1969

УДК - 519.281

ПРОВЕРКА ГИПОТЕЗЫ ОБ ОДНОРОДНОСТИ ДИСПЕРСИИ ДЛЯ ЛИНЕЙНО УПОРЯДОЧЕННЫХ СЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

В. Н. Бондаренко

Положим, что ξ_1 , ξ_2 , ..., ξ_i , ..., ξ_k , ξ_{k+1} , ..., ξ_n — линейно упорядоченная последовательность независимых случайных величин. Причем ξ_i распределена как $N(\mu, \sigma_k^2)$ при $i \leq k$ и как $N(\mu, \sigma_{n-k}^2)$ при i > k. Будем считать дисперсию случайной последовательности однородной, если $\sigma_k^2 = \sigma_{n-k}^2$. Таким образом, дисперсию линейно упорядоченной случайной последовательности можно признать однородной в указанном выше смысле, когда гипотеза

$$H_0: \sigma_k^2 = \sigma_{n-k}^2 \tag{1}$$

не отклоняется для всех k=1, 2, ..., n-1 при альтернативе

$$H_1: \sigma_k^2 \neq \sigma_{n-k}^2 \tag{2}$$

хотя бы для одного $k=1,2,\ldots,n-1$. Причем в условиях альтернативы k неизвестно. Если эмпирическая последовательность $x_1, x_2, \ldots, x_i, \ldots, x_n$ является последовательностью выборочных значений для $\xi_1, \xi_2, \ldots, \xi_i, \ldots, \xi_n$ тогда при нулевом среднем оценки дисперсий σ_k^2 и σ_{n-k}^2 соответственно равны:

$$S_k^2 = \frac{1}{k-1} \cdot \sum_{i=1}^k x_i^2 \quad \text{if} \quad S_{n-k}^2 = \frac{1}{n-k-1} \cdot \sum_{i=k+1}^n x_i^2.$$
 (3)

Тогда случайная величина

$$\frac{(S_k^s - S_{n-k}^s)}{\sqrt{D(S_k^s) + D(S_{n-k}^s)}}$$
(4)

в условиях нулевой гипотезы (1) имеет приблизительно нормальное распределение с математическим ожиданием 0 и дисперсией равной 1. Квадрат величины (4), следовательно, будет распределен приблизительно как χ^2 с 1 степенью свободы. На этом основании можно получить статистику для проверки нулевой гипотезы (1), принимая μ =0.

Если для всех n-3 разбиений случайной последовательности из n членов на две части, значения статистики

$$F_{k} = \frac{(n-1)^{2}}{2(n-2)(k-1)(n-k-1)} \cdot \left[\frac{(n-k-1)\sum_{i=1}^{k} x_{i}^{2} - (k-1)\sum_{i=k+1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \right]^{2}$$
 (5)

не превысят допустимого значения $\chi^2_{\mathbf{q},1}$ для уровня значимости q и одной степени свободы, то случайную последовательность можно признать обладающей однородной в указанном выше смысле дисперсией.

Можно считать, что в условиях альтернативы максимальному различию в дисперсиях подпоследовательностей из k и n-k членов отвечает максимальное значение критерия F_k .

Предложенный метод может быть обобщен на случай m независимых компонент. При этом статистика (5) будет иметь вид

$$F_{k} = \frac{(n-1)^{2}}{2(n-2)(k-1)(n-k-1)} \cdot \sum_{j=1}^{m} \left[\frac{(n-k-1)\sum_{i=1}^{k} x_{ji}^{2} - (k-1)\sum_{i=k+1}^{n} x_{ji}^{2}}{\sum_{i=1}^{n} x_{ji}^{3}} \right]^{2}. \quad (6)$$

В условиях нулевой гипотезы F_k представляет собой значение случайной величины, асимптотически распределенной как χ^2 с m степенями свободы.

Практическая проверка метода была осуществлена с помощью моделирования последовательности по таблицам случайных чисел. Две части этой последовательности имели заведомо различные по величине дисперсии: $\sigma_k^2 = 1,44$ \cdot σ_{n-k}^2 . Критерий обнаружил наличие в рассматриваемой последовательности двух подпоследовательностей с различными по величине дисперсия ми. Макси мальное значение критерия всего на один член не совпало с истинным положением границы. Учитывая небольшое расхождение в величине дисперсий, результаты применения предложенной статистики можно считать удовлетворительными.

Москва

Поступило в редакцию 19.XI.1968

Литература

1. Э. Леман, Проверка статистических гипотез, "Наука", 1964.

HIPOTEZĖS APIE TIESIŠKAI SUTVARKYTŲ ATSITIKTINIŲ DYDŽIŲ SEKŲ DISPRESIJOS HOMOGENIŠKUMĄ PATIKRINIMAS

V. Bondarenka

(Reziumė)

Jeigu n nepriklausomų atsitiktinių dydžių sekai visiems suskirstymams į dvi dalis nulinė hipotezė $H_0: \sigma_k^2 = \sigma_{n-k}^2$ neatmetama, esant alternatyvai $H_1: \sigma_k^2 \neq \sigma_{n-k}^2$, tai šios sekos dispersija vadinama homogeniška.

Nulinės hipotezės patikrinimui galima pasiūlyti statistiką

$$F_{k} = \frac{(n-1)^{3}}{2(n-2)(k-1)(n-k-1)} \cdot \left[\frac{(n-k-1)\sum_{i=1}^{k} x_{i}^{2} - (k-1)\sum_{i=k+1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \right]^{2}.$$

Esant prielaidai H_0 , dydis F_k pasiskirstęs asimptotiškai kaip χ^a su vienu laisvės laipsniu. Rezultatas gali būti apibendrintas nepriklausomų komponenčių atvejui.

THE TESTING OF THE HYPOTHESIS OF HOMOGENEITY OF THE VARIENCE FOR LINEARLY ARRANGED RANDOM SEQUENCES

V. Bondarenko

(Summary)

If the testing hypothesis $H_0: \sigma_k^2 = \sigma_{n-k}^2$ do not regect for the all variantes of dividing of the sequence of random variables into two parts by alternative $H_1: \sigma_k^2 \neq \sigma_{n-k}^2$ the varience of the sequence would be homogenious. The test for testing of the nullhypothesis is

$$F_{k} = \frac{(n-1)^{2}}{2(n-2)(k-1)(n-k-1)} \cdot \left[\frac{(n-k-1)\sum_{i=1}^{k} x_{i}^{2} - (k-1)\sum_{i=k+1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \right]^{2}.$$

If H_0 is true, F_k is asymptotically χ^3 — distributed with one degree of freedom. The result can be expanded on the case when we have m independent components.