1972

VAK 513.7

О ПРОСТРАНСТВЕ ОПОРНЫХ ЛИНЕАРОВ ФИНСЛЕРОВОЙ СТРУКТУРЫ

Ю. Шинкунас

Определение. Пространство опорных линеаров $L_{n,v}$ [1], на котором дано поле скалярной функции F(x,v)

$$dF = F_{x} \omega^{x} + F_{x} \stackrel{i}{\Theta^{x}}$$
(2. 3, $\gamma = 1, 2, ..., n$; $i, j, k = 1, 2, ..., N$), (1)

удовлетворяющей условию

$$F(x, \lambda v) = \lambda F(x, v), \tag{2}$$

назовем пространством опорных линеаров финслеровой структуры $\mathscr{F}_{n,\,v}$. $\mathscr{F}_{n,\,v}$ является обобщением пространства Финслера $(N=1\;;\;B_j^i\equiv\delta_j^i)$ и пространства пар линейных элементов финслеровой структуры [2] $(N=2\;;\;B_j^i\equiv\delta_j^i)$.

Общая аффинная связность в $L_{n,v}$ определяется формами (см. [1], равенства (10)):

$$\hat{\omega}^{\gamma} = \omega^{\alpha}, \ \ \tilde{\omega}^{\alpha}_{\beta} = \omega^{\alpha}_{\beta} + \check{L}^{\alpha}_{\gamma\beta} \ \omega^{\gamma} + \check{C}^{\alpha}_{\beta\gamma} \ \tilde{\Theta}^{\gamma}.$$

Докажем, что существует объект аффинной связности $(\check{L}_{\gamma\beta}^x,\;\check{C}_{\beta\gamma}^x)$, охваченный дифференциальными продолжениями метрической функции F.

Частично продолжая уравнение (1), получаем:

$$\nabla F_{\mathbf{x}} \equiv dF_{\mathbf{x}} - F_{\mathbf{y}} \, \omega_{\mathbf{x}}^{\mathbf{y}} - c_{i}^{k} F_{\mathbf{x}} \, \omega_{\mathbf{y}}^{\mathbf{y}} = F_{\beta \mathbf{x}} \, \omega^{\beta} + F_{\alpha \beta} \, (9^{\beta}), \tag{3}$$

$$\nabla F_{\beta x} - F_{\gamma} \omega_{x\beta}^{\gamma} - c_{i k}^{k} F_{x} \omega_{\gamma\beta}^{\gamma} - F_{x\gamma} \overset{\acute{O}}{\Theta}_{\beta}^{\gamma} = F_{\beta x\gamma} \omega^{\gamma} + F_{\beta x\gamma} \overset{\acute{O}}{\Theta}^{\gamma}, \tag{4}$$

$$\nabla F_{xx} = F_{x\beta\gamma} \, \omega^{\gamma} + F_{x\beta\gamma} \, \overset{k}{\Theta}^{\gamma}, \tag{5}$$

$$\nabla \frac{F_{z\beta\gamma} - F_{\varepsilon\beta}}{ij} \omega^{\varepsilon}_{z\gamma} - F_{z\varepsilon}}{\omega^{\varepsilon}_{z\gamma} - F_{z\varepsilon}} \omega^{\varepsilon}_{\beta\gamma} - c^{k}_{i} \frac{F_{z\beta}}{kj} \omega^{\varepsilon}_{\varepsilon\gamma} - c^{k}_{j} \frac{F_{z\beta}}{ik} \omega^{\varepsilon}_{\varepsilon\gamma} -$$

$$-F_{\alpha\beta\epsilon} \stackrel{k}{\Theta_{\gamma}^{\epsilon}} = F_{\alpha\beta\gamma\epsilon} \stackrel{k}{\omega^{\epsilon}} + F_{\alpha\beta\gamma\epsilon} \stackrel{k}{\Theta^{\epsilon}},$$
 (6)

$$\nabla F_{\alpha\beta\gamma} = F_{\alpha\beta\gamma\varepsilon} \omega^{\varepsilon} + F_{\alpha\beta\gamma\varepsilon} (\omega^{\varepsilon})^{\varepsilon}, \tag{7}$$

Второй случай. Рассмотрим величины $f^{'\alpha}$, определенные равенствами:

$$\vec{F}^{\alpha} = \frac{\vec{F}^{\alpha}}{F}.$$
 (21)

Очевидно, что

$$\overset{i}{F^{\alpha}}(x, \lambda v) = \overset{i}{F^{\alpha}}(x, v), \quad \overset{F_{\alpha\beta}}{F^{\beta}} \overset{j}{F^{\beta}} = 0.$$

Пусть

$$\stackrel{i}{F^{\varepsilon}} F_{\alpha\beta} = K_{\alpha\beta}^{\varepsilon}, \quad \stackrel{i}{F_{\alpha}} \stackrel{i}{F^{\varepsilon}} = H_{\alpha}^{\varepsilon}, \quad \stackrel{i}{F^{\varepsilon}} F_{\alpha\beta} = M_{\alpha\beta}^{\varepsilon}.$$
(22)

Величины $K^{\varepsilon}_{\alpha\beta}$, H^{ε}_{α} и $M^{\varepsilon}_{\alpha\beta}$ удовлетворяют следующим дифференциальным уравнениям :

$$\nabla K_{\alpha\beta}^{\varepsilon} - H_{\tau}^{\varepsilon} \omega_{\alpha\beta}^{\gamma} - f^{\varepsilon} c_{i}^{k} F_{k\beta} \omega_{\gamma\alpha}^{\gamma} - M_{\beta\gamma}^{\varepsilon} \stackrel{\dot{O}}{\sigma}_{\alpha}^{\gamma} = 0 \text{ (mod } \omega^{\alpha}, \stackrel{\dot{O}}{\sigma}),$$
 (23)

$$\nabla H_{\alpha}^{\varepsilon} = 0 \,(\text{mod }\omega^{\alpha}, \, \stackrel{1}{\Theta^{\gamma}}), \tag{24}$$

$$\nabla M_{\alpha\beta}^z = 0 \text{ (mod } \omega^x, \stackrel{i}{\Theta}^y). \tag{25}$$

Если $\det \|H_{\alpha}^{\varepsilon}\| \neq 0$, то, умножая (23) на $\tilde{H}_{\varepsilon}^{\sigma}(\tilde{H}_{\varepsilon}^{\alpha}H_{\varepsilon}^{\varepsilon} = \delta_{\varepsilon}^{\alpha})$ и по ε свертывая, получаем:

$$\nabla \bar{K}_{\alpha\beta}^{\sigma} - \omega_{\alpha\beta}^{\sigma} - A_{\beta}^{\sigma} \, \omega_{\alpha}^{\gamma} - M_{\beta\gamma}^{\sigma} \, \dot{\Theta}_{\alpha}^{\gamma} = 0 \, (\text{mod } \omega^{\alpha}, \, \dot{\Theta}^{\gamma}), \tag{26}$$

где

$$\bar{K}^{\sigma}_{\alpha\beta} = \bar{H}^{\sigma}_{\epsilon} \, K^{\epsilon}_{\alpha\beta}, \quad \bar{M}^{\sigma}_{\beta\gamma} = \bar{H}^{\sigma}_{\epsilon} \, M^{\epsilon}_{\beta\gamma}, \quad A^{\sigma}_{\beta} = \bar{H}^{\sigma}_{\epsilon} \, \bar{F}^{\epsilon} \, c^{k}_{i} \, F_{\epsilon},$$

Свертывая (26) по индексам в и о, получаем:

$$\nabla \widetilde{K}_{\alpha\sigma}^{\sigma} - \omega_{\alpha\sigma}^{\sigma} (1+A) - M_{j\sigma\gamma}^{\sigma} \overset{j}{\Theta}_{\alpha}^{\gamma} = 0 \text{ (mod } \omega^{\alpha}, \overset{j}{\Theta}^{\gamma}), \tag{27}$$

где $A = sp \circ A_{\alpha}^{\beta} ||.$

Если $A \neq -1$, то нетрудно проверить, что величины

$$L_{\alpha\beta}^{\sigma} = K_{\alpha\beta}^{\sigma} - \frac{A_{\beta}^{\sigma}}{1 + A} \cdot K_{\alpha\epsilon}^{\epsilon} \tag{28}$$

Н

$$C_{k}^{\gamma} = M_{\beta x}^{\gamma} - \frac{A_{\beta}^{\gamma}}{1 + A} M_{kz_{x}}^{z}$$

$$(29)$$

удовлетворяют следующим дифференциальным уравнениям:

$$\nabla L_{\alpha\beta}^{\circ} - \omega_{\alpha\beta}^{\sigma} - C_{\beta\gamma}^{\sigma} \stackrel{k}{\Theta_{\alpha}^{\circ}} = 0 \text{ (mod } \omega^{\alpha}, \stackrel{i}{\Theta^{\gamma}}), \tag{30}$$

$$\nabla C_{k}^{\gamma} = 0 \pmod{\omega^{x}}, \stackrel{(0)}{\Theta^{\gamma}}, \tag{31}$$

т. е. их можно принять за объект аффинной связности пространства $\mathscr{F}_{n,r}$. После несложных вычислений можно убедиться, что инвариантные производные первого и второго рода, определенные при помощи полученной

связности, равны нулю. Отсюда следует, что эта связность плоская (первый картанов тензор кривизны, второй и третий линеары кривизны равны нулю).

Если же A = -1, то для того, чтобы получить объект аффинной связности, приходится рассматривать функцию \mathscr{F} , определенную равенством

$$\mathscr{F}=\frac{1}{2}\ F^2,$$

дифференциальное уравнение которой имеет вид:

$$d\mathcal{F} = \mathcal{F}_{\alpha} \,\omega^{\alpha} + \mathcal{F}_{\alpha} \,\overset{\circ}{\partial}{}^{\alpha}. \tag{32}$$

При изменении нормировки опорного линеара, \mathscr{F} и \mathscr{F}_{α} являются однородными функциями второй степени, а \mathscr{F}_{α} — первой. Частично продолжая уравнение (32), получаем систему величин

$$\mathcal{F}_{\alpha}$$
, $\mathcal{F}_{\beta\alpha}$, $\mathcal{F}_{\alpha\beta}$, $\mathcal{F}_{\alpha\beta\gamma}$, $\mathcal{F}_{\alpha\beta\gamma}$ И Т. Д.,

где

$$\begin{split} & \mathscr{F}_{\beta\alpha}\left(x,\ \lambda\,v\right) = \lambda\,\mathscr{F}_{\beta\alpha}\left(x,\ v\right), \quad \mathscr{F}_{\alpha\beta}\left(x,\ \lambda\,v\right) = \mathscr{F}_{\alpha\beta}\left(x,\ v\right), \\ & \mathscr{F}_{z\beta\gamma}\left(x,\ \lambda\,v\right) = \mathscr{F}_{\alpha\beta\gamma}\left(x,\ v\right), \quad \mathscr{F}_{z\beta\gamma}\left(x,\ \lambda\,v\right) = \lambda^{-1}\,\mathscr{F}_{\alpha\beta\gamma}\left(x,\ v\right), \\ & \mathscr{F}_{\alpha\beta}\stackrel{i}{v}^{\beta} = \mathscr{F}_{\alpha}, \quad \mathscr{F}_{\alpha\beta\gamma}\stackrel{k}{v}^{\gamma} = 0. \end{split}$$

Эти величины удовлетворяют дифференциальным уравнениям, подобным уравнениям (3) – (7), и их можно выразить через F и ее продолжения. Например,

$$\mathscr{F}_{\alpha} = FF_{\alpha}, \quad \mathscr{F}_{\alpha\beta} = F_{\alpha} F_{\beta} + FF_{\alpha\beta}$$
 и т. д.

Если $\det \| \mathscr{F}_{\alpha\beta} \| \neq 0$, то из соотношений

$$\mathscr{F}_{\alpha\beta} \mathscr{F}^{\alpha\varepsilon} = \delta_j^k \, \delta_{\beta}^{\varepsilon}$$

можно найти линеар, обратный линеару $\mathscr{F}_{\alpha\beta}$. Нетрудно проверить, что величины

$$L_{\gamma} = \mathscr{F}_{\alpha\beta\gamma} \mathscr{F}^{\alpha\beta}, \quad L_{\gamma} = \mathscr{F}_{\alpha\beta\gamma} \mathscr{F}^{\alpha\beta}$$
(33)

удовлетворяют следующим дифференциальным уравнениям:

$$dL_{\gamma} - L_{\varepsilon} \, \omega_{\gamma}^{\varepsilon} - 2 \, (N + cn) \, \omega_{\varepsilon\gamma}^{\varepsilon} - L_{\varepsilon}^{\varepsilon} \, \overset{\dot{\delta}}{\Theta_{\gamma}^{\varepsilon}} \equiv 0 \, (\text{mod } \omega^{\alpha}, \, \overset{\dot{\delta}}{\Theta^{\gamma}}), \tag{34}$$

$$\frac{dL_{\gamma} - L_{\varepsilon} \omega_{\gamma}^{\varepsilon} - c_{k}^{i} L_{\gamma} \omega_{\varepsilon}^{\varepsilon} \equiv 0 \pmod{\omega^{\alpha}}, \stackrel{i}{\Theta}_{\gamma}.$$
(35)

Из уравнений (24) – (26), (34) и (35) следует, что величины

$$\Lambda_{\alpha\beta}^{\gamma} = \bar{K}_{\alpha\beta}^{\gamma} - \frac{1}{2(N+cn)} A_{\beta}^{\gamma} L_{\alpha}, \tag{36}$$

$$\prod_{i} \gamma_{\alpha} = \overline{M} \gamma_{\alpha} - \frac{1}{2(N+cn)} A_{\beta}^{\gamma} L_{\alpha}$$
(37)

удовлетворяют следующим дифференциальным уравнениям:

$$\nabla \Lambda_{\alpha\beta}^{\gamma} - \omega_{\alpha\beta}^{\gamma} - \prod_{j \in \Theta} \dot{\Theta}_{\alpha}^{j} \equiv 0 \text{ (mod } \omega^{\alpha}, \quad \dot{\Theta}^{\gamma}), \tag{38}$$

$$\nabla \prod_{j \neq \alpha} \prod_{\alpha} \equiv 0 \pmod{\omega^{\alpha}}, \stackrel{i}{\Theta^{\gamma}}.$$
 (39)

Отсюда следует, что $(\Lambda_{\alpha\beta}^{\gamma},\ \prod_{\beta\alpha}^{\gamma})$ образуют объект аффинной связности пространства $\mathscr{F}_{n,\,\nu}.$ Таким образом, справедлива следующая теорема.

Теорема 3. а) Если $\det \|H_{\alpha}^{r}\| \neq 0$ и $A \neq -1$, то при N > n объект аффинной связности охватывается объектом $(F_{\alpha}, \ F_{\beta\alpha}, \ F_{\alpha\beta})$ (формулы охвата (28) и (29)). б) Если $\det \|H_{\alpha}^{r}\| \neq 0$, $\det \|\mathscr{F}_{\alpha\beta}\| \neq 0$, A = -1, то при N > n объект аффинной связности охватывается объектом $(F, \ F_{\alpha}, \ F_{\beta\alpha}, \ F_{\alpha\beta\gamma}, \ F_{\alpha\beta\gamma})$ (формулы охвата (36) и (37)).

Третий случай. В этом случае всегда $\det \| H_{\alpha}^{\gamma} \| = 0$ и тензору обратного построить нельзя. Из (23)-(25) и (34)-(35) видно, что величины

$$\Lambda_{\alpha\beta}^{\gamma} = K_{\alpha\beta}^{\gamma} - \frac{\sum_{i=1}^{i} F_{\beta}}{2(N+cn)} L_{\alpha}, \tag{40}$$

$$\prod_{j} \Upsilon_{\beta\alpha} = M_{\beta\alpha} \Upsilon_{\alpha} - \frac{\sum_{i} F^{\alpha} c_{i}^{k} F_{\beta}}{2(N+cn)} L_{\alpha}$$
(41)

удовлетворяют следующим дифференциальным уравнениям:

$$\nabla \Lambda_{\alpha\beta}^{\gamma} - H_{\varepsilon}^{\gamma} \omega_{\alpha\beta}^{\varepsilon} - \prod_{i} \beta_{\varepsilon} \stackrel{\dot{O}}{\Theta}_{\alpha}^{\varepsilon} \equiv 0 \pmod{\omega^{\alpha}}, \stackrel{\dot{O}}{\Theta}_{\gamma}^{\gamma}, \tag{42}$$

$$\nabla \prod_{i \neq \alpha} \subseteq 0 \; (\text{mod } \omega^{\alpha}, \; \stackrel{i}{\Theta}{}^{\gamma}), \tag{43}$$

и их можно принять за объект общей связности (см. [3]) пространства $\mathscr{F}_{n,\,v}$. При помощи этой связности инвариантный дифференциал, например, для вектора T^{α} , в $\mathscr{F}_{n,\,v}$ определяется следующим образом:

$$\delta T^{\alpha} = H_{\varepsilon}^{\alpha} dT^{\varepsilon} + T^{\gamma} \left(\Lambda_{\gamma \varepsilon}^{\alpha} \omega^{\varepsilon} + \prod_{j}^{\alpha} \Theta^{\varepsilon} \right).$$

В этом случае справедлива следующая теорема.

Теорема 4. Если N < n и $\det \| \mathscr{F}_{\alpha\beta} \| \neq 0$, то общая связность в $\mathscr{F}_{n,v}$ о хватывается объектом $(F, F_{\alpha}, F_{\beta\alpha}, F_{\alpha\beta}, F_{\alpha\beta\gamma}, F_{\alpha\beta\gamma})$ (формулы охвата (40) и (41)).

Литература

- Ю. Шинкунас, О пространстве опорных линеаров, Liet. matem. rink., VI, 3 (1966), 449-456.
- 2. Д. М. Яблоков, О евклидовых связностях в пространстве пар линейных элементов, Труды Семинара кафедры геометрии, вып. **П**, Изд-во КГУ, стр. 90-102.
- 3. T. Otsuki, On general connections. I, Math. J. Okayama Univ., 9 (1960), 99-164.

APIE FINSLERIO STRUKTŪROS ATRAMINIŲ LINEARŲ ERDVĘ

J. Šinkūnas

(Reziumė)

Atraminių linearų erdvė $L_{n, v}$ [1], kurioje duotas skaliarinės funkcijos F laukas, yra vadinama Finslerio struktūros atraminių linearų erdve $\mathscr{F}_{n, v}$. Iš funkcijos F ir jos dalinių pratęsimų konstruojamas šios erdvės afininio sąryšio objektas. Išnagrinėti visi galimi tokių konstrukcijų atvejai ir ištirtos kai kurios gautų sąryšių savybės.

SUR L'ESPACE DES LINÉARS D'APPUIS DE STRUCTURE FINSLÉRIÈNNE

J. Šinkūnas

(Résumé)

L'espace de linéars d'appuis $L_{n, v}$ [1] avec le champ de fonction métrique F s'appelle l'espace de linéars d'appuis de structure finslériènne $\mathcal{F}_{n, v}$. De la fonction F et ses prolongements partiels on a reçu l'objet de connection affine. Nous avons analysé tous les cas possibles de la découverte de l'objet de connection affine et étudié quelques propriétés de cette connection.