ 0 \leq x \leq x_{2}, \end{cases}$$
(13)

где

 $c = \min [y_1, \psi^*(x_1)]$

Доказательство. Докажем соотношение (13) для $0 \le x \le x_0$. Из утверждения 1) леммы 3 заключаем, что после выбора B в области $[0,x_0] \times [0,\tilde{Y}]$ оптимальное продолжение имеет вид, либо $B^m A^\infty$ ($m=0,1\ldots$), либо B^∞ , т. е. невозможно поведение вида $B^m A^n B\ldots$, $n \ge 1$. Поэтому из (11) и (12) имеем, что $0 \le x \le x_3$,

$$f(x, y) = \max \left[f_{A^{\infty}}(x, y), f_{B^{\infty}}(x, y) \right],$$

когда

$$(x, y) \in [0, x_0] \times [0, \psi^*(x)].$$
 (14)

Так как согласно лемме $2 \psi^*(x_1) \geqslant \varphi^*(x_1)$ и в силу допущения $\alpha(x_1) \geqslant \beta(y_1)$ из $(9)_1$ имеем $y_1 \geqslant \varphi^*(x_1)$, то

$$\min [\psi^*(x_1), y_1] \geqslant \varphi^*(x).$$

Отсюда и из (14) в соответствии с соотношениями (9) $'_{\rm I}$ и (10 $'_{\rm I}$) заключаем, что

$$f(x, y) = \begin{cases} f_{B^{\infty}}(x, y) & \text{для} \quad 0 \leq y < \varphi^{*}(x), \\ f_{A^{\infty}}(x, y) & \text{для} \quad \varphi^{*}(x) \leq y \leq c, \end{cases}$$
 (15)

 $0 \le x \le x_0$.

Теперь докажем соотношение (13) для $x_0 < x \le x_3$. Разобьем интервал $(r_1x_0, x_2]$ на интервалы вида

$$\left[\frac{x_0}{r_1^{n-1}}, \min\left(\frac{x_0}{r_1^n}, x_2\right)\right] = I_n,$$

$$n = 0, 1, \dots, N = \min\left\{m : \frac{x_0}{r_1^m} \geqslant x_2\right\}.$$
(16)

Так как согласно утверждению 2) леммы $4_1 x_2 = 0$, когда $x_1 = 0 = x_0$, то будем считать, что $x_1 > 0$. Допустив, что соотношение (13) установлено для I_n ($n = 0, 1, \ldots, \bar{n} - 1 < N$), докажем его и для $I_{\bar{n}}$.

Пусть x° — любая точка интервала $I_{\bar{n}}$. Покажем неравенство

$$\max \left\{ f_{B^{\infty}}(x^0, y), f_{A^{\infty}}(x^0, y) \right\} \geqslant f_{AB^{\infty}}(x^0, y)$$
 для $0 \leqslant y \leqslant c$. (17)

Согласно (68)

$$q^*(x^0) \geqslant \varphi^*(x^0),$$

ибо $x_0 < x^0 \le x_2$. Таким образом, на основании (63)₁

$$f_{B^{\infty}}(x^0, y) \geqslant f_{AB^{\infty}}(x^0, y)$$
 для $0 \leqslant y < \varphi^*(x^0)$.

Следовательно, остается доказать неравенство (17) для $\phi^*(x^0) \le y \le c$.

По определению

$$f_A(x^0, y) = p_1 \left[A(x^0) + f(r_1 x^0, y) \right].$$
 (19)

Так как $r_1 x^0 \in I_{n-1}$, то в силу предположения индукции

$$f(r_1 x^0, y) = f_{A^{\infty}}(r_1 x^0, y)$$
 для $\phi^*(r_1 x^0) \le y \le c$

(см. соотн. (13)). Но в силу (36б),

$$\varphi^*\left(r_1x^0\right)\!\leqslant\!\varphi^*\left(x^0\right)$$

и поэтому

$$f(r_1x^0, y) = f_{A^\infty}(r_1x^0, y)$$
 для $\phi^*(x^0) \le y \le c$.

Таким образом, на основании (18)

$$f_A(x^0, y) = f_{A^\infty}(x^0, y) \geqslant f_{AB^\infty}(x^0, y)$$
 для $\phi^*(x^0) \leqslant y \leqslant c$.

Соотношение (17) доказано.

Так как $r_1 x^0 \in I_{n-1}$, то по определению для него верно (13). Поэтому

$$f_A(x^0, y) = \max \left[f_{A^{\infty}}(x^0, y), f_{AB^{\infty}}(x^0, y) \right]$$
 для $0 \le y \le c$.

На основании же соотношения (17) при $f(x, y) = f_A(x, y)$

$$f_A(x, y) = f_{A^{\infty}}(x, y)$$
 когда $(x, y) \in I_h \times [0, c]$.

Также как и выше (см. (14) и (15)) из неравенства (12) заключаем, что при $f(x, y) = f_{\mathbf{R}}(x, y)$

$$f_{B}(x, y) = f_{B^{\infty}}(x, y)$$
, KOTA($(x, y) \in I_{n} \times [0, c]$.

Из последних двух соотношений выводим

$$f(x, y) = \max \left[f_{A^{\infty}}(x, y), f_{B^{\infty}}(x, y) \right]$$
 для $(x, y) \in I_{\tilde{n}} \times [0, c]$.

Отсюда в силу неравеснтв $\phi^*(x) \leq c$, $(9')_I$ и $(10')_I$ получаем соотношение 13) для всех $x \in I_n$. Этим процесс индукции заканчивается.

При $x_2 < \overline{X}$ имеет место следующая лемма.

Лемма 5. Если $\alpha(x_1) \ge \beta(y_1)$, то

$$f(x, y) = \begin{cases} f_{B^{\infty}}(x, y) & \partial \Lambda R & 0 \leq y < q^{*}(x), \\ f_{A}(x, y) & \partial \Lambda R & q^{*}(x) \leq y \leq c, \end{cases}$$
(19)

$$x_2 < x \leq \overline{X}$$
,

причем

$$f(x, y) = f_{B^{\infty}}(x, y) = f_{AB^{\infty}}(x, y), \text{ когда } \exists q(x) u \ y = q(x).$$
 (19')

Локазательство. Покажем, что

$$f_R(x, y) = f_{R^{\infty}}(x, y) \quad \partial_{\Lambda} g(x, y) \in (x_2, \overline{X}) \times [0, c]$$
 (20)

при $f(x, y) = f_B(x, y) > f_A(x, y)$. Пусть это не так, т. е. существуют числа $m \geqslant 1$ и $x^o \in [x_2, \overline{X}]$, что

$$f(x^0, y) = f_{B^m A}(x^0, y) > \max[f_A(x^0, y), f_{B^\infty}(x^0, y)],$$
 когда $0 \le y \le c.$ (21)

Тогда по определению $f_{R^m,A}(x^0, y)$

$$f(x^0, y) = f_{B^m A}(x^0, y) = p_2 B(y) + \cdots + p_2^{m-1} f_{BA}(x^0, r_2^{m-1} y).$$
 (22)

Согласно соотношениям $(50)_{I}$, $(51)_{I}$ и определению c

$$c \leq \psi^* (x_2) = y^* (x_2) \leq y^* (x^0).$$

Таким образом, на основании (45)1

$$f_{BA}(x^0, r_2^{m-1}y) \leq f_{AB}(x^0, r_2^{m-1}y),$$

когда $y_0 \leqslant r_2^{m-1} y \leqslant c$. Имея в виду (22), получаем

$$f(x^0, y) = f_{B^m A}(x^0, y) \le f_{B^{m-1}AB}(x^0, y)$$
, когда $y_0 < r_2^{m-1} y \le c$.

Отсюда следует, что

$$f(x^0, y) = f_{B^m A}(x^0, y) \le f_{AB^m}(x^0, y)$$
, когда $y_0 < r_2^{m-1} y \le c$.

Но это противоречит допущению (21). Если же $0 \le r_2^{m-1} y \le y_0$, то тогда из 22) вытекает

$$f(x^0, r_2^{m-1}y) = f_B(x^0, r_2^{m-1}y) = f_{BA}(x^0, r_2^{m-1}y).$$

Поэтому в силу (11)

$$f(x^0, r_2^{m-1}y) = f_{B^\infty}(x^0, r_2^{m-1}y) = f_{BA}(x^0, r_2^{m-1}y).$$

Подставляя полученное выражение в (22), имеем

$$f(x^0, y) = f_{B^{\infty}}(x^0, y) \ge f_{B^m A}(x^0, y), \quad 0 \le r_2^{m-1} y \le y_0,$$

что опять противоречит соотношению (21). Итак, полученное противоречие устанавливает справедливость соотношения (20).

Используя соотношения (20) и (13), заключаем, что

$$f_A(x, y) = \max [f_{A^{\infty}}(x, y), f_{A^SB^{\infty}}(x, y)],$$

$$1 \le s \le \max \{m : r_1^{m-1} x > x_2\} = m_1,$$
(23)

когда $(x, y) \in (x_2, \overline{X}] \times [0, c]$. По определению

$$f_{A^S B^{\infty}}(x^0, y) = p_1 A(x^0) + \cdots + p_1^{s-1} f_{AB^{\infty}}(r_1^{s-1} x^0, y),$$

$$f_{A^{s-1} B^{\infty}}(x^0, y) = p_1 A(x^0) + \cdots + p_1^{s-1} f_{B^{\infty}}(r_1^{s-1} x^0, y),$$

где x^0 — произвольная точка интервала $(x_2, \bar{X}]$. Отсюда при помощи (63) получаем, что

$$f_{A^{s}_{B^{\infty}}}(x^{0}, y) \leq f_{A^{s-1}_{B^{\infty}}}(x^{0}) \rightleftharpoons 0 \leq y < q^{*}(r_{1}^{s-1}_{1}x^{0}).$$

Так как согласно лемме 7т

$$q^*(r_1^{s-1}x^0) \geqslant q^*(r_1^{s-2}x^0) \geqslant \cdots \geqslant q^*(x^0),$$

TO

$$f_{A^SB^\infty}(x^0, y) \leqslant f_{A^{S-1}B^\infty}(x^0, y)$$
 при $0 \leqslant y \leqslant q^*(x^0)$.

Таким образом, формулы $(63)_I$ и $(10')_I$ дают

$$f_{B^{\infty}}(x^0, y) \ge \max \left[f_{A^{\infty}}(x^0, y), f_{A^S B^{\infty}}(x^0, y) \right], s = 1, 2, \dots, m_1,$$

когда $0 \le y < q^*(x^0)$, ибо в силу $(69)_1 \varphi^*(x^0) \ge q^*(x^0)$. Из соотношений $(64)_1$ и $(64')_1$ получаем, что

$$f_{AB^{\infty}}(x^0, y) \geqslant f_{B^{\infty}}(x^0, y), \quad q^*(x^0) \leqslant y \leqslant c.$$

Следовательно, последние два соотношения на основании (20) и (23) означают также и соотношение (19).

Покажем соотношение (19'). В силу (19)

$$f(x, q(x)) = p_1 A(x) + p_1 f(r_1 x, q(x)).$$

Если $r_1x \geqslant x_2$, то согласно утверждению 1) леммы 7_1 $\exists q \ (r_1x)$ и $q \ (r_1x) > q \ (x)$. Опять применяя (19), из предыдущего соотношения выводим, что

$$f(x, q(x)) = p_1 A(x) + p_1 f_{B^{\infty}}(r_1 x, q(x)) = f_{AB^{\infty}}(x, q(x)).$$

Отсюда и при помощи (65)_г следует (19') при $r_1x > x_2$.

Пусть $r_1 x \leq x_2$. Тогда ввиду (70)_г и (376)_г

$$q(x) < \varphi^*(x) \le \varphi^*(r_1 x)$$
.

Поэтому на основании (13) и (65) г

$$f\left(x, q\left(x\right)\right) = f_{AB^{\infty}}\left(x, q\left(x\right)\right) = f_{B^{\infty}}\left(x, q\left(x\right)\right).$$

Лемма доказана.

Лемма 6. Пусть $\alpha(x_1) \geqslant \beta(y_1)$. Тогда:

1) если $\phi^*(x^*) \leq r_2 \bar{\phi}^*(x^*)$ для некоторого $x^* \in [0, \bar{X}]$, то

$$f(x^*, y) \neq f_{\mathcal{B}^{\infty}}(x^*, y), \quad \kappa o c \partial a \quad c < y \leqslant Y, \quad \tilde{\varphi}^*(x^*) \neq 0,$$
 (24)

и

$$\psi^*\left(x^*\right) \leqslant \hat{\varphi}^*\left(x^*\right);\tag{25}$$

2) если
$$\phi^*(x^*) \ge r_2 \bar{\phi}^*(x^*)$$
 для некоторого $x^* \in [0, \overline{X}]$, то $\psi^*(x^*) \ge \bar{\phi}^*(x^*)$. (26)

До казательство. Согласно соотношениям (9'), и (23),

$$f_{A^{\infty}}(x^*, y) \geqslant f_{B^{\infty}}(x^*, y) \rightleftharpoons \varphi^*(x^*) \leqslant y \leqslant \tilde{\varphi}^*(x^*).$$
 (26')

Так как $\phi^*(x^*) \leqslant c$, то соотношение (24) достаточно доказать для $\bar{\phi}^*(x^*) < < y \leqslant \bar{Y}$.

Пусть y^* — любая точка интервала ($\tilde{\phi}^*(x^*)$, \bar{Y}]. Тогда по определению

$$f_{B^{\infty}}(x^*, y^*) = p_2 B(y^*) + \cdots + p_2^t f_{B^{\infty}}(x^*, r_2^t y^*),$$

где

$$t = \min \{m : m \ge 1, \quad r_2^m y \le \bar{\varphi}^* (x^*)\}.$$

Ввиду допущения

$$\varphi^*(x^*) \leqslant r_2 \, \overline{\varphi}(x^*)$$

$$\varphi^*(x^*) \leqslant r_2^t y^* \leqslant \bar{\varphi}^*(x^*),$$

ибо

$$r_2^{t-1} y^* > \bar{\varphi}^* (x^*).$$

Поэтому в силу (26')

$$f_{B^{\infty}}(x^*, y^*) \leq f_{B^l A^{\infty}}(x^*, y^*);$$

и этим соотношение (24) доказано.

Докажем неравенство (25). Если функция $\tilde{\phi}$ (x) не существует в точке x^* , то по определению $\tilde{\phi}^*$ (x^*) = \overline{Y} , откуда

$$\psi^*(x^*) \leqslant \widetilde{Y} = \bar{\varphi}^*(x^*).$$

Остается рассмотреть случай, когда $\bar{\phi}^*(x^*) = \bar{\phi}(x^*)$. В силу (23), и (9'), получаем, что

$$f_{BA^{\infty}}(x^*, y) \geqslant f_{B^{\infty}}(x^*, y) \rightleftharpoons \frac{y_1}{r_1} \leqslant y \leqslant \frac{\bar{\varphi}(x^*)}{r_1}$$

И

$$f_{BA^{\infty}}(x^*, y) \geqslant f_{B^{\infty}}(x^*, y) \rightleftharpoons \frac{\varphi^*(x^*)}{r_a} \leqslant y \leqslant \frac{y_1}{r_a}$$

Так как $\hat{\phi}^*(x^*) \leqslant r_x \hat{\phi}(x^*)$, то на основании последних двух и соотношения (25), выводим, что

$$f_{BA^{\infty}}\left(x^{*},\ \bar{\phi}\left(x^{*}\right)\right) \geqslant f_{B^{\infty}}\left(x^{*},\ \bar{\phi}\left(x^{*}\right)\right) = f_{A^{\infty}}\left(x^{*},\ \bar{\phi}\left(x^{*}\right)\right) \equiv \alpha\left(x^{*}\right).$$

Соотношение (28), дает, что

$$f_{BA^{\infty}}\left(x^{*}, \ \psi^{*}\left(x^{*}\right)\right) \leqslant f_{A^{\infty}}\left(x^{*}, \ \psi^{*}\left(x^{*}\right)\right) \equiv \alpha\left(x^{*}\right).$$

Из последних двух неравенств имеем, что

$$\psi^*(x^*) \leq \tilde{\varphi}(x^*)$$
.

ибо функция

$$f_{BA^{\infty}}(x^*, y) = p_2 B(y) + p_2 \alpha(x^*)$$

монотонно возрастает в интервале (y_0 , \overline{Y}) при фиксированном x. Итак, соотношение (25) доказано.

Перейдем к доказательству утверждения 2). Так как $\psi^*(x^*) = \overline{Y}$, когда $\psi^*(x^*)$ не существует, и $\phi^*(x^*) = 0$, когда $\phi(x^*)$ не существует, то

$$\vec{\varphi}(x^*) \leqslant \vec{Y} = \psi^*(x^*)$$

И

$$r_2 \bar{\varphi}^* (x^*) \leq \varphi^* (x^*) = 0 \leq \psi^* (x^*).$$

Следовательно, остается рассмотреть случай, когда $\exists \phi \ (x^*)$ и $\exists \psi \ (x^*)$. Так как

$$f_B(x^*,\bar{\varphi}^*(x^*)) = p_2 B(\bar{\varphi}^*(x^*)) + p_2 f(x, r_2 \bar{\varphi}^*(x^*))$$

и $r_2\bar{\phi}^*(x^*) \leqslant \varphi(x^*)$, то в силу (13) и (11')_г

$$f\left(x,r_{2}\tilde{\varphi}^{*}(x^{*})\right)=f_{B^{\infty}}\left(x^{*},r_{2}\tilde{\varphi}^{*}(x^{*})\right).$$

Таким образом,

$$f_{B^{\infty}}\left(x^*, \bar{\varphi}^*(x^*)\right) \geqslant f_{BA^{\infty}}\left(x^*, \bar{\varphi}^*(x^*)\right)$$
.

В соответствии с (23),

$$f_{A^{\infty}}\left(x^{*}, \, \bar{\varphi}^{*}(x^{*})\right) \geqslant f_{B^{\infty}}\left(x^{*}, \, \, \tilde{\varphi}\left(x^{*}\right)\right).$$

Сравнивая последние два соотношения, получаем, что

$$f_{A^{\infty}}\left(x^*,\bar{\varphi}^*(x^*)\right) \geqslant f_{BA^{\infty}}\left(x^*,\bar{\varphi}^*(x^*)\right)$$

Теперь ввиду (28)

$$\overline{\varphi}^*(x^*) \leq \psi^*(x^*).$$

Лемма доказана.

Лемма 7. Пусть $\alpha(x_1) \geqslant \beta(y_1)$. Тогда:

1) если $\phi^*(x_1) \leq r_2 \tilde{\phi}^*(x_1)$, то

$$f(x, y) = \begin{cases} f_{A^{\infty}}(x, y) & \partial \Lambda R & c \leq y \leq \psi^{*}(x), \\ f_{B}(x, y) & \partial \Lambda R & \psi^{*}(x) < y \leq \overline{Y} \end{cases}$$
 (27)

 $0 \le x \le x_0$:

2) $ecnu \ \varphi^* (x_1) \geqslant r_2 \bar{\varphi}^* (x_1), \ models$

$$f(x, y) = \begin{cases} f_{A^{\infty}}(x, y) & \partial_{\Lambda} R & c \leq y \leq M^{*}(x), \\ f_{B}(x, y) & \partial_{\Lambda} R & M^{*}(x) < y \leq \widetilde{Y}, \end{cases}$$

$$0 \leq x \leq x_{2},$$
(28)

где $M^*(x)$ — непрерыная функция, удовлетворяющая соотношению

$$r^*(x) = \begin{cases} \psi^*(x) & \partial \Lambda R & 0 \le x \le \bar{x}_1, \\ \bar{\varphi}^*(x) & \partial \Lambda R & \bar{x}_1 \le x \le \bar{x}_2, \\ \psi^*(x), & \bar{x}_2 \le x \le x_2; \end{cases}$$

$$(29)$$

$$\bar{x}_1 = \min \left\{ x : 0 \leqslant x \leqslant x_1, \quad \varphi^*(x) \geqslant r_2 \bar{\varphi}^*(x) \right\},$$

$$\bar{x}_2 = \max \left\{ x : x_1 \leqslant x \leqslant x_2, \quad \varphi^*(x) \geqslant r_2 \bar{\varphi}^*(x) \right\}.$$
(30)

Доказательство. Докажем неравенство

$$f_{AB^{\infty}}(x, y) \leqslant \max \left[f_{A^{\infty}}(x, y), f_{B^{\infty}}(x, y) \right], \tag{31}$$

когда $(x, y) \in [x_0, x_2] \times [y_1, \bar{y}]$. Пусть x^0 — любая точка интервала $[x_0, x_2]$. Тогда согласно (36a),

$$\bar{\varphi}^*(x^0) \leqslant \bar{\varphi}^*(r_1x^0)$$

и поэтому, на основании (23),

$$f_{\mathcal{B}^{\infty}}(r_1 x^0, y) \le f_{\mathcal{A}^{\infty}}(r_1 x^0, y)$$
 при $y_1 \le y \le \bar{\varphi}^*(x^0)$. (32)

По определению

$$f_{AB\infty}(x^0, y) = p_1 A(x^0) + p_1 f_{B\infty}(r_1 x^0, y).$$

Следовательно, ввиду (32)

$$f_{AB^{\infty}}(x^0, y) \leq f_{A^{\infty}}(x^0, y), \quad y_1 \leq y \leq \tilde{\varphi}^*(x^0).$$

Так как в силу (5)

$$\bar{q}^*(x^0) \leqslant \bar{\varphi}^*(x^0),$$

TO

$$f_{AB^{\infty}}(x^0, y) \leqslant f_{A^{\infty}}(x^0, y)$$
 при $y_1 \leqslant y \leqslant \bar{q}^*(x^0)$.

Кроме того, на основании (3) имеем, что

$$f_{AB^{\infty}}(x^0, y) \leq f_{B^{\infty}}(x^0, y)$$
 при $\bar{q}^*(x^0) < y \leq \bar{Y}$.

Из последних двух неравенств следует соотношене (31).

При доказательстве леммы нам понадобится еще такое неравенство:

$$f(x, y) \neq f_{AB^m A^{\infty}}(x, y),$$
 (33)
 $m = 1, 2,$

когда $(x, y) \in [x_0, x_2] \times [c, \overline{Y}]$. Обозначим через x^0 произвольную точку интервала $[x_0, x_2]$. Тогда согласно $(36)_1^c$

$$\psi^*(x^0) \leq \psi^*(r_1x^0).$$

По определению

$$f_{AB^{m}A^{\infty}}(x^{0}, y) = p_{1}A(x^{0}) + p_{1}f_{B^{m}A^{\infty}}(r_{1}x^{0}, y).$$

Поэтому на основании неравенства (12)

$$f_{AB^m}_{A^{\infty}}(x^0, y) \neq f(x^0, y),$$

когда $c\leqslant y\leqslant \psi^*$ (x^0). Далее, используя соотношение (46)₁, получаем, что

$$f_{AB^m}_{A^\infty}(x^0, y) < f_{BAB^{m-1}}_{A^\infty}(x^0, y)$$
 при $y^*(x^0) < y \leqslant \bar{Y}$.

Так как ввиду $(50)_1$ $y^*(x^0) \leqslant \psi^*(x^0)$, то последние два неравенства дают сооотношение (33).

Перейдем к доказательству утверждения 1). Так как согласно (10) при $f(x, y) = f_A(x, y)$

$$f_A(x, y) = f_{A^{\infty}}(x, y)$$
, когда $(x, y) \in [0, x_0] \times [c, \overline{Y}]$,

TO

$$f(x, y) = \max \left[f_{A^{\infty}}(x, y), f_{B^{m}A^{\infty}}(x, y), f_{B^{\infty}}(x, y) \right],$$
 (34)

когда $(x, y) \in [0, x_0] \times [c, \overline{y}], m \ge 1$. Из утверждений 1) лемм l_1 и 2_7 и соотношений $(12)_7$ и $(26)_1$ следует, что

$$r_2 \overline{\phi}^*(x) > \phi^*(x)$$
 для всех $0 \le x \le \overline{X}$,

когда $r_2\bar{\phi}^*(x_1)>\phi^*(x_1)$. Поэтому при помощи (24) можем написать, что

$$f(x, y) \neq f_{B^{\infty}}(x, y)$$
 для $(x, y) \in [0, \bar{X}] \times (c, \bar{Y}].$ (35)

Таким образом, из соотношения (34) следует, что

$$f(x, y) = \max \left[f_{A^{\infty}}(x, y), f_{B^{m} A^{\infty}}(x, y) \right]$$
(36)

при

$$c < y \leq \overline{Y}; \quad 0 \leq x \leq x_0; \quad m \geqslant 1.$$

Покажем, что соотношение (36) справедливо и для $x_0 \leqslant x \leqslant x_2$. Разобьем интервал $(r_1x_0, x_2]$ на интервалы I_i , $i=0, 1, \ldots, N$.

Для любого $x \in I_0$ соотношение (36) установлено. Докажем соотношение (36) для всех $x \in I_n$ в предположении, что оно верно для I_i ; $i = 0, \ldots, n-1$. По определению

$$f_A(x, y) = p_1 A(x) + f(r_1 x, y).$$

Так как из $x \in I_n$ следует, что $r_1x \in I_{n-1}$, то согласно предположению индукции

$$f_A(x, y) = \max \left[f_{A^{\infty}}(x, y), \ f_{AB^mA^{\infty}}(x, y) \right] \quad \text{для} \quad (x, y) \in I_n \times (c, \widetilde{Y}].$$

Отсюда на основании (33) вытекает, что при $f(x, y) = f_A(x, y)$

$$f_A(x, y) = f_{A^{\infty}}(x, y)$$
 для $(x, y) \in I_n \times (c, \overline{Y}].$

Имея в виду соотношение (35), заключаем, что

$$f(x, y) = \max \left[f_{A^{\infty}}(x, y), f_{B^{m}A^{\infty}}(x, y) \right],$$

когда $(x,y) \in I_n \times (c, \overline{Y}]$. Этим процесс индукции закончен. Итак,

$$f(x, y) = \max \left[f_{A^{\infty}}(x, y), f_{B^{m}A^{\infty}}(x, y) \right],$$

когда $(x, y) \in [0, x_2] \times (c, \overline{Y}]$. Отсюда согласно (12)

$$f_{A^{\infty}}\left(x,\ y\right)\geqslant f_{B^{m}A^{\infty}}\left(x,\ y\right)$$
 для $\left(x,\ y\right)\in\left[0,\ x_{2}\right]\times\left(c,\ \psi^{*}\left(x\right)\right].$

Кроме того, в силу (29)т

$$f_{A^{\infty}}(x, y) < f_{BA^{\infty}}(x, y)$$
 для $(x, y) \in [0, x_2] \times (\psi^*(x), \overline{Y}].$

Следовательно, последние два неравенства завершают доказательство (27). Так как по (30)

$$\phi^*(x) < r_2 \tilde{\phi}^*(x)$$
 для всех $0 \leqslant x < \hat{x}_1$,

то доказательство соотношения (28) в области $[0, \bar{x}_1) \times [c, \bar{y}]$ проводится аналогично (27).

Далее, производя стандартное разбиение интервала $(r_1, \bar{x}_1, x_2]$ на интервалы вида

$$\begin{split} \bar{I}_i &= \left(\frac{\bar{x}_1}{r_1^{i-1}}, \quad \min\left(\frac{\bar{x}_1}{r_1^i}, x_2\right)\right], \quad i = 0, 1, \ldots, i_0; \\ i_0 &= \min\left\{i : \frac{\bar{x}_1}{r_1^i} > x_2\right\} \end{split}$$

при $\bar{x}_1\neq 0$, по индукции докажем соотношение (28) для $\bar{x}_1\leqslant x\leqslant x_2$. Очевидно, что соотношение (28) для всех $x\in \bar{I}_0$ установлено. Предположив, что соотношение (28) верно для всех $x\in \bar{I}_1$ ($i=1,\ldots,n-1$), докажем его для всех $x\in \bar{I}_n$. Пусть x^0 — произвольная точка интервала \bar{I}_n . Тогда согласно предположению (см. соотн. (28))

$$f(x^0, y) = \max \left[f_{A^{\infty}}(x^0, y), f_{AB^m A^{\infty}}(x^0, y), f_{AB^{\infty}}(x^0, y) \right],$$

когда $c < y \le \overline{Y}$, при $f(x^0, y) = f_A(x^0, y)$, ибо точка $r_1 x^0 \in \overline{I}_{n-1}$. Отсюда в силу соотношений (31) и (33) вытекает, что

$$f_A(x^0, y) = f_{A^\infty}(x^0, y)$$
 для $c < y \le \bar{Y}$

при $f(x^0, y) = f_A(x^0, y)$. Отсюда

$$f(x^0, y) = \max \left[f_{A^{\infty}}(x^0, y), f_{B^m A^{\infty}}(x^0, y), f_{B^{\infty}}(x^0, y) \right],$$
 (37)

когда $c < y \leqslant \overline{Y}$. Теперь выделим два случая:

a)
$$x^0 \in [\bar{x}_1, \bar{x}_2]$$
, τ . e. $\varphi^*(x^0) \ge r_2 \bar{\varphi}^*(x^0)$

(см. соотн. (30)). Тогда в силу утверждения 2) леммы 6

$$\dot{\Psi}^*(x^0) \geqslant \tilde{\varphi}^*(x^0). \tag{38}$$

Следовательно, соотношения (23) и (12) дают

$$f_{A^{\infty}}\left(x^{0},\ y\right)\geqslant \max\ \left[\ f_{B^{\infty}}\left(x^{0},\ y\right),\ f_{B^{m}A^{\infty}}\left(x^{0},\ y\right)\right],$$

когда $c < y \leqslant \bar{\varphi}^* (x^0)$. Кроме того, ввиду (24)₁

$$f_{A^{\infty}}(x^0, y) < f_{B^{\infty}}(x^0, y)$$
 при $\bar{\varphi}^*(x^0) < y \leqslant \overline{Y}$.

Итак, из последних двух неравенств и соотнешения (37) получаем (28) при условии а) для $(x, y) \in \overline{I}_n \times (c, Y)$.

б) $x^0 \notin [\bar{x}_1, \bar{x}_2]$. Следовательно, $x^0 \in I_n \cap (\bar{x}_2, X]$. Поэтому $\phi^*(x^0) > r_2 \bar{\phi}^*(x^0)$ откуда согласно (25)

$$\psi^*(x^0) \leqslant \bar{\varphi}^*(x^0).$$
(39)

Отсюда на основании (24) и (37)

$$f(x^0, y) = \max \left[f_{A^{\infty}}(x^0, y), f_{B^m A^{\infty}}(x^0, y) \right], c < y \le \bar{Y}.$$

Поэтому на основе (12) и (29), получаем доказательство соотношения (28) при условии 6) для $(x, y) \in I_n \times (c, \overline{Y}]$.

Остается рассмотреть случай, когда $\bar{x}_1 = 0$. Используя соотношение (10), имеем, что

$$f(x, y) = \max \left[f_{A^{\infty}}(x, y), f_{B^{m}A^{\infty}}(x, y), f_{B^{\infty}}(x, y) \right]$$

для $(x, y) \in [0, x_0] \times (c, \overline{Y}]$. В предположении $x_0 \neq 0$, отправляясь от последнего соотношения, мы можем провести аналогичные рассуждения, приведенные ниже соотношения (37).

Случай $x_0=0$ рассматривается тривиально, ибо тогда $x_1=0=x_2$, и лемма доказана.

Институт физики и математики Академии наук Литовской ССР Поступило в редакцию 12.ПП.1968

Литература

- 1. В. Б. Бистрицкас, Лит. мат. сб., VIII, № 3 (1968), 423-435.
- 2. В. Б. Бистрицкас, Лит. мат. сб., VIII, № 2 (1968), 225—232.

DICHOTOMINIS DINAMINIO PROGRAMAVIMO UZDAVINYS GRIEŻTAI IŠKILOMS FUNKCIJOMS. II

V. BISTRICKAS

(Reziumė)

Sakysime,

$$f(x, y) = \max \left[\begin{array}{l} A: \ p_1[A(x) + f(r_1 x, y)] \\ B: \ p_3[B(y) + f(x, r_2 y)] \end{array} \right], \tag{(7)}$$

 $0 \le p_1$, p_2 , r_1 , $r_2 < 1$; $0 \le x$, $y < \infty$. Įrodoma keletas lemų apie proceso f(x, y) elgesį, kai vertės funkcijos A(x) ir B(y) griežtai iškilos.

DICHOTOMIC PROBLEM OF DYNAMIC PROGRAMMING FOR THE STRICTLY CONVEX FUNTIONS. II

V. BISTRICKAS

(Summary)

Some lemmas on the behaviour of the solution for the functional equation (γ), are proved, when value functions A(x) and B(y) are strictly convex.