1971

УДК 513.88:513.83+517.948

К ТЕОРИИ ПОЛУФРЕДГОЛЬМОВЫХ ОПЕРАТОРОВ В ТОПОЛОГИЧЕСКИХ ЛИНЕЙНЫХ ПРОСТРАНСТВАХ

Ю. Н. Владимирский

В настоящей работе обобщаются на произвольные топологические линейные пространства некоторые известные факты из теории полуфредгольмовых операторов в локально выпуклых пространствах (см. [5], [7], [8]). Основное внимание уделено рассмотрению компактных возмущений Φ_+ -операторов. Изложение ведется таким образом, что оно охватывает случай многозначных отображений. Как и в [3], под многозначным отображением подразумевается упорядоченная пара; подпространств Γ_1 , Γ_2 топологического линейного пространства E. Следуя Γ . Нейбауэру [2], мы определяем "отношение компактности" двух подпространств. Все полученные далее результаты, касающиеся отношения компактности, являются обобщением результатов Γ . Нейбауэра (полученных им для банаховых пространств).

В § 1 рассмотрены некоторые вопросы, относящиеся к открытым отображениям в топологических линейных пространствах. В частности, дано достаточное условие того, чтобы отображение $\varphi: X \to Y$ было открытым и обладало замкнутой областью значений (предложение 1.3). В § 2 определяется отношение компактности двух подпространств топологического линейного пространства, обобщающее понятие компактного оператора, и доказывается транзитивность этого отношения. Развитая в §§ 1-2 техника применяется далее к теории полуфредгольмовых операторов. В § 3 доказывается, что произведение двух Φ -(соответственно, Φ_+ -, Φ_- -) операторов снова является оператором того же типа, и устанавливается логарифмическое свойство индекса для произведения плотно определенных Φ -операторов. В § 4 доказывается устойчивость свойств однозначных и многозначных Φ_+ -операторов при компактных возмущениях. При этом удается доказать устойчивость индекса лишь в случае локально выпуклых пространств.

Мы будем придерживаться обозначений, использованных в [3]. Буквами $E,\ X,\ Y$ будем обозначать топологические линейные пространства (т. л. п.); буквами $\Gamma,\ \Gamma_1\ \Gamma_2$ — подпространства (не обязательно замкнутые) в т. л. п. E; буквами $i,\ i_1,\ i_2$ — канонические вложения $i:\Gamma\to E,\ i_1:\Gamma_1\to E,\ i_2:\Gamma_2\to E;$ буквами $\pi,\ \pi_1,\ \pi_2$ — канонические факторные отображения $\pi:E\to E/\Gamma,\ \pi_1:E\to E/\Gamma_1,\ \pi_2:E\to E/\Gamma_2$. Фраза $,,x_i\to x\ (\text{mod }\Gamma)$ " означает, что $\pi x_i\to \pi x$. Напомним также, что, в соответствии с определением 1.9 в [3], $,\Gamma_1$ находится в отношении Φ_+ с Γ_2 " (сокращенно $\Gamma_1\Phi_+\Gamma_2$), если Γ_1 и Γ_2 замкнуты в E и $\pi_2\,i_1$ — Φ_+ -оператор. При этом индексом пары $(\Gamma_1,\ \Gamma_2)$ называется

число ind $(\Gamma_1, \Gamma_2) = \operatorname{ind} \pi_2 i_1 = \operatorname{dim} E / (\Gamma_1 + \Gamma_2) - \operatorname{dim} \Gamma_1 \cap \Gamma_2$. Мы говорим, что $\Gamma_1 \Phi \Gamma_2$, если $\Gamma_1 \Phi_+ \Gamma_2$ и ind $(\Gamma_1, \Gamma_2) < \infty$.

1. Лемма 1.1. Отображение $\varphi: X \to Y$ открыто в том и только том случае, если всякий раз из того, что сеть $(\varphi(x_i))_{i \in I}$ сходится к нулю, следует, что $x_i \to 0 \pmod{N_{\varphi}}$.

Лемма 1.2. Пусть $\varphi: X \to Y$ открыто и сюръективно, Y_1 — плотное подпространство в Y. Тогда $\varphi^{-1}(Y_1)$ плотно в D_{φ} .

Доказательство. Пусть $x \in D_{\varphi}$. Найдется сеть $(x_i) \subset \varphi^{-1}(Y_1)$ такая, что $\varphi(x_i) \to \varphi(x)$. В силу леммы 1.1 $x_i \to x \pmod{N_{\varphi}}$. По лемме 2.8 в [3] найдутся подсеть (x_{ij}) и сеть $(x_j) \subset N_{\varphi}$ такие, что $x_{ij} + x_j \to x$. Но $N_{\varphi} \subset \varphi^{-1}(Y_1)$, а значит $x \in \varphi^{-1}(Y_1)$, что и требовалось.

Предложение 1.3 (ср. с леммой 6.2 в [4]). Пусть $\varphi: X \to Y$, W- замкнутая окрестность нуля в X. И пусть $\varphi(A)$ замкнуто в Y для всякого замкнутого $A \subset W$ (под $\varphi(A)$ здесь подразумевается $\varphi(A \cap D_{\varphi})$). Тогда R_{φ} замкнуто в Y и φ открыто.

Доказательство. Возьмем произвольную открытую уравновешенную окрестность нуля $U \subset W$. Покажем, что если сеть $(y_i) \subset R_{\varphi} \setminus \varphi U$ и $y_i \to z$, то $z \in R_{\varphi} \setminus \{0\}$. Отсюда будет следовать, что φU — окрестность нуля в R_{φ} , и $\overline{R_{\varphi}} = \varphi \overline{W} \cup \overline{R_{\varphi}} \setminus \varphi \overline{U} \subset R_{\varphi}$. Так как φU — поглощающее уравновешенное множество в R_{φ} , то для каждого i можно выбрать ε_i такое, что $0 < \varepsilon_i \leqslant 1$ и

$$\varepsilon_i \, \mathbf{y}_i \in \varphi \, U \setminus \varphi \left(\frac{1}{2} \, U \right) = \varphi \left(U \setminus \left(\frac{1}{2} \, U + N_{\varphi} \right) \right) \subset \varphi \left(W \setminus \left(\frac{1}{2} \, U + N_{\varphi} \right) \right).$$

Выберем сходящуюся подсеть $\varepsilon_{i_j} \to \varepsilon$. Тогда $\varepsilon_{i_j} y_{i_j} \to \varepsilon z$, и так как $\varphi\left(W \setminus \left(\frac{1}{2} \ U + N_\varphi\right)\right)$ замкнуто и не содержит нуля, то $\varepsilon z \in \varphi W \setminus \{\,0\,\}$. Отсюда $\varepsilon \neq 0$ и $z = \frac{1}{\varepsilon}$ $(\varepsilon z) \in R_\varphi \setminus \{\,0\,\}$, что и требовалось.

Напомним, что в соответствии с определением 1.1 в [3] два подпространства Γ_1 , Γ_2 т. л. п. E ,,находятся в отношении открытости" (сокращенно, Γ_1 O Γ_2), если π_2 i_1 : $\Gamma_1 \to E$ / Γ_2 открыто. Установим ряд предложений, связанных с этим понятием.

Лемма 1.4. Пусть j_1 — отображение, замыкающее диаграмму

до коммутативной (здесь ψ_2 — каноническое факторное отображение). Тогда j_1 — инъективно, причем открытость j_1 равносильна тому, что Γ_1 O Γ_2 .

Лемма 1.5. Если dim $\Gamma_1/(\Gamma_1 \cap \Gamma_2) < \infty$ и $\bar{\Gamma_2} \cap \Gamma_1 \subset \Gamma_2$, то $\Gamma_1 \circ \Gamma_2$.

Доказательство. Воспользуемся диаграммой (1). В силу леммы 1.4 достаточно показать, что j_1 открыто. Заметим, что R_{j_1} отделимо. Действительно, $\{\overline{0_{E/\Gamma_1}}\} \cap R_{j_1} = \overline{\pi_2(\Gamma_2)} \cap \pi_2(\Gamma_1) = \pi_2(\overline{\Gamma_2}) \cap \pi_2(\Gamma_1) = \pi_2(\overline{\Gamma_2}) \cap \Gamma_1) = 0$. Так как dim $\Gamma_1/(\Gamma_1 \cap \Gamma_2) < \infty$, то j_1 открыто ([10], гл. 1, § 2, следствие 2).

Лемма 1.6. а) Если $\Gamma_1 \cap \Gamma_2$ плотно в Γ_1 , то $\Gamma_1 O \Gamma_2$, б) если Γ_2 плотно в E и $\Gamma_1 O \Gamma_2$, то $\Gamma_1 \cap \Gamma_2$ плотно в Γ_1 .

Доказательство. Воспользуемся диаграммой (1). Если $\Gamma_1 \cap \Gamma_2$ плотно в Γ_1 , то $\Gamma_1/(\Gamma_1 \cap \Gamma_2)$ абсолютно неотделимо и j_1 открыто. Из леммы 1.4 следует, что $\Gamma_1 O \Gamma_2$. Если Γ_2 плотно в E, то E/Γ_2 абсолютно неотделимо. Если при этом $\Gamma_1 O \Gamma_2$, то по лемме '1.4 j_1 открыто. А так как j_1 инъективно, то $\Gamma_1/(\Gamma_1 \cap \Gamma_2)$ тоже абсолютно неотделимо, т. е. $\Gamma_1 \cap \Gamma_2$ плотно в Γ_1 .

Лемма 1.7 (ср. с леммой 2.1 в [1]). Пусть Γ_1 плотно в Е. Тогда:

- а) если Γ_2 замкнуто, то dim $\Gamma_1/\Gamma_1 \cap \Gamma_2 = \dim E/\Gamma_2$;
- б) если Γ_2 замкнуто и dim $E/\Gamma_2 < \infty$, то $\Gamma_1 \cap \Gamma_2$ плотно в Γ_2 .

Доказательство. Воспользуемся диаграммой (1). а) Так как Γ_1 плотно в E, то $\pi_2(\Gamma_1)$ плотно в E/Γ_2 , и значит R_{j_1} плотно в E/Γ_2 . Так как E/Γ_2 отделимо и j_1 инъективно, то $\dim \Gamma_1/\Gamma_1 \cap \Gamma_2 = \dim E/\Gamma_2$ ([10], гл. 1, § 2, следствие 1). б) Так как $\dim \Gamma_1/\Gamma_1 \cap \Gamma_2 \leqslant \dim E/\Gamma_2 < \infty$, то по лемме 1.5 Γ_1 O Γ_2 . Поскольку отношение O симметрично ([3], предложение 1.5), то из леммы 1.6 следует, что $\Gamma_1 \cap \Gamma_2$ плотно в Γ_2 .

Предложение 1.8. Пусть $\varphi: X \to Y$ открыто, X_1 — подпространства в X. Если выполнено одно из условий:

- a) $\overline{X}_1 \cap N_{\varphi} \subset X_1 \ u \ \dim N_{\varphi_1} / X_1 \cap N_{\varphi} < \infty$;
- 5) $N_{\circ} \subset X_1$:
- в) X_1 замкнуто и $\dim N_{\infty} < \infty$;
- Γ) X_1 замкнуто u codim $X_1 < \infty$;
- д) $X_1 \cap N_{\infty}$ плотно в N_{∞} ,

 $mo u \varphi_{|_{X_1}}$ открыто.

Доказательство. Если выполнено условие а) или д), то из лемм 1.5 и 1.6 следует, что $N_{\sigma}O~X_1$. Тогда из предложения 1.6 в [3] следует, что $\phi_{[X_1}$ открыто *). В свою очередь условие а) есть следствие каждого из условий б), в), г).

Выше были даны условия, при выполнении которых сужение открытого отображения на заданное подпространство открыто. Рассмотрим обратную задачу.

Лемма 1.9. Пусть в E имеются две линейные топологии: t и τ . И пусть E_1 — замкнутое подпространство в (E, t), причем $\operatorname{codim} E_1 < \infty$. Если на E_1 , t мажорирует τ , то $t \geqslant \tau$ на всем E.

Доказательство. Пусть N — прямое дополнение к E_1 в E. Так как E_1 замкнуто в (E, t), то $\overline{\{0\}}^t \subset E_1$ и (N, t) отделимо. Следовательно, t мажорирует τ на N ([10], гл. 1. § 2, следствие 2). А так как (E, t) есть

^{*)} В предложении 1.6 из [3] предполагается замкнутость рассматриваемых подпространств, но это требование не существенно.

топологическая прямая сумма (E_1, t) и (N, t) ([10], гл. 1, § 2, предложение 3), то $t \geqslant \tau$ на E.

Следствие 1.10. Пусть $\varphi: (X, t) \to (Y, \tau), \ X_1 - noдnространство в X.$ Если $\varphi_{|X_1}$ открыто, $\varphi(X_1)$ замкнуто в R_{φ} и $\dim R_{\varphi} / \varphi(X_1) < \infty$, то и φ открыто.

Доказательство. Пусть $U \subset X$ — произвольная окрестность нуля. Соотношение $\phi U \cap \phi X_1 \supset \phi (U \cap X_1)$ в соединении с открытостью $\phi_{|X_1}$ показывает, что топология $\phi(t)$ мажорируется на $\phi(X_1)$ топологией τ . Из леммы 1.9 следует, что $\phi(t) \leqslant \tau$ на всем R_{ϕ} , т. е. ϕ открыто.

2. Начнем с одного вспомогательного утверждения, которое будет часто использоваться в последующем.

Лемма 2.1. ([11], стр. 184). Пусть A — множество в топологическом пространстве X. Для того, чтобы A было относительно компактно, необходимо и достаточно, чтобы для всякой сети $(x_i) \subset A$ нашлась подсеть, сходящаяся в X.

Пусть E — т. л. п.; Γ_1 , Γ_2 — подпространства E. Следуя определению 6.1 в [2], введем определение.

Определение 2.2. Будем говорить, что Γ_1 является компактным возмущением Γ_2 (сокращенно, $\Gamma_1 \% \Gamma_2$), если $\pi_2 i_1$ — компактный оператор.

Связь введенного определения с понятием компактного оператора устанавливается следующим предложением.

Предложение 2.3. Пусть $X, Y - \tau$. л. п., $k \in L(X, Y)$. Тогда:

- а) если k компактен, то $\Gamma_{\varphi+k} \stackrel{\sim}{\mathcal{N}} \Gamma_{\varphi}$ для любого $\varphi: X \to Y$ (и в частности $\Gamma_k \stackrel{\sim}{\mathcal{N}} X$);
- б) если $\Gamma_{\varphi+k} \stackrel{\sim}{\sim} \Gamma_{\varphi}$ для какого-нибудь $\varphi \in L(X, Y)$ (в частности, если $\Gamma_k \stackrel{\sim}{\sim} X$), то k компактен.

Доказательство. а) Пусть окрестность нуля $U \subset X$ такова, что k (U) относительно компакно в Y. Возьмем произвольное $\phi: X \to Y$ и обозначим через $\pi: X \times Y \to (X \times Y)/\Gamma_{\phi}$ естественное отображение. Покажем, что $\pi\left((U \times Y) \cap \Gamma_{\phi+k}\right)$ относительно компактно. Действительно, пусть (x_i) — сеть в $U \cap D_{\phi}$. Найдется подсеть (x_{i_j}) такая, что k $(x_{i_j}) \to y$ (по лемме 2.1). Тогда $(x_{i_j}, (\phi+k) \ x_{i_j}) \to (0, y)$ (mod Γ_{ϕ}), что и требовалось. Докажем 6). Пусть найдутся $\phi \in L(X, Y)$ и окрестности нуля $U \subset X$, $V \subset Y$ такие, что $\pi\left((U \times V) \cap \Gamma_{\phi+k}\right)$ относительно компактно (π) определено как выше). Тогда (π) относительно компактно в (π) Действительно, пусть (π) — сеть в (π) Относительно компактно в (π) Действительно, пусть (π) — сеть в (π) Относительно (π) Но так как (π) — сеть в (π) Состужит топологическим прямым дополнением для (π) В (π) Следовательно, (π) — (π) — (π) и требовалось.

Лемма 2.4. Π усть $\Gamma_1 \propto \Gamma_2$. Найдется окрестность нуля $U \subset E$ такая, что для всякой сети $(x_i) \subset U$, сходящейся κ x по $\operatorname{mod} \Gamma_1$, найдутся подсеть (x_i) u $z \in \overline{\Gamma_1 + \Gamma_2}$ такие, что $x_{i_*} \to x + z$ $(\operatorname{mod} \Gamma_2)$.

 Π о к а з а т е л ь с т в о. Пусть окрестность нуля $V \subset E$ такова, что $\pi_2(V \cap \Gamma_1)$ относительно компактно. Выберем окрестность нуля $U \subset E$ так, чтобы $U + U - U - U \subset V$. Пусть (x_i) — сеть в U, и пусть $x_i \to x \pmod{\Gamma_1}$. По лемме 2.8 в [3] найдутся подсеть (x_{ij}) и сеть $(z_j) \subset \Gamma_1$ такие, что $x_{ij} - z_j \to x$. Найдется j_0 такое, что при $j \geqslant j_0$ $z_j \in -x + x_{ij} + U \subset -x + U + U$, и $z_j - z_j \in U + U - U - U \subset V$. Поэтому найдется подсеть $z_{j_k} \to z \in \Gamma_1 + \Gamma_2 \pmod{\Gamma_2}$. Следовательно, $x_{i_{j_1}} \to x + z \pmod{\Gamma_2}$, что и требовалось.

Отметим очевидное следствие известной теоремы Рисса ([10], гл. 1, § 2, теорема 3).

Предложение 2.5. Пусть $\Gamma - nc\partial n$ ространство в т. л. п. Е. Тогда

- а) если E отделимо, то $dim \Gamma < \infty$ $\hookrightarrow \pi \Gamma \mathcal{K} \{0\}$ ";
- б) если Γ замкнуто, те, codim $\Gamma < \infty'' \iff_{''} E \% \Gamma''$.

Следующее утверждение может служить аналогом теоремы о том, что сумма двух компактных операторов — снова компактный оператор.

Предложение 2.6. (ср. с 6.2 в [2]). Отношение \mathcal{K} рефлексивно и транзитивно, но вообще говоря, не симметрично.

До казательство. Рефлексивность очевидна. Пусть E- бесконечномерное нормированное пространство. Тогда $\{0\}$ % E, но обратное неверно в силу предложения 2.5 (а). Докажем транзитивность. Пусть Γ_1 % Γ_2 и Γ_2 % Γ_3 . Покажем, что Γ_1 % Γ_3 . Выберем окрестность нуля $U \subset E$ таким образом, чтобы для пары $(\Gamma_2, \ \Gamma_3)$ выполнялось утверждение леммы 2.4., и чтобы $\pi_2(U \cap \Gamma_1)$ было относительно компактно. Пусть (x_i) — сеть в $U \cap \Gamma_1$. По лемме 2.1 найдется подсеть $x_{i_j} \to x \pmod{\Gamma_2}$. По лемме 2.4 найдется подсеть $x_{i_{j_k}}$, сходящаяся по mod Γ_3 , что и требовалось.

Предложение 2.7. (ср. с [2], 6.6). Пусть Γ_1 , Γ_2 и Γ_3 — подпространства т. л. п. Е. И пусть $\Gamma_1 \ \% \ \Gamma_2$. Тогда:

- а) если Γ_2 O Γ_3 и $\Gamma_2 + \Gamma_3$ замкнуто в E, то $(\Gamma_1 \cap \Gamma_3) \mathcal{R} (\Gamma_2 \cap \Gamma_3)$;
- б) если $\Gamma_1 O \Gamma_3$, то $(\Gamma_1 + \Gamma_3) \% (\Gamma_2 + \Gamma_3)$.

 \mathcal{H} о к а з а т е л ь с т в о. а) Пусть окрестность нуля $U \subset E$ такова, что $\pi_2 (U \cap \Gamma_1)$ относительно компактно. Возьмем сеть $(x_i) \subset U \cap \Gamma_1 \cap \Gamma_3$. Найдется подсеть $x_{i_j} \to x \pmod{\Gamma_2}$. По лемме 2.8 в [3] найдутся подсеть $x_{i_{j_k}}$ и сеть $(z_k) \subset \Gamma_2$ такие, что $x_{i_{j_k}} + z_k \to x$. Тогда $z_k \to x \pmod{\Gamma_3}$. Из замкнутости $\Gamma_2 + \Gamma_3$ следует, что найдется $z \in \Gamma_2$ такое, что $z_k \to z \pmod{\Gamma_3}$. Из условия $\Gamma_2 \cap \Gamma_3$ следует, что $z_k \to z \pmod{\Gamma_2 \cap \Gamma_3}$. Но тогда $x_{i_{j_k}} \to x - z \pmod{\Gamma_2 \cap \Gamma_3}$, что и требовалось.

б) Выберем окрестность U, как при доказательстве a). Пусть (x_i) — сеть в $U \cap \Gamma_1$, (y_i) — сеть в Γ_3 . Найдется подсеть $x_{i_j} \to x \pmod{\Gamma_2}$, откуда следует, что $x_{i_j} + \pmb{y}_{i_j} \to x \pmod{(\Gamma_2 + \Gamma_3)}$. Но из условия $\Gamma_1 \circ \Gamma_3$ следует, что $U \cap \Gamma_1 + \Gamma_3$ — окрестность нуля в $\Gamma_1 + \Gamma_3$ ([3], лемма 1.2). Утверждение доказано.

Замечание. Если не накладывать никаких ограничений на взаимное расположение Γ_3 с Γ_2 и Γ_1 , то утверждения а) и б) перестают быть верными. Чтобы убедиться в этом, рассмотрим следующий пример. Пусть X — бесконечномерное банахово пространство, $k \in L(X)$ — компактный оператор с

 $N_k = 0$. В силу предложения 2.3 $X \curvearrowright \Gamma_k$ и $\Gamma_k \curvearrowright X$. Но утверждения $(X \cap X) \curvearrowright (\Gamma_k \cap X)$ " и $(X + \Gamma_k) \curvearrowright (\Gamma_k + \Gamma_k)$ " неверны, так как dim $X = \infty$, $\Gamma_k \cap X = 0$, dim $(X + \Gamma_k) / \Gamma_k = \infty$ (см. предложение 2.5).

Следствие 2.8. Пусть X и Y — τ . л. п., $\varphi \in L(X, Y)$, X_1 и X_2 — $no\partial$ -npocmpahcmba в X. Ecли $X_1 \% X_2$, то $\left(\Gamma_{\varphi} \cap (X_1 \times Y)\right) \% \left(\Gamma_{\varphi} \cap (X_2 \times Y)\right)$.

Доказательство. Так как X_1 % X_2 , то $(X_1 \times Y)$ % $(X_2 \times Y)$. Так как $\varphi \in L(X, Y)$ то Γ_{φ} служит топологическим прямым дополнением для Y в $X \times Y$. Тогда $\Gamma_{\varphi} + Y = X \times Y$ и Γ_{φ} $O(X_2 \times Y)$. Остается применить предложение 2.7 (a).

3. В этом пункте будем предполагать, что $E,\ F$ и G — отделимые т. л. п.

Теорема 3.1*). Пусть $\varphi: E \to F$. Следующие условия равносильны:

- а) φ открыто, R_{∞} замкнуто u dim $N_{\infty} < \infty$;
- б) Γ_{φ} замкнуто, и найдется окрестность нуля $W \subset E$ такая, что для всякой сети $(x_i) \subset W \cap D_{\varphi}$ такой, что $\varphi(x_i)$ сходится в F, найдется сходящаяся подсеть (x_i) ;
 - в) φ есть Φ_+ -оператор.

Доказательство. a) \Rightarrow б). Пусть выполнено условие a). В силу предложения 2.5 (a) $N_{\Phi} \Re \{0\}$. Выберем окрестность нуля $W \subset E$ так, чтобы для пары $(N_{\infty}, \{0\})$ выполнялось утверждение леммы 2.4. Пусть (x_i) сеть в $W \cap D_{\varphi}$ такая, что $\varphi(x_i) \to y \in F$. Найдется $x \in D_{\varphi}$ такой, что $y = \varphi(x)$. Из леммы 1.1 следует, что $x_i \to x \pmod{N_{\varpi}}$. По лемме 2.4 найдутся $z \in N_{\phi}$ и подсеть (x_{i_j}) такие, что $x_{i_j} \to u = x + z$. Итак, W обладает требуемым свойством. Пусть $x_i \to \bar{x}$, $\varphi(x_i) \to \bar{y}$. Не нарушая общности, можно предположить, что $(x_i) \subset W$. В силу доказанного выше найдутся $u \in D_{\varphi}$, и подсеть (x_{i_j}) такие, что $\varphi(u) = \bar{y}$ и $x_{i_j} \to u$. Тогда $\bar{x} = u$, что и требовалось. Таким образом, а) \Rightarrow б). Следовательно, а) и в) равносильны. Покажем, что б) \Rightarrow а). Пусть W — замкнутая окрестность нуля в E, выбранная по условию б). Тогда $W \cap N_{\Phi}$ компактно (по лемме 2.1), и следовательно $\dim N_{\varpi} < \infty$. Покажем теперь, что для φ и W выполняются условия предложения 1.3. Действительно, пусть A — замкнутое подмножество W, и пусть (x_i) — сеть в $A \cap D_{\phi}$ такая, что $\phi(x_i) \to y$. Выберем сходящуюся подсеть $(x_{i_j}): x_{i_j} \to x \in A$. Так как Γ_{φ} замкнуто, то $x \in D_{\varphi}$ и $y = \varphi(x) \in \varphi(A)$. Следовательно, $\varphi(A)$ замкнуто. На основании предложения 1.3 заключаем, что φ открыто и R_{∞} замкнуто.

Предложение 3.2**). Пусть $\varphi: E \to F, \ \psi: F \to G$. Тогда:

- а) если φ и ψ Φ_+ -операторы, то и $\psi \varphi$ тоже;
- б) если φ и $\psi \Phi$ _-операторы, то $\psi \varphi$ открыто, $R_{\psi \varphi}$ замкнуто и codim $R_{\psi \varphi} < \infty$; если же, вдобавок, $\varphi \in L(E, F)$, $\psi \in L(F, G)$, то $\psi \varphi \Phi$ _-оператор;
 - в) если φ и ψ Φ -операторы, то и $\psi \varphi$ тоже.

^{*)} Это утверждение можно рассматривать как обобщение теоремы А. Пича ([7], теорема 1), доказанной им для случая локально выпуклых пространств. Пич сформулировал свою теорему в терминах фильтров.

^{**)} В случае, когда E, F и G-локально выпуклые пространства, утверждения а) и 6) доказаны в [7] (теоремы 3 и 7), а утверждение в) — в [8] (теорема 2).

При этом ind $(\psi \varphi) = \operatorname{ind} \psi + (\dim D_{\psi} / D_{\psi} \cap R_{\varphi} - \dim N_{\varphi})$. Если же D_{ψ} плотно в F, то $D_{\psi \varphi}$ плотно в D_{φ} и ind $(\psi \varphi) = \operatorname{ind} \psi + \operatorname{ind} \psi$.

Доказательство. а) Из предложения 1.8 следует, что $\psi_{|R_{\phi}}$ открыто, и значит ψ_{ϕ} открыто. Ясно, что dim $N_{\psi_{\phi}} < \infty$. Так как dim $N_{\phi} < \infty$ и R_{ϕ} замкнуто, то $R_{\phi} + N_{\psi}$ замкнуто ([10], гл. 1, § 2, следствие 4), откуда ψ (R) $_{\phi}$ замкнуто в R_{ψ} ([9], лемма 2), а значит и в G. Из теоремы 3.1 (а \Rightarrow в) следует, что $\psi_{\phi} - \Phi_{+}$ -оператор.

- б) Доказывается так же, как и а).
- в) Первое утверждение следует из а) и б).

Формула ind ($\psi \phi$) = ind ψ + (dim $D_{\psi}/D_{\psi} \cap R_{\varphi}$ – dim N_{φ}) доказывается так же, как и в (8) (в доказательстве не используются топологические свойства пространств и отображений). Предположим теперь, что D_{ψ} плотно в F. Из леммы 1.7 заключаем, что $D_{\psi} \cap R_{\varphi}$ плотно в R_{φ} и dim $D_{\psi}/D_{\psi} \cap R_{\varphi}$ = dim F/R_{φ} , откуда ind ($\psi \phi$) = ind ψ + ind φ . Из леммы 1.2 следует, что $D_{\psi \varphi} = \varphi^{-1}(D_{\psi} \cap R_{\varphi})$ плотно в D_{φ} , что и требовалось.

Предложение 3.3*). Пусть $\varphi \in L(E, F), \psi \in L(F, G)$. Тогда

- а) если $\psi \varphi \Phi_+$ -оператор, то и φ тоже;
- б) если $\psi \varphi \Phi_-$ -оператор, то и ψ тоже;

Доказательство. а) следует из теоремы $3.1~(6\iff \mathrm{B})$. Докажем 6). Ясно, что $\psi_{\mid R_{\phi}}$ открыто. А так как $\psi(R_{\phi}) = R_{\psi\phi}$ замкнуто и имеет конечный дефект в G, то в силу следствия $1.10~\psi$ тоже открыто. Наконец, так как $R_{\psi} \supset R_{\psi\phi}$, то R_{ψ} замкнуто ([10], гл. 1, § 2, следствие 4) и соdim $R_{\psi} < \infty$. Итак, ψ есть Φ_- -оператор.

4. Перейдем к рассмотрению устойчивости свойств Φ_+ -операторов при компактных возмущениях.

Теорема 4.1. (ср. с [2], 6.7). Пусть $E - \textit{omdenumoe}^{**}$ т. л. п.; Γ_1 , Γ_2 и $\Gamma_3 - \textit{замкнутые}$ подпространства в E. Если $\Gamma_1 \mbox{$\beta$} \Gamma_2$, $\Gamma_2 \mbox{$\Phi_+$} \Gamma_3$, то $\Gamma_1 \mbox{$\Phi_+$} \Gamma_3$. При этом, если ind $(\Gamma_2, \ \Gamma_3) = \infty$, то и ind $(\Gamma_1, \ \Gamma_3) = \infty$.

Доказательство. Заметим, что в силу предложения 1.10 в [3] $\Gamma_3 \Phi_+ \Gamma_2$. Выберем окрестность нуля $U \subset E$ таким образом, чтобы для $\pi_2 i_3$ выполнялось условие 6) теоремы 3.1, и чтобы для пары $(\Gamma_1, \ \Gamma_2)$ выполнялось условие леммы 2.4. Покажем, что тогда для U и $\pi_1 i_3$ также выполняется условие 6) теоремы 3.1. Действительно, пусть (x_i) — сеть в $U \cap \Gamma_3$ такая, что $x_i \to x \pmod{\Gamma_1}$. По лемме 2.4 найдется подсеть $x_{i_s} \to y \pmod{\Gamma_2}$. В силу условия 6) теоремы 3.1 найдется подсеть $x_{i_{s_k}} \to z \in \Gamma_3$, что и требовалось. По теореме 3.1 заключаем, что $\pi_1 i_3$ есть Φ_+ -оператор и следовательно $\Gamma_1 \Phi_+ \Gamma_3$. Предположим, что ind $(\Gamma_1, \ \Gamma_3) < \infty$. Тогда dim $E/(\Gamma_1 + \Gamma_3) = \min(\Gamma_1, \ \Gamma_3) + \dim(\Gamma_1, \ \Gamma_3) < \infty$ и в силу предложения $2.5 \ E \% (\Gamma_1 + \Gamma_3)$. Из предложений $2.7 \ (6)$ и $2.6 \$ заключаем, что также $E\% (\Gamma_2 + \Gamma_3)$, и следовательно, ind $(\Gamma_2, \ \Gamma_3) < \infty$. Теорема доказана.

Следствие 4.2. Пусть Γ_1 , Γ_2 и Γ_3 — замкнутые подпространства в отделимом τ . Л. П. Е. Если $\Gamma_1 \% \Gamma_2$, $\Gamma_2 \% \Gamma_1$ и $\Gamma_2 \Phi \Gamma_3$, то $\Gamma_1 \Phi \Gamma_3$.

^{*)} В случае, когда Е, F и G локально выпуклы, предложение 3.3 доказано в [7].

^{**)} Можно показать, что теорема верна и без предположения об отделимости Е.

Следствие 4.3*). Пусть X, Y- отделимые τ . π . π ., $\varphi: X \to Y$ Φ_+ -оператор, $k \in L(X, Y)$ компактный оператор. Тогда $\varphi+k$ тоже Φ_+ -оператор. Если же $\varphi-\Phi$ -оператор, то и $\varphi+k-\Phi$ -оператор.

Доказательство следует из теоремы 4.1, если воспользоваться предложением 2.3 и замечанием, что условия " ϕ есть Φ_+ -оператор" и " Γ_{ϕ} замкнут и $\Gamma_{\phi}\Phi_+$ X" равносильны.

Отметим, что утверждение следствия 4.3 остается в силе, если вместо компактности k потребовать его φ -компактность, не предполагая непрерывности k (отображение $k: X \to Y$ называется φ -компактным, если $D_k \supset D_{\varphi}$, и найдутся окрестности нуля $U \subset X$, $V \subset Y$ такие, что k ($\overline{U \cap \varphi^{-1} V}$) компактно — см. [1], стр. 58).

Следствие 4.4. Пусть X и Y- отделимые τ . л. π ., $\varphi \in L$ (X, Y), X_1 и X_2- замкнутые подпространства в X. Если $\varphi_{|X_1}\colon X_2 \to Y$ есть Φ_+ -оператор и $X_1 \curvearrowright X_2$, то и $\varphi_{|X_1}\colon X_1 \to Y$ есть Φ_+ -оператор.

Доказательство. Будем рассматривать $\phi_{|X_1}$ как оператор $\phi_1\colon X\to Y$ с $D_{\phi_1}=X_1$, и аналогично будем рассматривать $\phi_{|X_1}$ как $\phi_2\colon X\to Y$ с $D_{\phi_1}=X_2$. Тогда подпространства $\Gamma_{\phi_1}=\Gamma_{\phi}\cap (X_1\times Y)$ и $\Gamma_{\phi_1}=\Gamma_{\phi}\cap (X_2\times Y)$ замкнуты в $X\times Y$. Из условия следует, что $\Gamma_2\Phi_+$ X в $X\times Y$, а из следствия 2.8 заключаем, что $\Gamma_{\phi_1} \curvearrowright \Gamma_{\phi_2}$. Тогда из теоремы 4.1 следует, что $\Gamma_{\phi_1}\Phi_+$ X, т. е. ϕ_1 есть Φ_+ -оператор.

Предложение 4.5. При предположениях следствия 4.3, пусть одно из подпространств N_{ϕ} , $N_{\phi+k}$ содержит другое (или, что то же, N_k содержит одно из подпространств N_{ϕ} , $N_{\phi+k}$). Тогда $\operatorname{ind}(\phi+k)=\operatorname{ind}\phi$.

Перейдем к рассмотрению многозначных отображений.

Лемма 4.6. Пусть E — отделимое τ . л. п., Γ_1 и Γ_2 — замкнутые подпространства s E. Пусть имеется $\psi:\Gamma_1\to\Gamma_2$ с $D_\psi=\Gamma_1$ такое, что i_1-i_2 ψ компактно (см. диаграмму)

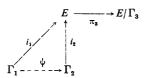
^{*)} В случае, когда X и Y локально выпуклы, этот результат хорошо известен (см. напр. [8], теорема 3). В [6] доказывается, что если X произвольное τ . л.п., $k \in L(X)$ компактен, то 1-k Φ -оператор в X и ind (1-k)=0.

Тогда $\Gamma_1 \otimes \Gamma_2$, а ψ — непрерывный Φ_+ -оператор. Если вдобавок $\Gamma_2 \otimes \Gamma_1$, то ψ — Φ -оператор.

Доказательство. Из условия следует, что $i_2 \psi \in L$ (Γ_1 , E), а так как i_2 — изоморфное вложение, то $\psi \in L$ (Γ_1 , Γ_2). Поскольку i_1 — Φ_+ -оператор, то в силу следствия 4.3 $i_2 \psi$ тоже Φ_+ -оператор, и из предложения 3.3 заключаем, что $\psi = \Phi_+$ -оператор. Заметим, что $\Gamma_1 \curvearrowright R_{\psi}$. Действительно, пусть окрестность нуля $U \subset E$ такова, что $(i_1-i_2 \psi)$ ($U \cap \Gamma_1$) относительно компактно в E. Пусть (x_i) — сеть в $U \cap \Gamma_1$. Найдется подсеть (x_{ij}) такая, что x_{ij} — $\psi(x_{ij})$ сходится в E по mod R_{ψ} , что и требовалось. Тогда и подавно $\Gamma_1 \curvearrowright \Gamma_2$. Пусть $\Gamma_2 \curvearrowright \Gamma_1$, тогда в силу предложения 2.6 $\Gamma_2 \curvearrowright R_{\psi}$. Так как R_{ψ} замкнуто, то dim $\Gamma_2/R_{\psi} < \infty$ (см. предложение 2.5 б), что и требовалось.

Предложение 4.7 (ср. с [2], 6.8). Пусть E- отделимое локально выпуклое пространство; Γ_1 , Γ_2 и Γ_3- замкнутые подпространства в E. И пусть $\Gamma_2 \Phi \Gamma_3$, $\Gamma_2 % \Gamma_1$ и имеется $\psi \colon \Gamma_1 \to \Gamma_2$ с $D_\psi = \Gamma_1$ такое, что $i_1-i_2 \psi$ компактно. Тогда $\psi-$ непрерывный Φ -оператор, $\Gamma_1 \Phi \Gamma_3$ и ind $(\Gamma_1, \Gamma_3)=$ = ind $(\Gamma_2, \Gamma_3)+$ ind ψ .

Доказательство. Из леммы 4.6 следует, что ψ — непрерывный Ф-оператор и $\Gamma_1 \, \, \, \, \, \, \Gamma_2$. Из следствия 4.2 получаем, что $\Gamma_1 \, \Phi \, \Gamma_3$. Для доказательства формулы для индекса ind (Γ_1 , Γ_3) рассмотрим диаграмму



(здесь треугольная диаграмма вообще говоря не коммутативна). Так как $\pi_3 i_1 = \pi_3 (i_1 - i_2 \psi) + \pi_3 i_2 \psi$, то по теореме 15 из [5] ind $\pi_3 i_1 = \text{ind } \pi_3 i_2 \psi$, а в силу предложения 3.2 ind $\pi_3 i_2 \psi = \text{ind } \psi + \text{ind } \pi_3 i_2$, что и требовалось.

Замечание. Утверждение предложения 4.7 остается верным, если условие локальной выпуклости E заменить следующим: одно из подпространств $\Gamma_1 \cap \Gamma_3$, $\psi^{-1}(\Gamma_2 \cap \Gamma_3)$ содержит другое. Это следует из предложения 4.5.

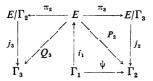
Предложение 4.8 (ср. с [2], 6.9). Пусть отделимое т. л. п. Е разлагается в топологическую прямую сумму подпространств Γ_2 и Γ_3 , а Γ_1 — замкнутое подпространство в Е такое, что $\Gamma_1 \% \Gamma_2$ и $\Gamma_2 \% \Gamma_1$. Тогда $\Gamma_1 \Phi \Gamma_3$, и найдется Φ -оператор $\psi \in L(\Gamma_1, \Gamma_2)$ такой, что ind $(\Gamma_1, \Gamma_3) = \min \psi$, а $i_1 - i_2 \psi$ — компактный оператор. Если же дополнительно выполнено одно из двух условий:

- а) Е локально выпукло;
- $\Gamma_1 \cap \Gamma_3 = 0$,

то Γ_1 дополнимо в E.

Доказательство. Из следствия 4.2 вытекает, что $\Gamma_1 \Phi \Gamma_3$. Пусть P — проектор в E с $R_P = \Gamma_2$, $N_P = \Gamma_3$, а операторы $P_2 \in L(E, \Gamma_2)$ и $Q_3 \in L(E, \Gamma_3)$ определяются из соотношений $P = i_2 P_2$, $1 - P = i_3 Q_3$. Имеются

изоморфизмы $j_2\colon E\ /\ \Gamma_3 \to \Gamma_2$ и $j_3\colon E\ /\ \Gamma_2 \to \Gamma_3$ такие, что коммутативна диаграмма



В силу предложения $3.2\ \psi=j_2\ (\pi_3\ i_1)$ — Φ -оператор, а $i_1-i_2\ \psi=i_1-i_2\ P_2\ i_1==(1-P)\ i_1=i_3\ Q_3\ i_1=i_3\ j_3\ (\pi_2\ i_1)$ компактен. Ясно, что ind $\psi\equiv\dim E/(\Gamma_1+\Gamma_3)$ — $-\dim\ \Gamma_1\cap\Gamma_3=$ ind $(\Gamma_1,\ \Gamma_3)$. Докажем заключительное утверждение. Пусть E локально выпукло. Тогда Γ_3 можно разложить в топологическую прямую сумму: $\Gamma_3=\Gamma_1\cap\Gamma_3+\Gamma$. Так как $\dim\ \Gamma_1\cap\Gamma_3<\infty$, то $\Gamma_3\ \mathcal T$ и $\Gamma\ \mathcal T$ Γ_3 , из следствия 4.2 вытекает, что $\Gamma_1\Phi\Gamma$ (при этом $\Gamma_1\cap\Gamma=0$). Итак, случай а) сводится к случаю 6). Пусть выполнено 6). Тогда Γ_1 дополнимо в $\Gamma_1+\Gamma_3$ - Но $\Gamma_1+\Gamma_3$ замкнуто и codim $(\Gamma_1+\Gamma_3)<\infty$; следовательно, $\Gamma_1+\Gamma_3$ дополнимо в E ([10], гл. 1, § 2, предложение 3) и Γ_1 дополнимо в E.

Замечание. Приведем пример, когда выполнены все условия предложения 4.8, кроме условий а) и б), и подпространство Γ_1 не дополнимо. Пусть $E=R^1\oplus L_{1/2}(0,\ 1)$. Обозначим $\Gamma_2=R^1$, $\Gamma_3=L_{1/2}(0,\ 1)$, и пусть Γ_1 — двумерное подпространство в E, содержащее Γ_2 . Ясно, что $\Gamma_2 \% \Gamma_1$ и $\Gamma_1 \% \Gamma_2$. Пусть H — произвольное прямое дополнение к Γ_1 в E, P — оператор проектирования E на Γ_3 параллельно Γ_2 . Tогда P(H) — гиперподпространство в $L_{1/2}(0,\ 1)$, и значит не замкнуто. Поэтому $H+\Gamma_2$ не замкнуто в E, откуда H не замкнуто в E ([10], гл. 1, § 2, следствие 4). Итак, Γ_1 не дополнимо.

Автор благодарит А. С. Маркуса и Д. А. Райкова за постановку задачи и внимание к работе.

Костромской педагогический институт им. Н. А. Некрасова

Поступило в редакцию 10.XII.1969

Литература

- 1. И. Ц. Гохберг и М. Г. Крейн, Основные положения о дефектных числах, корневых числах и индексах линейных операторов, УМН, XII, вып. 2 (74) (1957), 43-118.
- G. Neubauer, Über den Index abgeschlossener Operatoren in Banachräumen, II, Math. Ann., 162, N 1 (1965), 92-119.
- Ю. Н. Владимирский, К теории многозначных Ф₊-операторов в топологических линейных пространствах, Лит. матем. сб., X, 1 (1970), 17−28.
- Ж. Лере, Собственные значения и собственные векторы вполне непрерывного эндоморфизма векторного пространства с выпуклыми окрестностями, Математика, 4:5 (1960), 73-83.
- H. Schaefer, Über singuläre Integralgleichungen und eine Klasse von Homomorphismen in lokalkonvexen Räumen, Math. Zeitschr., 66, 2 (1956), 147-163.
- 6. Д. Вильямсон, Компактные операторы в линейных топологических пространствах, Математика, 4:5 (1960), 85-91.

- A. Pietsch, Homomorphismen in lokalkonvexen Vektorräumen, Math. Nachricht., 22, 3-4 (1960), 162-174.
- S. Tôgô, R. Shiraishi, Note on F-operators in Locally Convex Spaces, Journal Sci. Hiroshima Univ., Ser. A-1, 29 (1965), 243-251.
- М. А. Гольдман и С. Н. Крачковский, О возмущении гомоморфизмов, операторами конечного ранга, Докл. АН СССР, 174, 4 (1967), 743-747.
- 10. Н. Бурбаки, Топологические векторные пространства, М., ИЛ. 1959.
- 11. Дж. Л. Келли, Общая топология, М., Физматгиз, 1968.

APIE PUSIAU FREDHOLMO TIPO OPERATORIŲ TEORIJĄ TIESINĖSE TOPOLOGINĖSE ERDVĖSE

J. Vladimirskis

(Reziumė)

Keletas pusiau Fredholmo tipo operatorių teorijos teiginių lokaliai iškiliose erdvėse apibendrinami bet kurioms tiesinėms topologinėms erdvėms. Teorema apie Φ_+ -operatorių stabilumą, esant kompaktiškiems sužadinimams, apibendrinama daugiareikšmiams atvaizdavimams.

ON THE THEORY OF SEMI-FREDHOLM OPERATORS IN TOPOLOGICAL LINEAR SPACES

J. Vladimirsky

(Summary)

Some propositions of the theory of semi-Fredholm operators in locally convex spaces are generalized to general topological linear spaces. The theorem on the stability of Φ_+ -operators under compact perturbations is formulated in terms of semi-Fredholm graphs.