УДК 513

О ГЕОМЕТРИИ ОДНОРОДНЫХ ПРОСТРАНСТВ

Р. Восилюс, А. Дрейманас

В этой статье рассматриваются редуктивные однородные пространства. Основной результат статьи — теорема 1. В ней дается алгебризация следующей задачи: найти те инвариантные аффинные связности, геодезические линии которых являются траекториями однопараметрических подгрупп группы движений пространства. Доказано, что эти связности составляют подкласс, естественно выделяемый из более широкого класса Г-связностей, определяемого в этой статье. Последние являются обобщением Г-связностей групп Ли, рассмотренных в работе [2].

В конце статьи показано, как в полупростых пространствах, стационарными подгруппами которых служат подгруппы Картана, каноническим образом определить Г-связность.

Однородное пространство M — это связное дифференцируемое многообразие, в котором правосторонним образом транзитивно действует группа Ли \mathfrak{G} , называемая группой его движений. Рассматривается только тот случай, когда группа движений действует эффективно. Последнее всегда достигается путем факторизации по ядру неэффективности.

Каждой точке $m \in M$ в группе Ли $\mathfrak G$ соответствует подгруппа Ли g, оставляющая эту точку неподвижной. Это стационарная подгруппа рассматриваемой точки. Через $\bar{\mathfrak G}$ и g будем обозначать алгебры Ли групп $\mathfrak G$ и g, соответственно.

Однородное пространство M называется редуктивным, если существует точка $o \in M$, относительно которой

$$\overline{\mathfrak{G}} = \bar{g} + \mathfrak{M},\tag{1}$$

где \mathfrak{M} — подпространство в $\overline{\mathfrak{G}}$, подчиненное условию

$$[g, \mathfrak{M}] \subseteq \mathfrak{M}.$$
 (2)

В дальнейшем будут рассматриваться только редуктивные однородные пространства.

Действие группы $\[\overline{\xi} \]$ Ли $\[\overline{\xi} \]$ в пространстве $\[M \]$ хорошо известным способом [1] определяет гомоморфизм

$$\chi: \overline{\mathfrak{G}} \to X(M)$$

алгебры Ли $\overline{\mathfrak{G}}$ в алгебру Ли X(M) векторных полей многообразия M.

Если $x\in \overline{\mathbb{G}}$ и $\chi(x)|_{o}=0$, то $x\in \bar{g}$. Значит, гомоморфизм χ индуцирует линейный изоморфизм

$$\chi_0: \mathfrak{M} \to T_o(M)$$

подпространства $\mathfrak M$ и касательного к многообразию M в точке o пространства $T_o\left(M\right)$.

Через R_a будем обозначать сдвиги пространства M, соответствующие элементам группы Ли $\mathfrak G$. Если

$$m = R_a(o),$$

то

$$\chi_a = dR_{ao} \chi_0$$

устанавливает линейный изоморфизм пространств \mathfrak{M} и $T_m(M)$. Как известно [1],

$$dR_a \chi(x) = \chi \left(ad(a^{-1})(x) \right).$$

Значит,

$$\chi_a(x) = \chi \left(ad(a^{-1})(x)\right)\Big|_m$$

Через B(M) обозначим расслоение реперов многообразия M. На группе Ли $\mathfrak G$ рассмотрим расслоение реперов, адаптированных разложению (1) и состоящих из инвариантных векторных полей группы Ли $\mathfrak G$. Это тривиальное расслоение обозначим через $B(\mathfrak G)$. Отображение χ индуцирует отображение расслоений

$$\chi_B: B(\mathfrak{G}) \rightarrow B(M)$$
.

По определению

$$\chi_B(a, r) = \chi_a(r),$$

где r — репер, адаптированный разложению (1), $\chi_a(r)$ — его образ при отображении соответствующих векторных полей, и a — элемент группы Ли \mathfrak{G} .

В пространстве B(M) известным образом определяется так называемая 1-форма смещения $\bar{\omega}$. По определению, если

$$t \in B(M)_b, b \in B(M),$$

то

$$\bar{\omega}(t) = b^{-1}(d\pi_{B(M)}t),$$

где π_B — каноническая проекция расслоения B(M), b — отображение $\dim M$ -мерного евклидова пространства $R^{\dim M}$ на касательное пространство κ многообразию M, взятое в точке $\pi_B(b)$.

Пусть

$$\mu: \mathfrak{G} \rightarrow B(\mathfrak{G})$$

означает сечение расслоения $B(\mathfrak{G})$, заданное при помощи фиксированного репера в пространстве $\overline{\mathfrak{G}}$. Так как этот репер адаптирован разложению (1), то он позволяет пространство $R^{\dim M}$ отождествить с пространством \mathfrak{M} и форму $\overline{\omega}$ превратить в $\overline{\mathfrak{G}}$ -значную 1-форму.

Через ω мы обозначим $\overline{\mathfrak{G}}$ -значную 1-форму группы Ли \mathfrak{G} , полученную перенесением формы $\overline{\omega}$ в пространство \mathfrak{G} при помощи отображения $\chi^0_R\mu$. По определению

$$\omega(x) = \overline{\omega} \left(d\chi_B \left(d_{\mu}(x) \right) \right) = b^{-1} \left(d\pi_{B(M)} \left(d\chi_B \left(d\mu(x) \right) \right) \right)$$

Однако

$$\pi_{B(M)} \circ \chi_{B} \circ \mu = \pi$$
,

где т - каноническое отображение

$$\pi: \mathfrak{G} \to M$$

заданное фиксацией точки о. Значит,

$$\omega(x)|_a = b^{-1}\left(\chi_a(x)\right).$$

Так как репер b служит образом при отображении χ_a репера, задающего сечение μ , то

$$\omega(x) = x \, | \mathfrak{M}$$

где через $|_{\mathfrak{M}}$ обозначена проекция вектора x на подпространство \mathfrak{M} относительно разложения (1).

Аналогично можем в пространстве б определить и форму

$$\Theta(x) = x - \frac{1}{2}$$
.

Аффинные связности (будем рассматривать только связности без кручения) в пространстве M определяются 1-формами пространства B(M), удовлетворяющими известным условиям. Мы будем рассматривать эти формы, отображением χ_{B}° μ перенесенные в пространство G. Соответствующие им условия заменим структурными уравнениями пространства аффинной связности [3]:

$$d\omega = -\varphi\omega,$$

$$d\varphi = -\frac{1}{2} [\varphi, \varphi] + \Phi.$$

Каждое редуктивное однородное пространство обладает канонической инвариантной аффинной связностью. Чтобы убедиться в этом, достаточно проверить, что форма

$$\varphi = \omega \cdot \left(\frac{1}{2} \ ad\omega + ad\Theta \right)$$

удовлетворяет структурным уравнениям.

Это позволяет другие связности задавать инвариантными полями билинейных преобразований $\bar{\gamma}$ касательных пространств многообразия M. Эти преобразования, при помощи изоморфизмов χ_a , задают билинейное отображение

$$\gamma: \mathfrak{M} \times \mathfrak{M} \to \mathfrak{M},$$
 (3)

которое, в силу инвариантности $\bar{\gamma}$, не зависит от выбора $a \in \mathfrak{G}$, т. е. определяется однозначно. Однако инвариантность поля $\bar{\gamma}$ влечет дополнительное условие на преобразование γ . Действительно, инвариантность означает, что

$$\bar{\gamma} \left(dR_a \chi(x), dR_a \chi(y) \right) = dR_a \gamma \left(\chi(x), \chi(y) \right),$$

т. е., что

$$\bar{\gamma} \left(\chi_0 \left(ad \left(a^{-1} \right) (x) \right), \ \chi_0 \left(ad \left(a^{-1} \right) (y) \right) \right) = ad \left(a^{-1} \right) \bar{\gamma} \left(\chi_0 (x), \ \chi_0 (y) \right) =$$

$$= ad \left(a^{-1} \right) \chi_0 \left(\gamma (x, y) \right)$$

для всех x, $y \in \mathfrak{M}$ и $a \in \mathfrak{G}$. Дифференцирование этого условия вдоль однопараметрической подгруппы группы Ли \tilde{g} , с касательным вектором $z \in \tilde{g}$, дает:

$$[\gamma(x, y), z] - \gamma(x, [y, z]) - \gamma([x, z], y) = 0.$$

$$(4)$$

Это необходимо и достаточно, чтобы билинейное преобразование (3) задавало инвариантную аффинную связность пространства M.

* * *

Пусть Γ — некоторый голоморф [3] алгебры Ли $\overline{\mathfrak{G}}$ и ее алгебры Ли дифференцирований D. Некоторым линейным отображениям

$$\xi: \mathfrak{M} \to D \tag{5}$$

можно сопоставить инвариантные аффинные связности пространства M. Это те отображения (5), которые для любых векторов x, $y \in \mathfrak{M}$ и любого $z \in \overline{g}$ удовлетворяют условию

$$\left(\begin{bmatrix} \boldsymbol{y}, \ [\xi, \ (\boldsymbol{x}), \ z] \end{bmatrix} - \xi \left([x, \ z] \right) \right] + \left[x, \ [\xi \left(\boldsymbol{y} \right), \ z] + \xi \left([\boldsymbol{y}, \ z] \right) \right] \right) \Big|_{\mathfrak{W}} = 0. \tag{6}$$

Соответствующую связность определим следующим образом:

$$\gamma(x, \mathbf{y}) = \frac{1}{2} \left([x, \xi(\mathbf{y})] + [\mathbf{y}, \xi(x)] \right) \Big|_{\mathbf{y}\mathbf{R}}. \tag{7}$$

Так определенное былинейное преобразование (3), в силу (6), удовлетворяет условию инвариантности (4).

Определение 1. Вышеуказанные инвариантные аффиные связности редуктивного однородного пространства M будем называть его Γ -связностями (голоморфными связностями).

Среди Γ -связностей можно естественным образом выделить некоторый подкласс, соответствующ й случаю, когда алгебра Π и D совпадает с алгеброй Π и внутренних дифференцирований, индуцированных подалгеброй Π и \bar{g} . В этом случае мы просто будем считать, что $D=\bar{g}$.

Определение 2. Если $D=\bar{g}$, то соответствующие Γ -связности будем называть Γ^0 -связностями.

Дадим Го-связностям геометрическую характеристику.

Теорема 1. Класс Γ^0 -связностей совпадает со связностями, геодезические линии которых являются траекториями однопараметрических подгрупп группы движений пространства.

Доказательство. Траектории однопараметрических подгрупп группы движений в пространстве M совпадают с проекциями этих подгрупп и их классов смежности (взятых в группе Ли \mathfrak{G}), индуцированными отображением

$$\pi: \mathfrak{G} \rightarrow M$$
.

Поэтому, при отображениях

$$\mathfrak{G} \xrightarrow{\mu} B(\mathfrak{G}) \xrightarrow{\pi_B} B(M)$$

однопараметрические подгруппы и их классы смежности отображаются в те кривые пространства B(M), которые при дальнейшем проектировании

$$B(M) \xrightarrow{\pi_{B(M)}} M,$$

отображаются в траектории рассматриваемых подгрупп.

С другой стороны, при отображении $\pi_{B(M)}$ в геодезические линии пространства M проектируются те кривые, которые в B(M) удовлетворяют уравнению геодезических линий, написанному относительно 1-форм соответствующей аффинной связности. Такое уравнение можно представить в виде

$$\left(x_{*}+\bar{\tau}\left(x_{*}\right)\right)\left(\bar{\omega}\left(x_{*}\right)\right)=0,$$

если через x_* обозначить касательный вектор рассматриваемой кривой, а через $\bar{\tau}$ — соответствующую форму связности.

Через τ мы обозначим 1-форму группы Ли \mathfrak{G} , соответствующую форме $\widetilde{\tau}$ пространства B(M).

Итак, в геодезические линии пространства M проектируются те и только те кривые пространства \mathfrak{G} , которые удовлетворяют уравнению вида

$$\left(x_{*} + \tau\left(x_{*}\right)\right)\left(\omega\left(x_{*}\right)\right) = 0. \tag{8}$$

В силу инвариантности рассматриваемой связности, достаточно рассмотреть те геодезические линии, которые проходят через фиксированную точку пространства M. Пусть это будет точка o. При помощи изоморфизма χ_0 отождествляя пространства $\mathfrak M$ и $T_o(M)$, мы будем говорить, что геодезические линии через точку o проходят по направлению векторов пространства $\mathfrak M$.

Геодезическая линия тогда и только тогда является траекторией однопараметрической подгруппы группы Ли \mathfrak{G} , если их касательные векторы $t \in \mathfrak{M}$, $x \in g$, взятые соответственно в точке o и единице группы Ли g, связаны соотношением

$$x = \omega(t)$$

и вдоль этой подгруппы удовлетворяют условию (8).

Но, в силу инвариантности формы ω , вдоль однопараметрической подгруппы

$$\omega(x_{\star}) = x = \text{const},$$

и условие (8) принимает следующий вид:

$$\tau\left(x_{*}\right)\left(x\right) = 0. \tag{9}$$

Допустим, что

$$\tau(v, w) = \varphi(v, w) + \gamma(\omega(v), \omega(w)),$$

где γ — некоторое билинейное преобразование вида (3). Подставляя в уравнение (9) значение формы φ , относительно касательного вектора x_* получим следующее условие:

$$[\sigma(x_*), x] + \gamma(x, x) = 0.$$

В этом уравнении вектор $x\in\mathfrak{M}$ является касательным вектором геодезической линии в точке $o,\ x_*$ — касательным вектором к однопараметрической подгруппе, траекторией (которой она служит. Так как $\sigma(x_*)=\mathrm{const},$ то мы приходим к следующему выводу: геодезическая линия с касательным вектором $x\in\mathfrak{M}$ тогда и только тогда является траекторией однопараметрической подгруппы группы Ли $\mathfrak{G},$ если существует вектор $\xi(x)\in \bar{g},$ удовлетворяющий такому условию:

$$[\xi(x), x] + \gamma(x, x) = 0.$$
 (10)

Сейчас Ідопустим, что все геодезические линии являются траекториями однопараметрических подгрупп группы Ли \mathfrak{G} . Тогда для любого вектора $x \in \mathfrak{M}$ можно найти вектор $\xi(x) \in g$ так, чтобы выполнялось условие $(10)_{\bullet}$ В силу того, что это условие является линейным относительно вектора $\xi(x)$, его координаты в окрестности некоторой точки, рационально выражаются через координаты вектора x. Более точно: пусть x_0 является точкой, в которой ісистема (10) имеет максимальный ранг. Тогда $\xi(x)$ можно определить как непрерывную и дифференцируемую функцию для всех x, достаточно іблизких к x_0 . Для этого в подпространстве \mathfrak{M} зафиксируем некоторую ісвклидову метрику. Пусть x_0 — единичный вектор относительно этой метрики. Тогда на единичной сфере существует окрестность U точки x_0 , на которой определено дифференцируемое отображение

$$\xi: U \rightarrow \bar{g}$$
,

удовлетворяющее условию (10). Если $x \in U$, то для векторов вида λx положим

$$\xi(\lambda x) = \lambda \xi(x)$$
.

Открытое множество векторов вида λx , где $x \in U$, обозначим через V. Тогда ξ определено на V, дифференцируемо и удовлетворяет условию (10).

Далее, пусть x, $y \in V$ такие векторы, что $x + y \in V$. Тогда, в силу условия (10),

$$2\gamma(x, y) = [x + y, \xi(x + y)] - [x, \xi(x)] - [y, \xi(y)].$$

В этом соотношении вектор y заменим вектором λy , с тем условием, чтобы вектор $x+\lambda y$ не выходил из множества V. Тогда получим, что

$$2\lambda r(x, y) = [x + \lambda y, \xi(x + \lambda y)] - [x, \xi(x)] - \lambda^2 [y, \xi(y)].$$

Так как $\lambda = 0$ является допустимым значением, то полученное равенство в этой точке можно дифференцировать относительно λ . Это дает:

$$2\gamma(x, y) = [y, \xi(x)] + \left[x, \frac{d}{d\lambda}\right]_{\lambda=0} \xi(x+\lambda y)$$

В полученном соотношении вектор x заменим через μx так, чтобы вектор $\mu x + \lambda y$ лежал в множестве V. Для этого достаточно взять μ близким к точке $\mu = 0$. Если $\mu \neq 0$, то

$$2\gamma(x, y) = [y, \xi(x)] + \left[x, \frac{d}{d\lambda}\Big|_{\lambda=0} \xi(\mu x + \lambda y)\right].$$

В силу непрерывности, это равенство выполнено и для μ , принимающего нулевое значение. Значит,

$$2\gamma(x, y) = [y, \xi(x)] + \left[x, \frac{d}{d\lambda}\Big|_{\lambda=0} \xi(\lambda y)\right] = [y, \xi(x)] + [x, \xi(y)].$$

Итак, относительно отображения ξ , в некоторой окрестности $\bar{V} \subset V$, выполнено условие (7).

Далее, т. к.

$$\gamma(x_1 + x_2, y) = \gamma(x_1, y) + \gamma(x_2, y),$$

 $[x_1 + x_2, \xi(y)] + [y, \xi(x_1 + x_2)] = [x_1, \xi(y)] + [y, \xi(x_1)] + [x_2, \xi(y)] + [y, \xi(x_2)].$

Окончательно:

то

$$[y, \xi(x_1+x_2)-\xi(x_1)-\xi(x_2)]=0.$$

Это значит, что вектор

$$\xi(x_1 + x_2) - \xi(x_1) - \xi(x_2) \in \bar{g}$$

перестановочен со всеми векторами окрестности \bar{V} , а тем самым и пространства \mathfrak{M} . Множество векторов, удовлетворяющих этому условию, обозначим через \bar{g}_1 . Значит, \bar{g}_1 — это максимальное подмножество в \bar{g} такое, что

$$[\mathfrak{M}, \bar{g}_1] = 0.$$

Легко видеть, что \bar{g}_1 — линейное подпространство. Более того, оно удовлетворяет условию

$$\left[\left[\tilde{\mathfrak{G}}, \ \tilde{g}_1 \right] \mathfrak{M} \right] = 0,$$

которое легко проверяется с помощью тождества Якоби. Это значит, что

$$[\hat{\mathfrak{G}}, \bar{\mathfrak{g}}_1] \subseteq \bar{\mathfrak{g}}_1$$

т. е. $\tilde{g_1}$ является идеалом алгебры Ли \mathfrak{G} , лежащим в подалгебре Ли 1 \tilde{g} . Тем самым $\tilde{g}_1 = 0$, т. к. действие группы Ли \mathfrak{G} в пространстве M эффективно. Это значит, что

$$\xi(x_1 + x_2) - \xi(x_1) - \xi(x_2) = 0$$

и отображение ξ линейно в окрестности \bar{V} .

Это позволяет нам определить линейное отображение

$$\xi: \mathfrak{M} \to \bar{g}, \tag{11}$$

в окрестности \bar{V} удовлетворяющее условию (10). Тем самым этому условию ξ удовлетворяет во всем пространстве \mathfrak{M} , и мы видим, что рассматриваемая связность является Γ^0 -связностью.

Рассмотрим произвольную Γ^0 -связность.

Если в качестве отображения (11) взять отображение, определяющее эту связность, то уравнение (10) будет тождественно удовлетворено и геодезические линии совпадут с траекториями однопараметрических подгрупп группы Ли \mathfrak{G} , проходящих через ее единицу по направлению векторов вида $x + \xi(x)$. Теорема полностью доказана.

Вопрос существования Γ^0 -связностей сводится к вопросу существования линейных отображений, удовлетворяющих условию (6). В случае однопараметрической стационарной подгруппы на вопрос о существовании этих связностей дает ответ следующая теорема.

Теорема 2. В редуктивном однородном пространстве с сднопараметрической стационарной подгруппой Γ^0 -связности существуют тогда и только тогда, если эта подгруппа индуцирует вырожденное дифференцирование подпространства \mathfrak{M} .

Доказательство. Если алгебра Ли \bar{g} одномерна, то условие (6) принимает такой вид:

$$[\boldsymbol{y}, \ \xi([x, z])] + [x, \xi([\boldsymbol{y}, z])] = 0.$$

В частности,

$$\left[x, \ \xi\left(\left[x, \ z\right]\right)\right] = 0$$

для всех пар $x \in \mathfrak{M}$, $z \in \tilde{g}$. Отсюда легко получить, что

$$\xi([\mathfrak{M}, \bar{g}]) = 0$$

а так как ξ - ненулевое отображение, то

$$[\mathfrak{M}, \bar{g}] \neq \mathfrak{M}.$$

Этим доказана необходимость. Для доказательства достаточности положим

$$\mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2,$$

где

$$\mathfrak{M}_1 = [\mathfrak{M}, \ g].$$

Любое линейное отображение (11), для которого

$$\xi | m = 0,$$
 $\xi | m - произвольно$

удовлетворяет условию (6). Теорема доказана.

Эта теорема имеет следующее очевидное обобщение.

Теорема 3. Если

$$[\mathfrak{M}, \bar{g}] \neq \mathfrak{M}$$

и подалгебра \bar{g} имеет [нетривиальный центр, то в рассматриваемом однородном пространстве существуют Γ^0 -связности.

Доказательство. Достаточно потребовать, чтобы $\xi(\mathfrak{M})$ лежало в центре подалгебры Ли \dot{g} и на подпространстве $[\mathfrak{M},\ \dot{g}]$ отображалось в нуль.

В заключение укажем класс редуктивных однородных пространств, всегда обладающих Г-связностями.

Пусть \mathfrak{G} — полупростая группа Ли, g — ее подгруппа Картана. Через x_{α} обозначим корневые векторы в алгебре Ли $\bar{\mathfrak{G}}$, через \mathfrak{M} — корневое подпространство. Тогда

$$\overline{\mathfrak{G}} = \overline{\mathfrak{g}} + \mathfrak{M}$$

И

$$[\bar{g}, \mathfrak{M}] \subseteq \mathfrak{M},$$

так что пространство 6 / д редуктивно.

Используя известные свойства коммутирования корневых векторов, легко доказать, что линейное отображение, заданное соотношением

$$\xi(x_{\alpha}) = adx_{-\alpha}$$

удовлетворяет (условию (6) и в пространстве \mathfrak{G}/g задает Γ -связность. Эту связность 'можно назвать канонической Γ -связностью пространств рассматриваемого типа.

Вильнюсский Государственный педагогический институт Вильнюсский заочный факультет Московского кооперативного института Поступило в редакцию 2.XII.1970

Литература

- S. Kobayashi, K. Nomizu, Fuondations of differential geometry, Interscience Publishers 1963, New York-London.
- 2. А. М. Васильев, Докторская диссертация, МГУ, 1962.
- 3. Р. В. Восилюс, О связностях на группах Ли, "Лит. матем. сб.", X, 4 (1970), 705-726.
- 4. К. Шевалле, Теория групп Ли, 3., М., ИЛ, 1958.

APIE HOMOGENINIŲ ERDVIŲ GEOMETRIJĄ

R. Vosylius, A. Dreimanas

(Reziumė)

Reduktyvinėse homogeninėse erdvėse randami invariantiniai sąryšiai, kurių geodezinės linijos yra erdvės judesių grupės vienparametrinių pogrupių trajektorijos.

ÜBER GEOMETRIE HOMOGENEN RÄUMEN

R. Vosylius, A. Dreimanas

(Zusammenfassung)

In reduktiven homogenen Räumen kann man die invarianten Zusammenhängen, deren Geodätischen sind die Trajektorien von einparametrischen Untergruppen der Bewegungsgruppe des Räumes, finden.