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SOME REMARKS ON THE RAREFACTION OF THE RENEWAL
PROCESSES

J. Mogyor6di

1. We start from the following rather obvious

Theorem 1. Let ;, &,, ... be a seq e of independent and identically distribu-
ted random variables with finite mean-value .. Let further v, be a sequence of positive
integer-valued random variables, which for each n is independent of the sequence
{€:}. Assume that there exists a sequence o (n) of positive numbers such that o (n)—+ o
as n—+ oo and
lim P (

n—>+o©

b <x)=G(x),

 (n)

where G (x) is a distribution function. Then

G (%), ru>o0,
(%<x>= E(x;L, ifu=0

1-G (3) if <0,

lim P

n—>+wo

where

0, if x=<0
E(x)={ 1, if x>0.

Proof. We prove first that the random variables
{p= ——— " n=1,2 ...)

converge in probability to . as n—+ co. In fact, by the total probability theorem
the characteristic function of ¢, is

M =M <f (£) )
where f(7) is the characteristic function of §; (i=1, 2, ...). Now, by the supposi-

. . .y v .
tion, v, converges in probability to + o0 as n—~4 co and so f (-:—) " converges in
n

probability to e, We| have further obvioiusly ‘ f (-‘:—)v" =1. Thus, if we apply

the Lebesgue’s convergence theorem, it follows that {, converges in probability to .
Now let us consider the random variable

Vn
o (n)

nn=Cn
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By a theorem of H. Cramer [9] the distribution function of 7, converges to
G (%L), E(x)or1-G (T’i) according to the sign of .

In this paper we shall be concerned with the following rarefaction models for
renewal processes.

Let 7y=0<7,<1,<... be a renewal process, i.e. let the non-negative random
variables ©;—7;_; (i=1, 2, ...) be independent and identically distributed with
common distribution function F (x). In the sequel we suppose that the mean-value p.
of the random variables §;=+;—;_, is finite and positive .

We define the general rarefaction model as follows:let Z{”, Z{, ...; (n=1, 2, ...)
be a sequence of positive integer random variables which are independent for fixed
n, and also independent of the renewal process 7,=0<r;<.... Suppose further
that Z{™ (i=1, 2, ...) are for fixed n indentically distributed. Put

=0,
T")=‘rz(")-rz(")+...+z§")‘ (i=1,2 ..5n=1,2, ..))

The process t§"=0<1{" <+ < ... will be called a rarefaction of the original
renewal process.

It is obvious that the rarefaction is also a renewal process and the distribution
function of the differences

z{My. . +z(M

T:(")_T:("—)l = Z Ej (1
is the following:

(-]
2 PEP=KFEY, )
k=1
where F*®(x) denotes the k-fold convolution of the distribution function F(x) with
itself, Moreover, if the mean-value of the random variables Z{™ exists, i.e.
M((Z"™)=M,< + o,
then obviously
M (" -z =pM,. (i=1,2, ...) 3)
On the basis of Theorem 1. we prove now for this model

Theorem 2. Suppose that there exists a sequence « (n) of positive numbers such
that » (n)—>+ o as n—+ o and

im P (20 <x)=@ =12 ...
n—>+o ( )
Then the limiting distribution of the random variables

=2,

4)

we (n)

is also G (x). Moreover, every distribution, which is concentrated on the positive axis,
is a possible limiting distribution for (4).
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Proof. By (1) the random variable =¥ —<{®, is a sum of a random number of
independent and identically distributed random variables where the number of
summands is Z{.

New by Theorem 1. our first assertion follows.

Let G (x) be a distribution function such that the corresponding probability
mass is concentrated on the positive axis. Put an infinite sequence z; of independent
and identically distributed random variables with the distribution function G (x)
and define

Z"M =[nz]]. (i=1,2, ...;n=1,2, ..))

Then we have obviously

) zm

lim P ( . <x)=G(x).

ot n

If the random variables z; are independent of the original renewal process T,=0=

<7,<7%,=..., then the corresponding rarefied process t’=0<t" <" <...

is such that
lim P

n—+wo

et .
(T <x)=G(x). (=1, 2, ...)

This proves the second assertion.
Suppose now that M (Z{)= M, exists and M,—+ oo, further

Zm
limP( v <x)=G(x),

n—>+w My

where G (x) is a distribution function. This enables us to imaginate the following
renewal process:

=0 (©)
and for i=1, 2, ... the random variables ¢{" are determined by the relations
A i ;
t,«"—fi"_1=T' (l=l, 2, ...) (6)

For fixed »n these random variables are equally distributed and independent.
Moreover by (3)

MM — M) =p. i=1,2,...)
If we rarefy the original renewal process according to the random variables Z{"
and then compress the new process t{? =0t <t < ... such that in the new
scale the mean-value between consecutive renewal points be p, then we obtain the
process defined by (5) and (6).

Theorem 2. expresses the fact that the asymptotic behaviour in distribution of
the rarefied renewal process does not depend on the stochastic behaviour of the or i-
ginal renewal process. It depends only on the rarefying random variables.

2. A more special rarefaction model for renewal processes is the following:
let v\ (i, n=1, 2, ...) be a double entry table of independent and identically distri-
buted random variables, which are independent of the original renewal process,
and which take on the values 1,2,.... We suppose that their mean value M
exists and M > 1.
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The rarefaction and compression will be made now step by step. In the first
step we use the random variables v{" (i=1, 2, ...) and we define (" =0, further

T§I)=Tv}l),ngl)f. OB (i=1,2, ..))

Then, obviously, the random variables
P — (1, (i=1,2,..)

are independent and identically distributed with common distribution function

®
> P (I =k) F*0 (x).
k=1
The mathematical expectation of t{"—x{!, is uM, where M is the mean-value of
v{"». The compression will be made in the following way: we put 7§ =0 and define
" by the relations
N _ (1)
10— 10, = iz 21
Thus, after rarefaction and compression we obtain in the first step the renewal pro-
cess 1P =0=1"<#P<... which has the mean-value p.

The second step will be made now with the help of the random v ariables v®,
but now we rarefy and compress the renewal process #’?<0=<rP<sP<.... We
obtain a new process P =0=tP<#P<..., the mean-value of which is also y.

If the k-th step is already made, the (k+ 1)-th one is as follows: let t§*" =0 and

() i
T§k+l)=tv§"+l)+v§"+”+. LD (=12, ...)

Then, as it is easily seen, the differences
kD gkt D) (i=1,2, ...)

are independent and identically distributed non-negative random variables with
mean-value uM. The (k+1)-th step is finished with the definition of #f*+D; let
t§+D =0 and let £{c+D (i=1, 2, ...) be determined by the relations

k+1) k1)
gD gkt 1 il
i i—-1 =

This rarefaction and compression procedure generalizes that of Renyi [2] and
of others [7], because these authors consider only the case when the random variab-
les v(™ have geometric distribution.

The renewal process " =0=<#"<t{"<... can be expressed by the original
process To=0=1, <7, < ... in the following manner: let Z"=v{" (i=1,2, ...) and
define recursively the random variables Z{") as follows:

vf") vg")-{-vg')
zZp=5 zp-b, z{= >ozgen, L. (nz2). (8)
i=1 i=v{M41

Then, putting

1'}")* —

(=1,2, ...) ©)

zZM 1z 1z
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we see that £§?=0 and

- %
it

rl(")_’i(’—')l = M7 (10)
Also it can be easily seen that t{"* —t{¥ (i=1, 2, ...) is a sum of a random num-
ber of the independent random variables &;=+<;—7;_;, where the number of the

summands is Z{™, i.e.

z(m
l§1 !

P-fh= 3 EIM (1n
-1
=X zM+1
I=1

Let f(s) denote the generating function of the random variables v{"; i.e.
f&)=3 POM=k)s, (Is|21; i, n=1, 2, ...).
k=1

Then the independence of v{™ for every i and n, and the construction of the random
variables Z{ implies that the generating function of Z{ is the n-fold iterate of
the generating function f (s) with itself:

f..(s)=f(f<....(f(s))...)).

Lemma. Let us suppose that 0< D (V) < + oo and let M (v{")=M. Then
lim P(Z{ < M"x)=G(x), (12)

n—>+®

where G (x) is a distribution function with mean-value 1 and dispersion
D* (o§7)/(0*— M).

Moreover, G (x) is continuous. The class of the possible limit distributions coincides
with the class of the possible limit distributions for Galton-Watson processes with
mean-value M > 1.

Proof. It is obvious that M > 1. Let us consider that Galton—Watson process
(cf. [10]. Theorem 8.1.), in which the distribution of the number of the first genera-
tion is given by f'(s). Then as it is well-known, the generating function of the number
of the n-th generation is f, (s). It is also known that under our assumptions the num-
ber of the r-th generation divided by M” converges with probability 1 to a random
variable W, the distribution function of which is continuous. Now, since the distri-
bution function of Z{®/M" is the 'same as that of the n-th generation of the Gal-
ton—Watson process divided by M”, we see that

lim P(Z{ < xM")=G (x)
n—+4-w
exists, where G (x) is the distribution function of the random variable W. This pro-
ves our assertion.
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This lemma enables us to prove
Theorem 3. In the special rarefaction model (10) we have
lim P(f" — (", < ux) =G (x), =12, ..

n—-+»n

were G (x) is defined in the Lemma.
Proof. By (11)

{mx —(m*
i i—1

W — ", = = Z &;/Mn.

So

. zm
Pt —1" <px)=P ( Z r,j/Z,(")> (M" )< px |- (13)
1'='E‘.l z{M
[

Applying Theorem 1. and the Lemma our assertion immediately follows.

3. Now we turn to the case where we don’t suppose that the original renewal
process T, =0 <1, <7, <... has finite mean-value p. In this case we give a necessary
and sufficient condition to ensure that for a suitable choice of the positive cons-
tants 3§, (3,—0, as n—+ o0) the distribution function of the random variables

3, (Tl(n)*_.r‘('l_)f) (i=1,2, ...)

converges to a limiting distribution as n—+ co0. Here ©{” (i, n=1, 2, ...) is defined
by (9). Let us denote by F(x) the distribution function and by ¢ (s) the Laplace
transform of the random variables t;—=<;_, (i=1, 2, ...). We prove

Theorem 4. Let us consider the special rarefaction model defined by (8) and (9).
Suppose that the positive integer random variables v\ (i, n=1, 2,...) are independent
and identically distributed with finite dispersion D* (v\"), and independent also of the
original process. In order that for a suitable choice of the norming constants 3,>0
(n=1, 2, ...) the random variables

B (<% — i) (14

(=1, 2, ... fixed; n—+ o) have a limiting distribution, it is necessary and sufficient
that one of the limits
lim M~ (1 ~9(3,9)=0,

n—>+w®
or

lim M~ (1 —(9(8,,5))=Cs°‘
n—+©
exist for s>0. Here C is a positive constant and 0<a < 1.
Proof. Necessity. Let us consider for s>0 the Laplace transform ¢, (s) of
(14). Then it can be easily seen, that

P (8)=/a (cp (s s)) . (15)
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where f, (z) denotes the n-th iterate of the generating function f(z) considered in
Section 2. Now for 0<z=<1 f(z) has an inverse u (z) and the inverse function of
f. (2) is u, (z) where u, (z) denotes the n-th iterate of # (z). For 0<z=1 the unique
fixed point of u (2) is 1. Further u (z) satisfies all the conditions, which are necessa-
ry to ensure that the limit

% (2)= lim M"(u,,(z)—l)

n—>+wo

exist. (See for example Kuczma [1], definitions: page 19,20, assertion: page 137).
x (2) is the solution of the so called Schréder equation

1
£ (s@) = 4y 20
% (2) is strictly monotonically increasing in (0, 1], twice differentiable, ¥ (1)=0
and ' (D)=1.
Now from (15)
ty (0 (9)=0@s)  (s>0)

and this implies

M (un (o <s>)—1>=M" (e@u9)-1)- (16)

Now by supposition ¢, (s) converges to the Laplace transform % (s) of the limi-
ting distribution. Further

lim (u,. (res)) - 1) M=y (h(s))-

n—>4 o

Thus by the continuity of ¥ (z) and 4 (s) it follows that

lim (u,, (o (s)) - 1> Mr=y (k ®).

n—>+wo

which by (16) means that
lim (?(S,s)— 1) Mr=y (h(s)), (s>0).
n—>+o©

We must now distinguish two cases. In the first one we consider the possibility
h (s)=1 for every s20. In that case ¥ (h (s)) =y%(1)=0 such that

lim M» (l —q)(S,,s)):O,
>+
which proves the necessity of our first condition. In the other case there exists a num-

ber s,>0 such that & (s))<1.

As we see, ) (h (s)) is not positive and for increasing s it decreases. For s=s5,
we have thus
lim (cp(S,,so)—l) Mr=y (h(so))<0,
n—>+w

because & (sp) < 1.
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Confering the two last limit relations we see that

5
1-9(as) _ y; 1-¢ (8""’ T,,) 0]

m = »
n—>+o 1 =@ (85 50) n—+wo 1—¢ (3150) e (h (s,,))

exists. On the other hand, the conditions Lemma 1. of Feller’s book [8], page 335,
are fulfilled for the function

Us)=1—o(s).
So
. 1= (3, «
HBEJQ —l_;((sn;:)=(;—o) R (—o<a< +©) (17)
These limit relations show that
% (B6)=x (ki) s==C*s2, (18)

where C*=y, (h (so))s‘(’,‘ <0. (18) implies that
R (s)=%1(C* s%). (19)

Now A (s) as the Laplace transform of the limiting distribution function is mono-
tonically decreasing and convex for s>0. So, by (18) the case a <0 is impossible.

By (19) the derivative of h (s) for s>0 is the following:

C* o s*1
« (h(s))

Now if «>1 then 4" (0)=0, which is not possible because in this case we
would have h(s)=1 (s>0). This contradicts to the fact that A(sy)<1. So,
0=<a=<1. Now the case «=0 is also impossible. In fact, if «=0, then by (18)

hs)=x1(CY.  (s20)
But C*<0 and x~1(z) is strictly monotonic.! So A (s)=y"1 (C*)<1. This contra-
dicts to the fact that & (s) is a Laplace transform.

Denoting — C* by C we obtain that

B (s)=

lim M (1-9(3,5)=Cs%, (20)
n—+o©
where C>0 is a constant and O<a=1.
Sufficiency. If (20) is satisfied then
Cs®
9.9 =1-17 (1+o (D))

Now for fixed s=0

—%: (1+0 (D) ’

| 1-55 (1+0)-e

This means that

cs*
-— (|+o(1)) 1
p(B.)=e ™ +o (3m):
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and so the Laplace transform of (14) is

&
& (140 m)

5 (06,9) =rn(e ™
Now by Lagrange’s theorem
a9
_C_:: _C_s:"“) 1
=5 (a(s)) [e M e M —l)+o(M,,)]|§

§M"<°Tfil,,~)+o (——l;)>=o(l).

So, if the limit

cs*

o () )|

-3
;-;n (1+o (1)

cs*
tim f,(e ") 1)
exists, then there exists also the limit of the Laplace transform of (14). To prove
the existence of (21) let us consider the Laplace transform of the random variable
ZM|M", where Z{™ is defined by (8). The value of this transform at the point
Cs®(s=0) is exactly

_e
Jule )
By our suppositions the Lemma of Section 2. applies, and so
' _&t
lim f,(e ™" )=h(s)
n—s+o
exists and it is the Laplace transform of a distribution function. The argumenta-

1 s _
M")' We get in this case h(s)=1.

tion is similar in the case when ¢ (8,5)=s+0 (
This proves our theorem.
Gnedenko and. |Freier in paper [5] proved that (20) is true if and only if the
corresponding distribution function
F(x)=P(t;—7;.1<X) @i=1,2, ...)
is of the following from: for O<a<1

L—Fkx) _ ) o 22)

lim T=FG

X—>+ 0

for every k>0, and for =1

x(1-F(x)

lim =0. (23)

X=++ 0

[ (-F@)a
0

This enables us to give an other formulation of Theorem 4.
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Theorem 5. Under the hypotheses of Theorem 4. the Laplace transform of the
possible limiting distributions is one of the following expressions:

h(s)=1 (s=0)
h(s)=x"1(Cs), (c>0)

where 1 (2) is the inverse of the solution of the Schrider’s equation

x (£ @)= 37 2,
and O<a=<1.
In order that the Laplace transform of the limiting distribution be
h(s)=yx"1(Cs) (C>0)
it is necessary and sufficient that the distribution function of the original renewal pro-

cess satisfy the relation

x(l —-F(x))

lim — 0.

x—+ @
f (1-F(2)d:
0

In this case the limiting distribution belongs to the class of those distributions which
can be obtained as limiting distributions for Galton — Watson processes with f'(1)=M >
> 1. Let now 0<a<1. In order the Laplace transform of the limiting distribution be

h(s)=x"1(Cs%) (C>0),

it is necessary and sufficient that for every fixed

1—F(kx)

—Fm —F°

lim

X—>+ 0

be satisfied.
Finally, h (s)=1, if and only if the Laplace transform ¢ (s) of F (x) is of the follo-
wing form

1 (,9=0 (35)"

Theorem 6. If we prescribe the value of 8, to be # then the limiting distribution

of (14) exists if and only if the mean value p. of the distribution function F (x) is finite.
Proof. In fact, if u is finite, then Theorem 3. shows that

(P =) (24)

has a limiting distribution G (x). Conversely, if (2) has a limiting distribution, then
by Theorem 4.

limM"(l—qa(A;")>=0,

n—+w

or

lim Mﬂ(l—zp (A;")>=Cs°‘. (0<asl1, C>0).

n-—>+wo
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From the first relation we deduced that the Laplace transform of the limiting distri-
bution is of the form

h(s)=1.
This case is irrelevant. If the second limit relation is true then

sX

M’l
lim ( 7dF(x)=Cs°"‘1.

"—>+®
Mn

By Fatou’s lemma it follows from this that

Sx

bl M?
p=[ JAF(N< lim f ST GF(x)=Cs-1, (s>0)
6 n—>+ o m
which proves our assertion.

4. Theorem 6. has an interesting consequence. In fact, we can raise the follo-
wing problem: what are the renewal prosesses 1y=0<1, <1y < ... which remain
invariant under the rarefaction and compression procedure expressed by the formu-
las (8), (9) and (10). Under invariance with respect to this rerefaction and compres-
sion we mean that after the n-th step the distribution function of the new
process 1P =0<#{"<... (n=1, 2, ...) is the same as that before the rarefaction

and compression.
Theorem 7. If 0<D? (V)< + o, (i,n=1,2, ...), the sole invariant renewal

processes with respect to the rarefaction and compression procedure, expressed by
k8), (9) and (10), are those whose distribution function is G (%) , where G(x) is de-

fined by the Lemma and . is an arbitrary finite positive number.
Proof. Let & (s) denote the Laplace transform of G (x). Then the Laplace trans-

form of the distribution function of #§?—¢D, (i=1,2, ...)isf( & < ( ) It is known
in the theory of the Galton—Watson processes that

f <h (f{—))=h(s).
Since, for finite w>0, & (us) also satisfies this equation, it follows that the renewa]

processes with distribution function G ( %) are invariant.

Conversely, let F(x) be the distribution function of the invariant process t,=
=0<7;<7:<..., and let ¢ (s) denote its Laplace transform. Then the invariance
of the process implies that

9(5)=f (fP (ﬁ))

From this it follows that

cp(s)—f..( (M)> (n=1,2, ...)

6. Lietuvos matematikos rinkinys, XI 2
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Let now n—+ oo. Then

i 1 (+ 5)
exists and equals ¢ (s). From this by Theorem 6. we deduce that F (x) has finite mean
value p.. Theorem 3. now implies that F (x)=G (%) .
Theorem 7 has been proved partially by the autnor in [3] and by other
methods by T. Szantai [4]. His proof is complete.

Eotvos Lorand University, Received 18 September 1970
Budapest.
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HECKOJIbKO 3AMEYAHH# O PA3PE)XEHHH PEKYPPEHTHbBIX MOTOKOB
H. Monepyau
(Pesrome)
ViMeeTcst peKyppeHTHbIil MOTOK COGBITHH T,=0<7<T,<... ¢ dyHxuneil pacnpenenenns

F (x) AJMH MPOMEXKYTKOB BpeMeHH MexAy MOcCJefoBaTeqbHBIMH coGuiTHAMH. TTyeTs Vi(") — no-

CJIel0BaTE/IbHOCTL HE3aBHCHMBIX M OJHHAKOBO pacmpefie/IeHHbIX CJAYyYalHRX BeJHYHH, NPHHH-
MaloIHX TONOXKHTEJbHEIE Lesble 3HaueHHA (i, n=1, 2, ...), He 3aBHcswWasn oT Notoka. Caenaem
caenyoulylo ONepaunio: BO3bMEM Te COGBITHS H3 TOTOKA, HHAEKChl KOTOPLIX vfl), vgl), ... Mony-
yaem HOBHIH MOTOK

=0 =ry < =Ty DS, ..

HOB’I‘OPHM VKa3aHHYIO OfepauHio n pa3 PeKYpCHBHO: BO BTOPDOM LIary onepauus AenaeTcs Hax

NOTOKOM 'r(()l)grgl)s-.g)s,..., HO ceifyac CO CJy4ailHHIMH Pa3peXHBAIOLIKMH BeJHYHHAMH v}2>
vg?), v1r» @ B N-TOM IIAry Haj NMOTOKOM 16"—1)50§1§"—1)§r§"—')<... H €O cayyafiHBIMH Be-

AuunHaME v, v, L
Sta onepauus —oGoGuwienHe onepaund A, Re'nyi Tak kak y Hero v(®) pacnpepeseHn mo
3aKOHY P(v,(")=k)=q(l—q)"‘1, 0<g<l, k=1,2, ...
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Ml npeanonaraeM, uto 0 < D? (v'("))=c’<+oo. Hcenenyetcs npepesibHoe pacnpeiesieHne

pasHHL
8a (3f) = 5f)

npu QUKCHpOBaHHOM i, Koraa 8,0 npu n—>+ 0.
Heo6xonnMoe H R0CTaTOuHOE YC/IOBHE AAA CYLIECTBOBaHHA NpelesLHOrO pacnpeiefieHHs
paeTcs B TeopeMe 4 u B Apyroii GopMyIHpoBKe B Teopeme 5.

KELIOS PASTABOS APIE REKURENTINIU SRAUTUY ISRETINIMA
J. Moderudi
(Reziumé)
Darbe nagriné¢jama atsitiktiniy dydziy seka
T,=0<7,<<...,

kuri nusako rekurentinj jvykiy srauta. Tarkime, kad v'(") — nepriklausomy vienodai pasiskirséiu-
siy dydziy, jgyjanciy reikSmes nepriklausomai nuo srauto dydziy, seka. PaZymime
-1 .

P W=D gy @320 1)
Esant salygai

0< Dt (vM)=c< + 0,
4 teoremoje (kita formuluoté 5 teoremoje) gautos biitinos ir pakankamos skirtumy

3n (",(") —‘t'(’l)l

konvergavimo j ribinj désnj, kai 8,—0, n— oo, salygos.
Gautas rezultatas apibendrina A. Renyi teorema, irodyta specialiam dydziy v,(") atvejui.
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