1971

УДК 513

О ДВИЖЕНИЯХ В ПРОСТРАНСТВЕ ГИПЕРПЛОСКОСТНЫХ ЭЛЕМЕНТОВ

А. П. Урбонас

В [2] рассмотрен вопрос о максимальном порядке групп, допускаемых пространством гиперплоскостных элементов с неусеченной аффинной связностью. Этот порядок равен точно n^2-n+2 , $n\geqslant 7$. Осталось установить максимальный порядок групп, допускаемых указанным выше пространством с усеченной аффинной связностью. Настоящая статья — первый шаг в решении этого вопроса. А именно, здесь устанавливается, что в этом случае пространство гиперплоскостных элементов не может допускать групп движений порядка $r>n^2$, $n\geqslant 2$.

1. Движения в пространстве U_n . Пусть U_n — пространство гиперплоскостных элементов (x^i, u_k) . Аффинная связность в U_n задается объектом ([1]) $\left(\Gamma^i_{jk}(x,u), \ C^y_k(x,u)\right)$, $(i,j,k=1,2,3,\ldots,n)$, где Γ^i_{jk} — преобразуются по закону объекта аффинной связности и являются однородными функциями нулевого измерения относительно u_k ; C^y_k — тензор, компоненты которого являются однородными функциями минус первое измерение относительно u_k .

Связность называется усеченной, если $C_k^y = 0$.

В этой статье мы будем рассматривать только пространства U_n с усеченной симметрической $(\Gamma_{jk}^i = \Gamma_{kj}^i)$ связностью $\Gamma_{jk}^i (x, u)$.

Движениями пространства U_n являются такие точечные преобразования, относительно которых сохраняется аффинная связность. Для того, чтобы $v^I(x)$ определяло инфинитезимальное движение, оно должно удовлетворять уравнениям [2]:

$$D\Gamma^{l}_{jk} \equiv v^{l}_{,j,k} + v^{p} K^{l}_{jkp} - \Gamma^{l,p}_{jk} v^{s}_{,p} u_{s} = 0,$$
 (1)

где D — символ производной Π и,

 x_{k} — означает ковариантную производную по x^{k} ,

 u_{k} — частное дифференцирование по u_{k} .

Обозначим $v_j^l = v_{.j}^l$. Тогда условия интегрируемости (1) уравнений запишутся:

а) уравнение $DK_{ikl}^{i} = 0$ и все полученные из него последовательным ко-

а) уравнение
$$DR_{jkl}=0$$
 и все полученные из него последовательным ковариантным дифференцированием по x^s до порядка α под знаком D ;
$$\left(\frac{1}{2} K_{jkl}^l = \partial_{ll} \Gamma_{j+kl}^l + \Gamma_{p(l}^l \Gamma_{j+kl}^p - \Gamma_{j}^l \Gamma_{l}^r \Gamma_{j+kl}^s u_s\right),$$
 6) уравнение $D\Gamma_{jk}^{i,l\cdot l\cdot l\cdot \cdot \cdot \cdot \cdot l} = 0$ и все полученные из него последовательным ковариантным дифференцированием по x^s до порядка γ

под знаком D.

Если при увеличении каждого из чисел α, β, γ на единицу число независимых уравнений в системе (2) $\rho < n^2 + n$ не меняется, то пространство будет допускать группу движений G_r порядка $r=n^2+n-\rho$.

2. Существование групп движений G_r , $r > n^2$, $n \ge 2$. Если $\rho < nP$, то v_i^i можно разложить [3] следующим образом:

$$v_j^i = \omega_j^1 \, \xi_1^i + \omega_j^2 \, \xi_2^i + \dots + \omega_j^P \, \xi_P^i, \tag{3}$$

где все ξ_a^i линейно-независимы $(a=1,2,\ldots,P)$.

К тому же еще можно потребовать [2]

$$\xi_a^l u_i = 0 \quad (a = 1, 2, ..., P).$$
 (4)

Таким образом, уравнение $D\Gamma_{kl}^{ij} = 0$ (точку J, означающую дифференцирование, в дальнейшем будем пропускать), содержащееся в (2), в рассматриваемой точке, запишется:

$$\sum_{a=1}^{P} \omega_{s}^{a} \xi_{a}^{i} \Gamma_{kl}^{sj} + \sum_{a=1}^{P} \omega_{s}^{a} \xi_{a}^{j} \Gamma_{kl}^{is} = \sum_{a=1}^{P} \omega_{k}^{a} \xi_{a}^{s} \Gamma_{sl}^{ij} + \sum_{a=1}^{P} \omega_{l}^{a} \xi_{a}^{s} \Gamma_{ks}^{ij}$$
(5)

ДЛЯ

$$G_r$$
, $r > n^2 + n - nP$.

В данном случае $(r > n^2)$ имеем P = 1 и

$$v_j^i = \omega_j^1 \ \xi_1^i \equiv \omega_j \ \xi_1^i.$$

Теперь уравнения (5) примут вид:

$$\omega_{s} \xi^{i} \Gamma_{kl}^{sj} + \omega_{s} \xi^{j} \Gamma_{kl}^{is} = \omega_{k} \xi^{s} \Gamma_{sl}^{ij} + \omega_{l} \xi^{s} \Gamma_{ks}^{ij}. \tag{6}$$

В рассматриваемой точке (x^i, u_k) пространства U_n выберем специальную систему координат, в которой

$$u_{\nu} = \delta_{\nu}^{1} \,. \tag{7}$$

Тогда (4) дают $\xi^1 = 0$. Если к этому еще положим

$$\xi_s = \delta_s^s \,, \tag{8}$$

то из (6), полагая k=l, получим:

$$\Gamma_{2}^{ij} = 0.$$

Аналогично найдем

$$\Gamma_{al}^{ij} = 0 \quad (a \neq i, j, 1). \tag{9}$$

Рассмотрим преобразование координат $A_i^3 = t$, $A_i^{3'} = -t$, другие $A_i^j = \delta_i^j$, $A_i^j = \delta_i^j$. Оно сохраняет (7), а, следовательно и (9). Из равенства $\Gamma_{3'}^{3'} = \frac{2^j}{3^j} + t \left(\Gamma_{33}^{32} - \Gamma_{31}^{12}\right) + \Gamma_{31}^{32} = 0$, которое должно выполняться при любом t, получим $\Gamma_{33}^{32} = \Gamma_{31}^{12} = 0$. Следовательно,

$$\Gamma_{aa}^{ja} = \Gamma_{aa}^{aj} = 0 \quad (a \neq j, 1). \tag{10}$$

Аналогично преобразование $A_2^{3'}=-t$, $A_2^{3'}=t$, другие $A_j^{i'}=\delta_j^{i'}$, $A_{j'}^{i}=\delta_j^{i'}$, примененное к $\Gamma_{2',2'}^{2'}=0$, дает $\Gamma_{22}^{22}=\Gamma_{33}^{23}+\Gamma_{23}^{23}$. Учитывая (10), имеем $\Gamma_{22}^{22}=0$ и

$$\Gamma_{aa}^{aa} = 0 \quad (a \neq 1). \tag{11}$$

Из однородности Γ^i_{jk} следует $\Gamma^{i\cdot l}_{jk}u_l=0$. Откуда (7) дают $\Gamma^{i\cdot l}_{jk}=0$.

Таким образом, в выбранной системе координат (7) отличными от нуля могут быть только компоненты вида

$$\Gamma_{11}^{ij}$$
 $(j \neq 1)$.

Аналогично, анализируя уравнения $D\Gamma_{kl}^{ij} = 0$, можно показать, что отличными от нуля могут быть только компоненты вида Γ_{il}^{ij} ?

Пусть одна из компонент Γ_{ij}^{ij} отлична от нуля. Берем одну серию уравнений из условий интегрируемости (2):

$$D\Gamma^{ij}_{kl}=0$$
,

или, в другом виде,

$$v_s^h T_h^s(_{kl}^{ij}) + v^h \Gamma_{kl,h}^{ij} = 0,$$

где

$$T_h^s(i_l^j) = -\delta_h^i \Gamma_{kl}^{sj} - \delta_h^j \Gamma_{kl}^{is} + \delta_k^s \Gamma_{hl}^{ij} + \delta_l^s \Gamma_{kh}^{ij} - \Gamma_{kl}^{ijs} u_h$$

В рассматриваемой точке (x^i, u_k) пространства U_n выберем систему координат, в которой выполнено (7).

Пусть компонента $\Gamma_{11}^{sr} \neq 0$. Тогда матрица $T_h^s \binom{v}{kl}$ имеет порядок не ниже $n,\ n\geqslant 2$. Для доказательства достаточно взять матрицу, составленную при функциях $v_1',\ v_2',\ v_3',\ \dots,\ v_n^l$ в уравнениях $\binom{sr}{11},\ \binom{sr}{21},\ \binom{sr}{31},\ \dots,\ \binom{sr}{n1},\$ если $s\neq 1$; а при s=1 — матрицу при функциях $v_r',\ v_2^l,\ v_3^l,\ \dots,\ v_n^l$ в уравнениях $\binom{rr}{11},\ \binom{1r}{21},\ \binom{1r}{31},\ \dots,\ \binom{1r}{n1}$.

Из изложенного выше следует, что среди уравнений (2) не менее n независимых уравнений, и порядок групп движений G_r $r \le n^2$.

Теорема. Не существуют пространства U_n аффинной связности, допускающие группу движений G_r порядка $r > n^2$, $n \ge 2$.

Вильнюсский Государственный педагогический институт

Поступило в редакцию 11. VI.1970

Литература

- 1. Б. Л. Лаптев, Ковариантный дифференциал и теория дифференциальных инвариантов в пространстве тензорных опорных элементов, Учен. записки Казанского университета, 118, кн. 4, 1958, 76—147.
- А. П. Урбонас, Максимально подвижные пространства гиперплоскостных элементов общей аффинной связности, Лит. матем. сб., IX, № 1 (1969), 153-179.
- T. Okubo, On the order of the groups of affine collineations in the generalized spaces of path,
 I. II, III, Tensor 6, № 3, (1956), 141-158; № 1, (1957), 1-17, 18-33.

APIE JUDESIUS HIPERPLOKŠTUMINIU ELEMENTU ERDVĖJE

A. Urbonas

(Reziumé)

[2] buvo parodyta, kad hiperplokštuminių elementų erdvėse su bendru afininiu sąryšiu gali būti judesių grupė G_r su parametrų skaičiumi $r \le n^2 - n - 2$, $n \ge 7$. Šiame straipsnyje nagrinėjami judesiai hiperplokštuminių elementų erdvėse su nupiautu ($C_k^{ij} = 0$) afininiu sąryšiu. Įrodyta, kad šiuo atveju judesių grupė turi ne daugiau kaip n^2 parametrų.

SUR LES MOUVEMENTS DANS L'ESPACE DES ÉLÉMENTS HYPERPLANS

A. Urbonas

(Résumé)

On a démontré [2], que l'espace des éléments hyperplans avec la connection afinne commune permet le groupe des mouvements G_r où $r \le n^2 - n + 2$, $n \ge 7$. Dans cet article on analyse les mouvements quand la connection afinne est coupée. Nous avons demontré qu'en ce cas le groupe des mouvements ne peut contenir plus de n^2 de paramètres.