1972

УДК 511

К ОЦЕНКЕ ОСТАТОЧНОГО ЧЛЕНА В ИНТЕГРАЛЬНЫХ АСИМПТОТИЧЕСКИХ ЗАКОНАХ АРИФМЕТИЧЕСКИХ ФУНКЦИЙ

Э. Манставичюс

Последовательность вещественных или комплексных чисел h(m) (соответственно, g(m)) ($m=1,\ 2,\ \ldots$) называется арифметической аддитивной (соответственно, мультипликативной) функцией, если для любой пары взачимно простых $m,\ n$

$$h(mn) = h(m) + h(n)$$
 $(g(mn) = g(m)g(n))$.

Через $v_n\{\ldots\}$ будем обозначать частоту целых положительных $m\leqslant n$, удов летворяющих условиям, которые каждый раз будут указываться в скобках вместо многоточия.

Известно (см., например, [1]), что для весьма широкого класса вещественных аддитивных функций h(m) можно подобрать такие A_n и B_n , чтобы функция распределения

$$v_n \left\{ h(m) < A_n + xB_n \right\} \tag{1}$$

при $n \to \infty$ сходилась к некоторой собственной функции распределения в каждой точке непрерывности последней.

Аналогично, можно указать класс вещественных мультипликативных функций g(m), для которых при некотором подборе нормирующих показателей C_n и D_n функция распределения

$$v_n \left\{ g(m) < e^{C_n} \mid x \mid^{D_n} \operatorname{sgn} x \right\} \tag{2}$$

при $n \to \infty$ сходится к некоторой функции распределения в каждой точке непрерывности последней и в точке x = 0.

Нас будет интересовать быстрота сходимости (1) и (2) при $n\to\infty$ к некоторым предельным функциям распределения. Наиболее точные результаты дает метод, основанный на производящих рядах Дирихле. $\ddot{\Pi}$. Кубилюсом [3], [4] и в совместной работе с 3. Юшкисом [5] получены такие теоремы для широкого класса аддитивных и мультипликативных функций.

Цель настоящей заметки — указать способ для оценки быстроты сходимости (1) и (2) к асимптотическим функциям распределения при более слабых предположениях.

Мы используем не только метод работ [3], [4] и [5], но и некоторые их результаты.

В дальнейшем через p будем обозначать простые числа, а через c, c_0 , \ldots – положительные константы. B – величина, не всегда одна и та же, но всегда ограниченная по модулю.

Доказательство приводимых ниже теорем опирается на следующую лемму.

Лемма. Пусть f(m)—комплекснозначная мультипликативная функция, $|f(m)| \le 1$. Предположим, что существует действительное число $|a| < c_0$, комплексное число x, не зависящие от p, такие что

$$\sum_{p} |f(p)|_{p}^{-ia} - \kappa \left| \frac{\ln p}{p} < c \right|. \tag{3}$$

Тогда при х≥3

$$\sum_{m \le x} f(m) = \frac{x^{1+ia} (\ln x)^{x-1}}{(1+ia) \Gamma(x)} \prod_{p} \left(1 - \frac{1}{p}\right)^{x} \left(1 + \sum_{\alpha=1}^{\infty} \frac{f(p^{\alpha})}{p^{\alpha} (1+ia)}\right) + Bx \sqrt{\frac{\ln \ln x}{\ln x}}.$$

$$(4)$$

Бесконечное произведение сходится абсолютно. Здесь $\Gamma(x)$ — гамма-функция Эйлера. В ограничена константой, зависящей лишь от c и c_0 .

Заметим, что $|\mathbf{x}| \le 1$, формула (4) верна и при $\mathbf{x} = 0$ или $\mathbf{x} = -1$, если считать, что $1/\Gamma(\mathbf{x}) = 0$.

Доказательство. Пусть

$$Z(s) = \sum_{m=1}^{\infty} \frac{f(m)}{m^s}$$

— производящий ряд Дирихле, s — комплексное переменное, s = σ + it. Ряд сходится абсолютно и равномерно при σ \geqslant 1 + ϵ , где ϵ > 0 любое. Тогда справедливо равенство

$$T(x) = \sum_{m \le x} f(m) \ln \frac{x}{m} = \frac{1}{2\pi i} \int_{(2)}^{x^s} \frac{x^s}{s^2} Z(s) ds,$$
 (5)

где интегрирование ведется по прямой $\sigma = 2$.

Пусть $f_1(m) = f(m) m^{-ia}$, и $Z_1(s)$ — ее производящий ряд Дирихле, тогда, очевидно, что

$$Z(s) = Z_1(s - ia) = \zeta^{\times}(s - ia) H_1(s - ia),$$
 (6)

где $\zeta(s)$ – дзета-функция Римана, а

$$H_1(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{x} \left(1 + \sum_{\alpha=1}^{\infty} \frac{f_1(p^{\alpha})}{p^{\alpha s}}\right).$$

Мультипликативная функция $f_1(m)$ удовлетворяет условиям леммы 1 работы [4], поэтому $H_1(s)$ не только аналитическая при $\sigma \geqslant 1 + \varepsilon$ и непрерывная при $\sigma \geqslant 1$, но

$$H_1(s) = H_1(1) + B \mid s - 1 \mid,$$
 (7')

если $s-1 \le 1$, и

$$H_1(s) = B \tag{7"}$$

при $\sigma \geqslant 1$. Кроме того, тогда существует производная $H_1'(s)$, причем при $\sigma \geqslant 1$

$$H_1'(s) = B. \tag{7^m}$$

Воспользовавшись (6), равенство (5) перепишем в виде

$$T(x) = \frac{x^{ia}}{2\pi i} \int_{(2)}^{(2)} \frac{x^{s} \zeta^{\kappa}(s) H_{1}(s)}{(s+ia)^{2}} ds.$$
 (5')

Переход к контуру интегрирования L, состоящему из отрезков прямой $s=1+it, -\infty < t \leqslant -1, -1 < t \leqslant -\rho, \, \rho \leqslant t < 1, \, 1 \leqslant t < \infty$ (обозначим их соответственно через $L_1, \, L_2, \, L_4, \, L_5$) и полуокружности

$$L_3 = \left\{ s = \rho e^{i\Theta}, -\frac{\pi}{2} < \Theta < \frac{\pi}{2} \right\},$$

делается так же как при доказательстве соответствующей леммы работы [3], поэтому мы его опускаем.

Ввиду известных свойств дзета-функции Римана и равенств (7) справедлива оценка

$$\left(\frac{\zeta^{\kappa}(s) H_{1}(s)}{(s+ia)^{2}}\right)' = \frac{B \ln^{16}(|t|+2)}{t^{2}}.$$

Поэтому интегрирование по частям дает

$$I_1 = \frac{x^{ia}}{2\pi i} \int \frac{x^s \, \zeta^x \, (s) \, H_1 \, (s)}{(s+ia)^2} \, ds = \frac{Bx}{\ln x} \, .$$

Аналогично, интеграл по контуру L_5 :

$$I_5 = \frac{Bx}{\ln x} .$$

Для $s-1 \le 1$, $\sigma \ge 1$, $s \ne 1$ введем функцию

$$K(s) = \frac{\zeta^{\kappa}(s) H_1(s)}{(s+ia)^2} - \frac{H_1(1)}{(1+ia)^2(s-1)^{\kappa}}.$$

Пользуясь оценками (7), для тех же s нетрудно получить, что

$$K(s) = B |s-1|^{1-\text{Re}\,\varkappa}$$
 $H(s) = B |s-1|^{-\text{Re}\,\varkappa}$

Дальнейшие вычисления интеграла (5') совпадают с соответствующими вычислениями в [3]. Получаем, что

$$T(x) = \frac{x^{1+ia} (\ln x)^{x-1}}{(1+ia)^2 \Gamma(x)} H_1(1) + \frac{Bx}{\ln x} \ln \ln x.$$

Переходя от T(x) к сумме $S(x) = \sum_{m \leqslant x} f(m)$, получаем, что

$$S(x) = \frac{x^{1+ia} (\ln x)^{x-1}}{(1+ia) \Gamma(x)} H_1(1) + Bx \sqrt{\frac{\ln \ln x}{\ln x}}.$$

Лемма доказана.

Положим для краткости $b_p = |h(p) - a \ln p - \lambda|$. Будем говорить, что вещественная аддитивная функция h(m) принадлежит классу $A(c, a, \lambda)$, если существуют действительные константы $a, \lambda \neq 0$ и c > 0 такие, что ряды

$$\sum_{b_p < c} \frac{b_p \ln p}{p} , \quad \sum_{b_p \ge c} \frac{\max (b_p, \ln p)}{p} , \quad \sum_{p, \alpha \ge 2} \frac{|h(p^\alpha)|}{p^\alpha}$$

сходятся.

Справедлива следующая теорема.

Теорема 1. Если $h(m) \in A(c, a, \lambda)$, то при $n \ge c_1$

$$v_n \left\{ h(m) < a \ln n + \lambda \ln \ln n + x \mid \lambda \mid \sqrt{\ln \ln n} \right\} = G(x) + \frac{B}{\sqrt{\ln \ln n}},$$

где

$$G(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^{4}}{2}} du.$$
 (8)

Константа, ограничивающая B, зависит лишь от h(m), но не зависит от x u n.

Доказательство. Характеристическая функция, соответствующая функции распределения

$$v_{n}(x) = v_{n} \left\{ h(m) < a \ln n + \lambda \ln \ln n + x \mid \lambda \mid \sqrt{\ln \ln n} \right\}$$

$$\varphi_{n}(t) = \exp \left\{ -it \frac{a \ln n + \lambda \ln \ln n}{\mid \lambda \mid \sqrt{\ln \ln n}} \right\} \frac{1}{n} \sum_{m = 1}^{\infty} \exp \left\{ it \frac{h(m)}{\mid \lambda \mid \sqrt{\ln \ln n}} \right\}. \tag{9}$$

Если $h(m) \in A(c, a, \lambda)$, то

$$\sum_{p} |e^{it\left(h(p) - a \ln p\right)} - e^{it\lambda}| \frac{\ln p}{p} \le |t| \sum_{b_{p} < c} \frac{b_{p} \ln p}{p} + 2 \sum_{b_{p} \ge c} \frac{\ln p}{p} \le$$

$$\le c_{2} |t| + c_{3} \le c_{2} T + c_{3}$$

равномерно для каждого $|t| \leqslant T$, т. е. условие леммы выполнено при $\mathbf{x} = e^{it\lambda}$, поэтому

$$\varphi_{n}(t) = \frac{\exp\left\{-it \operatorname{sgn} \lambda \sqrt{\frac{\ln \ln n}{n}} + (e^{it \operatorname{sgn} \lambda (\ln \ln n)}) - \frac{1}{2} - 1) \ln \ln n\right\}}{\left(1 + \frac{iat}{|\lambda| \sqrt{\frac{\ln \ln n}{n}}}\right) \Gamma\left(\exp\left\{\frac{it}{\sqrt{\frac{\ln \ln n}{n}}}\right\}\right)} \times \prod_{p} \left(1 - \frac{1}{p}\right)^{e^{it} \frac{\operatorname{sgn} \lambda}{\sqrt{\ln \ln n}}} \left(1 + \sum_{\alpha=1}^{\infty} \frac{\exp\left\{it \frac{h(p^{\alpha}) - a \ln p^{\alpha}}{|\lambda| \sqrt{\frac{\ln \ln n}{n}}}\right\}}{p^{\alpha}}\right) + B \right) \frac{\ln \ln n}{\ln n}}{n}$$

Как и в [4], пользуясь тем, что $h(m) \in A(c, a, \lambda)$, при $|t| \leqslant c_4 \sqrt{\ln \ln n}$, легко получить оценку

$$\varphi_n(t) = e^{-\frac{t^2}{2}} + \frac{B |t| (1+|t|^2)}{\sqrt{\ln \ln n}} e^{-\frac{t^2}{4}} + B \sqrt{\frac{\ln \ln n}{\ln n}}.$$
 (10)

При $|t| \le c_5/\ln n$, пользуясь оценкой $e^{iu} = 1 + B |u|$, справедливой для всех действительных u, из (9) получаем

$$\varphi_{n}(t) = \left[1 + B \mid t \mid \left(\frac{\ln n}{\sqrt{\ln \ln n}} + \sqrt{\ln \ln n}\right)\right] \left(1 + \frac{B \mid t \mid}{n \sqrt{\ln \ln n}} \sum_{m \leq n} \mid h(m) \mid\right).$$

Ho,

$$\sum_{m \le n} |h(m)| \le n \sum_{p \le n} \frac{|h(p) - a \ln p - \lambda|}{p} + n \sum_{p \le n} \frac{|a \ln p + \lambda|}{p} + n \sum_{p \le n} \sum_{\alpha = 2}^{\infty} \frac{|h(p^{\alpha})|}{p^{\alpha}} = Bn \ln n,$$

поэтому для $|t| \leqslant \frac{c_5}{\ln n}$ справедлива оценка

$$\varphi_n(t) = 1 + \frac{B + t + \ln n}{V \ln \ln n} . \tag{11}$$

Осталось только воспользоваться неравенством Эссеена

$$v_{n}(x) - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^{2}}{2}} du = \frac{B}{T} + B \int_{0}^{T} |\varphi_{n}(t) - e^{-\frac{t^{2}}{2}}| \frac{dt}{t}.$$

Интеграл в правой части оценивается при помощи (10) и (11) в интервалах $c_5/\ln n < t < c_4/\sqrt{\ln \ln n} = T$ и $0 \le t \le c_5/\ln n$, соответственно.

Теорема доказана. Заметим только, что $A(c, 0, \lambda)$ совпадает с классом, рассмотренным в [4].

Лемма позволяет нам обобщить соответствующие теоремы для мультипликативных функций (см. [5]). Пусть g(m) — действительная мультипликативная функция. При $g(p) \neq 0$ положим $d_p = |\ln|g(p)| - a \ln p - \lambda|$. Говорим, что g(m) принадлежит классу $\mathfrak{M}_0(c, a, \lambda)$, если существуют действительные числа a, $\lambda \neq 0$ и c > 0 такие, что ряды

$$\sum_{g(p)\leqslant 0} \frac{\ln p}{p} , \sum_{\substack{g(p)>0\\d_p< c}} \frac{d_p \ln p}{p} , \sum_{\substack{g(p)>0\\d_p\geqslant c}} \frac{\ln p}{p} , \sum_{\substack{g(p)\neq 0\\g(p)\neq 0}} \frac{d_p}{p} ,$$

$$\sum_{p} \sum_{\substack{\alpha=2\\g(p^\alpha)\neq 0}}^{\infty} \frac{|\ln |g(p^\alpha)||}{p^\alpha}$$

сходятся. Справедлива следующая теорема.

Теорема 2. Если $g(m) \in \mathfrak{M}_0(c, a, \lambda)$, то при $n > c_6$

$$v_{n}\left\{g\left(m\right) < n^{a}\ln^{\lambda}n \mid x\mid^{|\lambda|\sqrt{\ln\ln n}}\operatorname{sgn}x\right\} = \Phi_{0}\left(x\right) + \frac{B}{\sqrt{\ln\ln n}}$$

равномерно по х. Здесь

$$\Phi_0\left(x\right) \, = \left\{ \begin{array}{ll} 1 - \frac{\omega_0 + \omega_1}{2} \; G\left(-\ln x\right), & \text{если} \quad x > 0, \\ \\ \frac{\omega_0 - \omega_1}{2} \; G\left(-\ln \left(-x\right)\right), & \text{если} \quad x > 0. \end{array} \right.$$

G(x) определена (8), а

$$\omega_k = \prod_p \left(1 - \frac{1}{p}\right) \left(1 + \sum_{\alpha = 1}^{\infty} \frac{\operatorname{sgn}^k g(p^{\alpha})}{p^{\alpha}}\right) \quad (k = 0, 1).$$
 (12)

Можно рассматривать и другой класс действительных мультипликативных функций. Говорим, что $g(m) \in \mathfrak{M}_1(c, a, \lambda)$, если существуют действительные константы a, $\lambda \neq 0$ и c > 0 такие, что ряды

$$\sum_{g(p)\geq 0} \frac{\ln p}{p} , \sum_{\substack{g(p)<0\\d_p

$$\sum_{\substack{g(p)\neq 0}} \frac{d_p}{p} , \sum_{\substack{p\\p}} \sum_{\substack{\alpha=2\\g(p^\alpha)\neq 0}} \frac{\left|\ln \mid g(p^\alpha)\mid\right|}{p^\alpha}$$$$

сходятся.

Теорема 3. Если $g(m) \in \mathfrak{M}_1(c, a, \lambda)$, то при $n > c_7$

$$v_{n}\left\{g\left(m\right) < n^{a}\ln^{\lambda}n \mid x\mid^{|\lambda| |\sqrt{\ln \ln n}} \operatorname{sgn} x\right\} = \Phi_{1}\left(x\right) + \frac{B}{\sqrt[3]{\ln \ln n}}$$

равномерно по х. Здесь

$$\Phi_{1}\left(x\right) = \begin{cases} 1 - \frac{\omega_{0}}{2} G\left(-\ln x\right), & \textit{ecau} \quad x > 0, \\ \frac{\omega_{0}}{2} G\left(-\ln \left(-x\right)\right), & \textit{ecau} \quad x < 0. \end{cases}$$

G(x) и ω_0 определены (8) и (12), соответственно.

Доказательства теорем 2 и 3 проводятся так же, как и в работе [5], с использованием более общей леммы настоящей заметки.

Приведем несколько примеров, не содержащихся в ранее рассмотренных классах. Пусть $\mu(m)$ — функция 'Мёбиуса; $\omega(m)$ — число различных простых делителей m; $\Omega(m)$ — число простых делителей числа m с учетом кратности; $\tau(m)$ — число всех натуральных делителей m.

Функции $h_1(m) = \pi \ln m + \omega(m), h_2(m) = -2 \ln m + \sqrt{2} \Omega(m)$ принадлежат классам $A(1, \pi, 1)$ и $A(1, -2, \sqrt{2})$, соответственно.

Классу $\mathfrak{M}_0\left(1,\ \frac{1}{2},\ \ln 2\right)$ принадлежит функция

$$g_1(m) = \mu(m)(-1)^{\omega(m)} \tau(m) \sqrt{m}$$

а классу $\mathfrak{M}_1(1, -3, \ln 2) - \phi$ ункция $g_2(m) = \mu(m) \tau(m) m^{-3}$.

Автор выражает искреннюю благодарность проф. Й. Кубилюсу за всесторонюю помощь при выполнении настоящей работы.

Вильнюсский Государственный университет им. В. Капсукаса

Поступило в редакцию 27.V.1971

Литература

- 1. Й. Кубилюс, Вероятностные методы в теории чисел, Вильнюс, 1962.
- 2. А. Бакштис, О предельных законах распределения мультипликативных арифметических функций, Liet. matem. rink., VIII, 1, 2, 4 (1968), 5-20, 201-219, 643-680.

- J. Kubilius, On local theorems for additive number-theoretic functions. Abhandlungen aus Zahlentheorie und Analysis. Zur Errinerung an Edmund Landau (1877-1938), VEB Deutscher Verlag der Wissenschaften, Berlin, 1968, 175-191.
- Кубилюс, Метод производящих рядов Дирихле в теории распределения арифметических функций. I, Liet. matem. rink., XI, 1 (1971), 125-134.
- Й. Кубилюс, З. Юшкис. О распределении значений мультипликативных функций, Liet. matem. rink., XI, 2 (1971), 261-273.

LIEKAMOJO NARIO INTEGRALINIUOSE ASIMPTOTINIUOSE ARITMETINIŲ FUNKCIJŲ PASISKIRSTYMO DĖSNIUOSE ĮVERTINIMO KLAUSIMU

E. Manstavičius

(Reziumė)

Darbe nagrinėjamos adityvinių ir multiplikatyvinių aritmetinių funkcijų, asimptotiškai pasiskirsčiusių pagal normalinį dėsnį, klasės. Nurodomas būdas, kaip gauti liekamųjų narių įvertinimą integraliniuose dėsniuose platesnėms aritmetinių funkcijų klasėms.

Naudojamas metodas remiasi [4] ir [5] darbų idėjomis.

ON THE ESTIMATION OF ERROR TERMS IN THE INTEGRAL ASYMPTOTIC LAWS FOR ARITHMETIC FUNCTIONS

E. Manstavičius

(Summary)

Let h(m) and g(m) be real-valued additive and multiplicative number-theoretic functions respectively. We denote by $b_p = |h(p) - a \ln p - \lambda|$ and by $d_p = |\ln g(p)| - a \ln p - \lambda|$, if $g(p) \neq 0$, for some real constants a and λ . As usual,

$$G(x) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{x} e^{-\frac{u^{2}}{2}} du$$

and v_n {...} denotes the number of natural $m \le n$, that satisfies conditions written in the parenthesis, divided to n. Then the following theorems are proved.

Theorem 1. Let h(m) be a real-valued additive function. If there exist real constants a, $\lambda \neq 0$ and c > 0 such that the series

$$\sum_{b_{p} < c} \frac{b_{p} \ln p}{p} , \quad \sum_{b_{p} > c} \frac{\max (b_{p} \ln p)}{p} , \quad \sum_{p, \alpha \ge 2}^{\infty} \frac{|h(p^{\alpha})|}{p^{\alpha}}$$

converge, then for $n \ge 3$

$$v_{n}\left\{\frac{h(m)-a\ln n-\lambda \ln \ln n}{|\lambda| \sqrt{\ln \ln n}} < x\right\} = G(x) + O\left(\frac{1}{\sqrt{\ln \ln n}}\right).$$

The constant in the symbol O depends only on the function h (m).

Theorem 2. Let g(m) be a real-valued multiplicative function. Suppose, that there exist real constants a, $\lambda \neq 0$ and c > 0 such that the series

$$\sum_{g(p)\leq 0} \frac{\ln p}{p} , \quad \sum_{\substack{g(p)>0\\d_p< c}} \frac{d_p \ln p}{p} , \quad \sum_{\substack{g(p)>0\\d_p\geqslant c}} \frac{\ln p}{p} , \quad \sum_{\substack{g(p)\neq 0}} \frac{d_p}{p} ,$$

$$\sum_{p} \sum_{\substack{\alpha=2\\ g(\alpha^{\alpha})\neq 0}}^{\infty} \frac{|\ln |g(p^{\alpha})||}{p^{\alpha}}$$

converge, then uniformly in x and $n \ge 3$

$$v_{n}\left\{g\left(m\right)< n^{a}\ln^{\lambda}n\mid x\mid^{|\lambda|\sqrt{\ln\ln n}}\operatorname{sgn}x\right\} = \Phi_{0}\left(x\right) + O\left(\frac{1}{\sqrt{\ln\ln n}}\right),$$

where

$$\Phi_0(x) = \begin{cases} 1 - \frac{\omega_0 + \omega_1}{2} & G(-\ln x) & \text{for } x > 0, \\ \frac{\omega_0 - \omega_1}{2} & G(-\ln (-x)) & \text{for } x < 0 \end{cases}$$

and

$$\omega_k = \prod_{p} \left(1 - \frac{1}{p}\right) \left(1 + \sum_{\alpha=1}^{\infty} \frac{\operatorname{sgn}^k g\left(p^{\alpha}\right)}{p^{\alpha}}\right) \quad (k = 0, 1).$$

The case, when the values g(p) are concentrated in the left half-axis of real numbers, is considered too.

The method used in this paper is similar to that of [4] and [5].