LIETUYOS MATEMATIKOS RINKINYS l
ANTOBCHKMA MATEMATMUYECKMA CEOPHHUK

Ly

YAK-511

THE DISTRIBUTION OF THE QUADRATIC CLASS NUMBER
P.D.T.A. Elliott
In memory of M. B. Barban

1. Introduction. For sach positive integer D which exceeds 1, and which satisfies
one of the conditions —D=0,1 (mod 4), let A(—D) denote the number of
classes of primitive binary quadratic forms whose discriminant is — D.

For each pair of real numbers z, x>0 let N (x, z) denote the number of integ-

ers D not exceeding x for which the inequality /( —D)<;2{ V Dz is satisfied.
It was shown by Chowla and Erdés [2] that the limit
limx~! N (x, z)

T—rm
exists for all real values of z, and is a continous distribution function. Some years
later Barban [1] used the inequality of the Large Sieve of U. V. Linnik, and a me-

hod somewhat different from that of Chowla and Erdés, to compute the moments
1

ot the function D 2 A (—D). In this way he recovered their result. He proved,
moreover, that the characteristic function of this limiting distribution assumed
the form

@ .’ k
2 = Gr
k=0
n a certain range |#|<f, 1,>0. In this expression «,=1, and
2
n= Y 2O ge2, )
n=1
(n D=1

where @ (1) denotes Euler’s totient function, and 7, (m) denotes the number o
ways of expressing the integer m as the product of k integers.

In the present paper we shall show that the study of the distribution of the

1

values of D %4 (— D) can be reduced to the consideration of sums of indepen-
dent random variables defined on a finite probability space. The appropriate
characteristic functions take on a simple form, so that it proves possible to lar-
gely determine the nature of the limiting distribution. In particular we shall prove
that it has a probability density, and that it is analytically continuable into a
complex half-plane. We shall also measure the rate of convergence of the
frequencies x~! N(x, z) to the limiting distribution as x—co.
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For each value of x>0 we write
2 = 1 \-!
Ve (D; h(-D)<Z VDer)=(3 x)7 Nix, ).

Theorem. There is a distribution function F(z) with the following properties
(1) The estimate

v (D h(=D) <2 VDe)=F@+o (|/REkex) (153

holds uniformly for all real values of z.
(ii) The characteristic function of F(z) takes the form

e I (b 02" - ) 00 2)

(i) The function F(z) has a probability density, and can be analytically
continued into a half-plane Im (z)> —e¢, ¢>0.

The presence of the untidy factor in the product representation of the charac-
teristic function of F (z) is due to the irregular behaviour of the prime 2, which is
characteristic of problems of a quadratic nature. We shall prove that this function
is even Riemann integrable over the whole line. The staternent in (iii) that F(z)
is analytically continuable into a complex half-plane is to be interpreted in the
sense that it coincides for all real values of ¢+ with a function which is aralytic
in a half-plane. In particular we recover the assertion of Chowla and Erdds [2]
that F(z) is continuous at all finite real points z.

The starting point of all of these investigations is a classical result of Dirich-
let. For our purposes this states that for D>4,

n(-0)=Y2 L(1, 1)
where

L, )= wotnt, gl =(=2),
a=I

and y, denotes a Kronecker symbol. We shall preserve this notation for the dura-
tion of this paper.
Lemma 1. Let ¢>0 be given. Then we can find a real number A, depending
upon <, and for each value of x>3 a (possibly empty) set E(x) with the follow-
ing properties:

(i) Let D be an integer not exceeding x which does not lie in E(x). Then
the approximate relations

L0 z)={ 1+0 (Talgi)}g(“l(”)f‘)_l

hold uniformly for all real numbers H which satisfy H> (logx)4, and for all
primitive characters y (mod D).

(ii) The number of integers belonging to E(x) is at most 0 (x®).
Proof. This lemma can be proved on exactly similar lines to Theorem | of the
author’s paper [3).
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Lemma 2. Let a,, a, be a sequence of complex numbers, and let x, H be
real number satisfying x> 1, H>3. Then the Kronecker symbol salisfies the ine-
quality
Z l Z a,,(:"ﬂ) rsx ZZ |a,,,a,,l+clHlogH(Z [a,,,l)’-
D<x n<H mn=¢%, 2¢* m<H

m<H, n<H

In this inequality we tacitly assume that any integer D under consideration in
the left hand sum satisfies —D=0,1(mod4), so that the Kronecker symbol is

well defined.
Proof. If we expand the sum on the left hand side of this inequality and invert the

order of summation we obtain

33 a3 (2)(2) I e 3 (2)(2)

m<H, n<H m<H, n<H

We can estimate the first of these threefold sums trivially. As to the second, for
each value of m>0, there is a number ¢,= + 1, so that

(50)= ()

for all values of D. Moreover if m=24m,, 2fm,, n=2%n,, 2)n,, then

o) (FP) e (3)7 (32)-

( m ) n )_E’"a" D nym

Thus if ” denotes summation over the reduced residue classes (mod 8), we can
write the innermost sum in the form

Emn En Z” (f__)'ﬁ" Z (rmDn )+e’"s" Z (%)

i D<x 4ssx
D=j (mod 8)

where the last sum (over s) is to be omitted if mn is even. If mn # (2, 2¢2, then mn,
is not an integral square, and when 2tmn neither is mn. All of the symbols in these
last expressions are then Jacobi symbols, and non-principal characters (mod m,n,),
or (mod mn). An appeal to the Polya— Vinogradov inequality therefore shows
that these sums are O (H log H), and lemma 2 follows immediately.
Lemma 3. Let v, B be real numbers satisfying B>0, 0<n<1. For each x>2
there is a set G (x) possessing the following two properties

(i) If D satisfies D<x, D¢G(x), —D=0,1(mod4), then the Kronecker
symbol satisfies

L ) ={1+o( VRN T (1-m(pp~)”

logx
p<n losx

(i) The number of integers contained in G (x) is at most 0 (x (logx)“’)-

Proof. We first prove this result under the addition restriction that the integers
~ D involved only run through the fundamental discriminants. When this is the
case the Kronecker symbol becomes a primitive character (mod D). We therefo-
re assume that G (x) contains the set £ (x) of lemma 1, defined with e=1/2,
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Set U=mnlogx, H=(log x)4, P*=Flogx (loglogx)~'. For each positi-

ve integer k we define a sequence of real numbers a,, a,, by
L=3[ 2 6w =22 wmwm|
Dgx U<p<g<H Dgx MSH"

where ’indicates summation over those integers D for which — D is a fundamen-
tal discriminant. Applying lemma 4 we deduce that
_ _ 1 \2k
T, <x ZZ a,a,m tn~'+¢, H*log H* ( Z ;) .
mn=1", 21" U<p<H
Consider the expression
- 1 1 = =1p,p-1
L“_ZZE E_ZZ a,a,m-"Rn-°.
U<pj$H mn=r, 21
P F,k="

The condition p,. .p,, =12 ensures that there is a value of j satisfying 1 <j<2k—1
so that p;=p,,. By considering each possibility in turn we see that

1 1\
—_ _— - < k I\ —
L<@k=1) Y 5 Leas <26 (Y )
U<psH p>U
Moreover, an elementary estimate shows that

1 log H 1
2 p = los (logU)+O(logU)<02'
U<psH

so that
2

T, <x2¢ k! (U)k+cl (3 H)*log H*.

The number of integers D not exceeding x for which the estimate

| 2 w@e[>p

U<psH

holds is then at most
p*T,=0 (x (logx)“’)

provided that F and so k is chosen suitably. For the remaining values of D we
see that

L(, % [1 (l—xn(p>p-l)=(1+0 (lo—;x)) x

p<U

1
-1 23 -1
X eXp {O(p )+O( Z p.)} 1+0(p~Y).
U<p<H
Call the set of integers D <x which are exceptional in the above sense J(x).
We now use the fact that any integer D can be uniquely represented in the form
D}D,, where p? (D,)=1. We define G (x) to consist of all those integers D not ex-

ceeding x which satisfy any of the following conditions:
3

() D<x'
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(ii) D has more than (1+2B)loglog x distinct prime divisors.
1

(iii) There is an integer m satisfying % x' <M< 4x so that D, lies in J(2™m),

It is now an easy exercise to prove that this set satisfies all of the properties requir-
ed in the lemma.

Construction of the finite probability spaces

Let P, x be real numbers, and let ¢4, ¢,,  be a sequence of k prime numbers
which are constrained by

2<q1 €< . S <P, ' g.=R.

We form an algebra of sets {E} by taking as a typical member the union of resi-
due classes (mod R). If 4 is any finite set of distinct positive integers, then the
collection {4 nE}, where 4 n E is to be interpreted as those members of 4 which
belong to any of the residue classes (mod R) which are represented by E is also
an algebra. For each class / (mod R), let 4 (x, R, /) denote the number of mem-
bers a; of A which do not exceed x, and which satisfy ¢;=17/(mod R). Let 4 (x)
denote the total number of g; not exceeding x. Further let there be R numbers
A(l, R), so that the asymptotic estimate

R
3 14(x, R, H=r(, R)AE)|=0 (,4 (x)), (x—>c0).
I=1
This hypothesis is to be interpreted in the sense that the set 4, the modulus R and
the numbers A (/, R) all may depend upon x.
We define a measure on this last algebra as follows. Let E represent the clas-
ses I; (mod R), (j=1, ..., m). Then we set

m

w4 nE)=3 r({;, R).

j=1
It is clear that
R

DAl R)=1

=1

and that the pair ({4 n E}, p) is a finite probability space. Moreover, if we denote
by | B the number of integers in the set B, then

Bi={1+0(l)} uB-A(x).
We form two models M,, M,, by taking 4 to be

{D; D<x, —D=d;(mod 4)}, (=1, 2),
with d,=0, d,=1 respectively. In both models we set P=;— logx. In the first
model we set g,=3, g,=5, so that the g; are the first = (—; logx)—l distinct
odd primes. In the second we set g,=2, g,=2, ¢,=2, ¢,=3, ¢5=5, ..., and so

on. Thus the respective values of R are p, Pw and 4p, ...p,, where p, deno-
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tes the j* rational prime. In both cases A(x)=% x+0(1). For M, we set
A(/, ) =R"! for each value of /, and for M, we set

% if /=1 or 5(mod8),

0 otherwise.
Denote the respective measures so defined on the spaces M; by w;, (j=1,2). In

either model, by virtue of our choice of R we shall have the estimate
1

|B|=pB- 4 (x)+0(x).
In these spaces we define independent random variables X; for j=2,...,k,
and j=I, ..., k, respectively, by

= — — 2 =1]}.
X;(D)= —log <l (qj) gj >
Finally, for i=1, 2 define
w%(p; L, xp)<e’)=%{D; D<x,—D=d,(mod 4), L(1, xp)<e}.
Lemma 4. For any fixed value of B, there is an absolute constant ¢, so that the
estimate

2
vy (D; h(—D)<T% ]/Be’)=é— Z wiln+ ... +x,<z)+

=1

2 R
+0 3 (lx1+...+x,,,—z|<ca lolgol:ix)+0((logx)"), 10)<1),

Al R)=

j=1
holds uniformly for all real values of z.

In this result, and for the remainder of the proof of our theorem, the symboj
x, is to be deleted from the terms involving ,.
Proof. In terms of the frequency function used in the statement of Theorem 1 we
see that

v, (D; h(—D)<-‘i— Vfw):% i v;;(u; L, XD)<e’)-

j=1
The present representation theorem now Jfollows from lemma 3.
For each value of j set
F(2)=p X1+ ... X,<2).
We shall consider the space M, in detail. The model M, can be similarly treated.
The random variable x; (in M,) has the characteristic function

. 1 1 _-]_ 1—ir _] _-L l_ —l'l'
;)= ] (l qj) *3 (l qj) (1+ q;)
There is an absolute constant ¢y, so that if t<c,q; is satisfied, then
_ it 1* e+,
O, ()=1+ g~ +0 (—qf— )
We define
ga@=]] o 0.

j=1
It is clear that this infinite product converges uniformly in any bounded region
of the complex ¢-plane, thus g, (¢) is an integral function of ¢.
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Lemma 5. There exist positive constants c,, r=5, ..., 9, so that

g (®)I<czge 't

for all real values of t,

_ )

i) | [T & 0-20 |<cr [ty + s | 1801
j=1

Sfor all values of |t|<c, Vlogx, for all x> c,.
Proof. For each integer j>2 and all sufficiently large values of ¢ which satisfy
| t]<csq;, we obtain the inequality

|Relog®;(t)|< 1= 2q’
Since for real values of ¢, the characteristic function ®@; (7) satisfies | ®; (¢) |<1,
it follows that

moi<ap (3 X g)<ew(-aln)

3 =1
4>cg (KX

For absolutely small values of ¢ the inequality (i) follows from the continuity of
2 ().

The second inequality has an equally simple proof.

Lemma 6. Let F(z) be a non-decreasing function, and G (z) a function of
bounded variation, whose respective Fourier — Stieltjes transforms are f(t), and g (),
and which satisfy

(i) F(+0)=G(+ ),

(id) f |F(z)—G(2)|dz < o0,

(iii) @' (2) exists for all values of z, and | G' (z) |I<H. Let T be a positive real
number. Then to every k> 1, there corresponds a further positive number c (k),
depending only upon k, so that

T
sup| F(5) -G (2) < k) H [ 19204

Proof. A proof of this lemma of Esseen, can be found in Gnedenko and Kolmo-
gorov [5]," Chapter 8, § 39, or in Esseen’s original paper [4].
Proof of the theorem

Since for any real value of ¢ g, (¢) is the limit of characteristic functions, and
is continuous at the origin, it is the characteristic function of a distribution func-
tion G!(z), with the property that F. (z)—G'(z) as x—o0.

We apply lemma 6 with F(z2)=F.(z), G(2)=G'(2), k=1, T=c;)/logx. We
see from lemma 5 (i) that g, (¢) is integrable over the whole real line, so that G* (x)
has a probability density,

1 .
o [ m®e=d.

—®
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It follows from this representation that

@ @

G (z+h) -G 1 —ith_) 1

(z+ [)| (z) - " g (f) e (L’ s )dl—) = f g () e~*=dt, (h—0),
the operation being justified by the dominated comvergence theorem for Lebes-
gue integrals, Indeed it is clear from this argument that G* () is even analytically
continuable into a half plane Im (z)> —¢, ¢>0.

We deduce that

Fi()=(2)+0( L ) e
Vlogx

In a precisely similar way we can consider the space M, and obtain functions
2, (f), and G*(z). We set G(z)=% ((Cv'1 (z)+(?‘(z)) so that G (z) has the charac-
teristic function

3 ([BO+a )= [2+2+(3)] T1 2,0,

qj>3

and )
1 1
EZ b “'”"“)=G"’+"(ﬁ)‘

The assertion (i) of the theorem now follows from lemma 4, and the fact that the
inequality

G(z+hH-G(@)=0(h)
holds uniformly for all real values of z and A. This completes the proof of the the-
orem.
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2

KVADRATINIY FORMU KLASIU SKAICIAUS PASISKIRSTYMAS
P. D. T. A. Elliott
(Reziumé)
Naudojant tikimybing interpretacija, straipsnyje jrodoma, kad atitinkamai normuotas tei-

giamy binariniy kvadratiniy formy klasiy skaiCius turi tolyding¢ ribing pasiskirstymo funkcija.
Yvertinamas konvergavimo | ribing funkcija greitis.
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PACMPEREJIEHHE YHCGIA KJACCOB KBAAPATHYHBIX ¢O0PM

n. 4. T. A. Sananorr

(Pearome)

Hcnonays BepoATHOCTHYIO RHTEPTPETAUAIO aBTOP AOKAILIBAET, UTO COOTBETCTBEHHO HOp-
MApPOBaRHOE GHCJIO KJAacCOB NOJIOMHTELHMX GHHAPHLIX KBAJPaTHIHEIX (OPM HMeeT Henpephie-
HYI0 NpeJiebH Y0 QyHKUHIO pacnpefieIenns.

OueHnBAeTCA CKOPOCTb CROZHOCTR K NpefieIbHOMY SaKOHY.






