1972

УДК 519.21

О СТОХАСТИЧЕСКИХ УРАВНЕНИЯХ НЕЛИНЕЙНОЙ ФИЛЬТРАЦИИ СЛУЧАЙНЫХ ПРОЦЕССОВ

Б. И. Григелионис

Введение

Теории нелинейной фильтрации случайных процессов в последнее десятилетие уделялось довольно много внимания. Наиболее общие результаты в этой области приведены в работах [1]—[4]. Хороший обзор ранее полученных результатов содержится в [2]. Следует отметить, что во всех упомянутых работах предполагается, что наблюдаемый процесс имеет непрерывные траектории. Тем не менее, в ряде задач статистики и управления случайных процессов представляет интерес и случай, когда наблюдаемый процесс имеет разрывы. В этом направлении ряд результатов о нелинейной фильтрации марковских процессов получен в работах [5], [6].

Целью настоящей работы является путем использования теории стохастического интегрирования по мартингалам (см. [7]—[9]), а также некоторых идей работы [4], вывести стохастическое уравнение нелинейной фильтрации в случае, когда наблюдаемый процесс является процессом без разрывов второго рода и приобретает весьма общую структуру с ненаблюдаемым процессом. В разделе 1 сформулированы предположения и изучены некоторые свойства наблюдаемого процесса, а в разделе 2 формулируется и доказывается основной результат.

1. Определения и предположения

Пусть на вероятностном пространстве $(\Omega,\mathscr{F},\mathbf{P})$ задана возрастающая непрерывная справа система σ -алгебр $\{\mathscr{F}_t,t\geqslant 0\}$, $\mathscr{F}_t\subseteq\mathscr{F}$, причем предположим что σ -алгебры \mathscr{F} и $\mathscr{F}_t,t\geqslant 0$, пополнены по мере \mathbf{P} . Обозначим $\mathfrak{M}^{(m)}$ класс всех m-мерных непрерывных справа интегрируемых с квадратом мартингалов относительно системы σ -алгебр $\{\mathscr{F}_t,t\geqslant 0\}$, $\mathfrak{M}_c^{(m)}$ — подкласс $\mathfrak{M}^{(m)}$ непрерывных мартингалов.

Пусть наблюдается случайный процесс $X = \{X(t), t \ge 0\}$, принимающий значения в m-мерном евклидовом пространстве $(\mathbf{R}_m, \mathscr{B}_m)$ с непрерывными справа траекториями, имеющими пределы слева.

(I). Предположим, что X согласован c системой σ -алгебр $\{\mathscr{F}_t, \ t \geqslant 0\}^*$) и существует функция Π $(t, \Gamma) = \Pi$ (t, ω, Γ) $(t, \omega, \Gamma) \in [0, \infty) \times \Omega \times \mathscr{B}_m$, являющаяся мерой по Γ при фиксированных (t, ω) , при каждом $\Gamma \in \mathscr{B}_m \mathscr{B}$ $[0, \infty] \times \mathscr{F}$ —

^{*)} Т.е. случайный вектор X(t) \mathscr{F}_t — измерим при каждом $t \ge 0$.

измерима***, П $(T, \Gamma) \mathscr{F}_T$ – измерима***) для каждого момента остановки (м.о.) T относительно системы σ -алгебр $\{\mathscr{F}_t, \ t \geqslant 0\}$,

$$\mathbb{E}\left[\int_{0}^{t}\Pi\left(s,\ U_{\varepsilon}\right)ds\ \right]<\infty,\qquad \mathbb{E}\left[\int_{0}^{t}\int_{|x|\leq 1}|x|^{2}\Pi\left(s,\ dx\right)ds\right]<\infty \qquad (1)$$

для всех t>0, $\varepsilon>0$, и такая, что

$$q(t, \Gamma) = p(t, \Gamma) - \int_{0}^{t} \Pi(s, \Gamma) ds \in \mathfrak{M}^{(1)}$$
 (2)

для всех $\Gamma \in \mathcal{B}_m \cap U_{\varepsilon}$, $\varepsilon > 0$, где $U_{\varepsilon} = \{x : |x| \geqslant \varepsilon\}$ и

$$p(t, \Gamma) = \sum_{0 \le s \le t} \chi_{\Gamma} \left(X(s) - X(s-0) \right);$$

 $\chi_{\Gamma}(x)$ – индикатор множества Γ .

Обозначим $\mathbf{F}^{(m)}$ класс m-мерных $\mathscr{D}[0,\infty) \times \mathscr{D}_m \times \mathscr{F}$ — измеримых функций $\phi(t,x) = \phi(t,x,\omega)$, таких, что при каждом фиксированном $x\phi(T,x)\mathscr{F}_{T}$ -измеримы для любого м. о. T. Пусть $\mathbf{F}_{P}^{(m)}$ — подкласс функций $\phi \in \mathbf{F}^{(m)}$, таких, что суммы

$$P_{\varphi}(t) = \sum_{0 \le s \le t} \varphi\left(s, X(s) - X(s-0)\right)$$

сходятся почти всюду по мере \mathbf{P} (п. в.), а $\mathbf{F}_{\mathcal{Q}}^{(m)}$ — подкласс функций $\mathbf{\phi} \in \mathbf{F}^{(m)}$ таких, что

$$||\varphi||_{t}^{(m)} = \left[\mathbf{E} \left(\int_{0}^{t} \int_{R_{m}} |\varphi(s, x)|^{2} \Pi(s, dx) ds \right) \right]^{\frac{1}{2}} < \infty, \qquad t \geqslant 0.$$
 (3)

Суммы P_{φ} (t) называются интегралами функций $\varphi \in \mathbb{F}_p^{(m)}$ по мере p и обо значаются

$$P_{\varphi}(t) = \int_{0}^{t} \int_{\mathbf{R}_{m}} \varphi(s, x) p(ds, dx).$$

Для всех $\phi \in \mathbb{F}_Q^{(m)}$ определяется стохастический интеграл по мере qQ_{ϕ} $(t) \in \mathfrak{M}^{(m)}$ (см. [9]) и обозначается

$$Q_{\varphi}(t) = \int_{0}^{t} \int_{\mathbf{R}_{min}} \varphi(s, x) q(ds, dx).$$

При предположениях (1) и (2) легко показать, что случайный процесс

$$X_0(t) = X(t) - \int_0^t \int_{|x| \le 1} xq(ds, dx) - \int_0^t \int_{|x| > 1} xp(ds, dx)$$

определен и непрерывен.

^{**)} $\mathscr{G}[0, \infty)$ — σ -алгебра борелевских подмножеств интервала $[0, \infty)$.

^{***)} T=T (ω) называется момент остановки, если $T\geqslant 0$ и $\{\omega: T(\omega)\leqslant t\}\in \mathscr{F}_t$ для всех $t\geqslant 0;$ $\mathscr{F}_T=\{A:A\in \mathscr{F},A\cap \{T\leqslant t\}\in \mathscr{F}_t,t\geqslant 0\}.$

(II). Далее предположим, что существуют т-мерная функция $a(t) = = (a_1(t), \ldots, a_m(t))$ и матрица $A(t) = ||a_{ij}(t)||_1^m$, такие, что функции $a_i(t), a_{ij}(t), i, j = 1, \ldots, m$, $\mathcal{B}[0, \infty) \times \mathcal{F}$ — измеримы, согласованы с системой σ -алгебр $\{\mathcal{F}_t, t \geqslant 0\}$, для всех $t \geqslant 0$

$$\mathbb{E}\left[\int_{0}^{t}|a(s)|^{2}ds\right]<\infty,\qquad \mathbb{E}\left[\int_{0}^{t}|a_{ij}(s)|ds\right]<\infty$$

и

$$\tilde{X}(t) = X_0(t) - \int_0^{\infty} a(s) ds \in \mathfrak{M}_c^{(m)}, \tag{4}$$

причем п.в.*)

$$\langle \tilde{X}_i, X_j \rangle_t = \int_0^\infty a_{ij}(s) ds.$$
 (5)

Обозначим $\Phi^{(m)}$ — класс m-мерных случайных функций Φ (t), $t \geqslant 0$, \mathscr{B} [$0, \infty$) х \mathscr{F} — измеримых и таких. что Φ (T) \mathscr{F}_T — измерима для всех м.о. T, $\Phi^{(m)}_{rc}$ — класс m-мерных ограниченных непрерывных справа, имеющих пределы слева случайных процессов, а $\mathbf{L}^{(m)} = \Phi^{(m)} \cap \overline{\Phi}^{(m)}_{rc}$, где $\overline{\Phi}^{(m)}_{rc}$ является замыканием $\Phi^{(m)}_{rc}$ по системе полунорм

$$\| \Phi \|_{t} = \left[\mathbb{E} \left(\int_{0}^{t} \left(\Phi(s), \ \Phi(s) A(s) \right) ds \right) \right]^{\frac{1}{2}}, \qquad t \geqslant 0.$$
 (6)

Для всех $\phi \in \mathbf{L}^{(m)}$ определяется стохастический интеграл по мартингалу \tilde{X} X_{ϕ} $(t) \in \mathfrak{M}_{c}^{(1)}$ и обозначается

$$X_{\Phi}(t) = \int_{0}^{t} \Phi(s) d\tilde{X}(s) = \sum_{i=1}^{m} \int_{0}^{t} \Phi_{i}(s) d\tilde{X}_{i}(s).$$

Считаем, что функции φ_1 , $\varphi_2 \in \mathbf{F}_Q^{(1)}$ эквивалентны, если для всех $t \geqslant 0 \mid \mid \varphi_1 - -\varphi_2 \mid \mid_{r}^{r(1)} = 0$, и функции φ_1 , $\varphi_2 \in \mathbf{L}^{(m)}$ эквивалентны, если для всех $t \geqslant 0 \mid \mid \varphi_1 - -\varphi_2 \mid \mid_{r} = 0$.

Далее нам понадобится следующее утверждение.

Лемма 1. Для любого $M \in \mathfrak{M}^{(1)}$ существуют единственные с точностью до эквивалентности функции $\phi_M \in \mathbf{F}_0^{(1)}$ и $\phi_M \in \mathbf{L}^{(m)}$, такие, что

$$\mathbf{E}\left(M\left(t\right)Q_{\varphi}\left(t\right)\right) = \mathbf{E}\left[\int_{0}^{t}\int_{\mathbf{R}_{-m}}^{t}\varphi_{M}\left(s, x\right)\varphi\left(s, x\right)\Pi\left(s, dx\right)ds\right]$$

и

$$\mathbb{E}\left(M(t) X_{\Phi}(t)\right) = \mathbb{E}\left[\int_{0}^{t} \left(\Phi_{M}(s), \Phi(s) A(s)\right) ds\right]$$

 ∂ ля всех $\phi \in \mathbf{L}^{(m)}$ и $\varphi \in \mathbf{F}_Q^{(1)}$.

^{*)} Далее воспользуемся обозначениями и результатами работ [7]-[9].

До казательство. Заметим, что если не различать эквивалентных функций, то пространства функций из $\mathbf{F}_{Q}^{(1)}$ и $\mathbf{L}^{(m)}$, рассматриваемых по временной переменной на интервале $[0,\ t]$, являются гильбертовыми пространствами со скалярными произведениями

$$\mathbb{E}\left[\int_{0}^{t}\int_{\mathbb{R}_{m}}^{q_{1}}\varphi_{1}(s, x)\varphi_{2}(s, x)\Pi(s, dx)ds\right]$$

И

$$\mathbf{E}\left[\int_{0}^{t}\left(\varphi_{1}(s), \; \varphi_{2}(s) A(s)\right) ds\right]$$

соответственно. Утверждение леммы следует из известной теоремы Ф. Рисса, поскольку в силу неравенств

$$\left| \mathbf{E} \left(M(t) Q_{\varphi}(t) \right) \right| \leq \left(\mathbf{E} M^{2}(t) \right)^{\frac{1}{2}} || \varphi ||_{t}^{(1)}$$

И

$$\left| \mathbb{E} \left(M(t) X_{\Phi}(t) \right) \right| \leq \left(\mathbb{E} M^{2}(t) \right)^{\frac{1}{2}} \| \Phi \|_{t}$$

функционалы

$$\mathbf{E}\left(M\left(t\right)\;Q_{\varphi}\left(t\right)\right)$$
 и $\mathbf{E}\left(M\left(t\right)\;X_{\varphi}\left(t\right)\right)$

являются линейными и ограниченными.

Пусть

$$\mathscr{F}_{t}^{X} = \sigma \left(X(s), \ 0 \leqslant s \leqslant t \right), \qquad t \geqslant 0$$

Обозначим

$$\overline{\Pi}(t, \Gamma) = \mathbb{E}\left(\Pi(t, \Gamma) \mid \mathscr{F}_t^X\right) = \mathbb{E}^t \Pi(t, \Gamma)^*, \qquad \tilde{a}(t) = \mathbb{E}^t a(t).$$

(III). Предположим, что матрицы A(t) согласованы с системой σ -алгебр $\{\mathcal{F}_{t}^{X}, t \geq 0\}$ и существуют две функции: функция $\bar{\Pi}(t, \Gamma)$, при фиксированных (t, ω) , являющаяся мерой на \mathcal{B}_{m} , а при каждом Γ согласованная с системой σ -алгебр $\{\mathcal{F}_{t}^{X}, t \geq 0\}$, и такая, что

$$\Pi(t, \Gamma) = \int_{\Gamma} \rho(t, x) \tilde{\Pi}(t, dx), \qquad \Gamma \in \mathcal{B}_{m}, \qquad t \geqslant 0,$$
(7)

еде функция ρ (t,x) измерима по совокупности переменных и согласована c системой $\{\mathcal{F}_t,\ t\geqslant 0\}$, и функция ψ (t), (t,ω) -измеримая, согласованная c системой $\{\mathcal{F}_t,\ t\geqslant 0\}$, такая, что

$$a(t) = \psi(t) A(t) + \int_{|x| \le 1} x \left(\rho(t, x) - 1 \right) \tilde{\Pi}(t, dx), \tag{8}$$

причем

$$\mathbf{E}\,\rho\left(t,\ x\right)<\infty\,,\ \mathbf{E}\left[\int\limits_{0}^{t}\int\limits_{\mathbf{R}_{m}}^{t}\left(\frac{\bar{\rho}\left(s,\ x\right)}{\rho\left(s,\ x\right)}-1\right)^{2}\Pi\left(s,\ dx\right)ds\right]<\infty\,,\ \mathbf{E}\,|\,\psi\left(t\right)|<\infty$$

и

$$\mathbf{E}\left[\int_{0}^{t}\left|\left(\psi\left(s\right)-\overline{\psi}\left(s\right)\right)A\left(s\right)\right|^{2}ds\right]<\infty$$

для всех

$$x \in \mathbf{R}_m$$
 и $t \geqslant 0$; $\bar{\varphi}(t, x) = \mathbf{E}^t \varphi(t, x)$, $\bar{\psi}(t) = \mathbf{E}^t \psi(t)$.

В силу предположения (III) имеем, что

$$\bar{\Pi}(t, \Gamma) = \int_{\Gamma} \bar{\rho}(t, x) \, \tilde{\Pi}(t, dx),$$

$$\bar{a}(t) = \bar{\psi}(t) A(t) + \int_{|x| \le 1} x \left(\bar{\rho}(t, x) - 1 \right) \tilde{\Pi}(t, dx)$$

И

$$a(t) - \bar{a}(t) = \left(\psi(t) - \psi(t)\right) A(t) + \int_{|x| \le 1} x \left(\Pi(t, dx) - \overline{\Pi}(t, dx)\right). \tag{9}$$

Пусть $\mathfrak{M}_X^{(n)}$ — класс всех m-мерных непрерывных справа интегрируемых с квадратом мартингалов относительно системы σ -алгебр $\{\mathscr{F}_t^X,\ t\geqslant 0\},\ \mathfrak{M}_{c,X}^{(m)}$ —подкласс $\mathfrak{M}_X^{(n)}$ непрерывных мартингалов.

Обозначим

$$\bar{q}(t, \Gamma) = p(t, \Gamma) - \int_{0}^{t} \bar{\Pi}(s, \Gamma) ds,$$

$$\bar{X}(t) = X(t) - \int_{0}^{t} \bar{a}(s) ds - \int_{0}^{t} \int_{|X| \le 1} x \bar{q}(ds, dx) - \int_{0}^{t} \int_{|X| \ge 1} x p(ds, dx).$$

Лемма 2. Если выполнены предположения (I) – (III), то при каждом $\Gamma \in \mathscr{B}_m \cap U_{\epsilon}$, $\epsilon > 0$,

$$\bar{q}(t, \Gamma) \in \mathfrak{M}_X^{(1)}$$

и

$$\bar{X}(t) \in \mathfrak{M}_{c,X}^{(m)}$$

причем

$$\langle \bar{X}_i, \bar{X}_j \rangle_t = \int_0^t a_{ij}(s) ds, \qquad i, j = 1, \ldots, m.$$
 (10)

Доказательство. Имеем, что при $0 \leqslant s < t$ и $\Gamma \in \mathscr{B}_m \cap U_{\varepsilon}$, $\varepsilon > 0$,

$$\bar{q}(t, \Gamma) - \bar{q}(s, \Gamma) = q(t, \Gamma) - q(s, \Gamma) + \int_{-1}^{1} \left(\Pi(u, \Gamma) - \overline{\Pi}(u, \Gamma) \right) du.$$

В силу предположений (I) и (III) отсюда следует, что $\mathbf{E}\left(\bar{q}\left(t,\,\Gamma\right)\right)^{2}<\infty$ и для всех $0\leqslant s< t$

$$\mathbf{E}^{s}\left(\bar{q}\left(t,\ \Gamma\right)-\bar{q}\left(s,\ \Gamma\right)\right)=\mathbf{E}^{s}\left(\mathbf{E}\left(q\left(t,\ \Gamma\right)-q\left(s,\ \Gamma\right)\mid\mathscr{F}_{s}\right)\right)+$$

$$+\int_{s}^{t}\mathbf{E}^{s}\left(\Pi\left(u,\ \Gamma\right)-\bar{\Pi}\left(u,\ \Gamma\right)\right)du=0.$$

Далее, используя (9) и предположения (II), (III), имеем, что для всех $0 \leqslant s < t$

$$\bar{X}(t) - \bar{X}(s) = \tilde{X}(t) - \tilde{X}(s) + \int_{s}^{t} \left(\psi(u) - \bar{\psi}(u) \right) A(u) du, \tag{11}$$

$$\mathbf{E}^{s} \left(\bar{X}(t) - \bar{X}(s) \right) = \mathbf{E}^{s} \left(\mathbf{E} \left(\tilde{X}(t) - \tilde{X}(s) \mid \mathscr{F}_{s} \right) \right) +$$

$$+ \mathbf{E}^{s} \left(\int_{s}^{t} \left(\psi(u) - \bar{\psi}(u) \right) A(u) du \right) = 0 \quad \text{if} \quad \mathbf{E} \mid \bar{X}(t) \mid^{2} < \infty.$$

Остается доказать (10). Пусть $s = t_0 < \ldots < t_n = t$ и $\max_{1 \le k \le n} (t_k - t_{k-1}) \to 0$ при $n \to \infty$. Имеем из (11), что

$$\sum_{k=1}^{n} \left(\bar{X}_{i}(t_{k}) - \bar{X}_{i}(t_{k-1}) \right) \left(\bar{X}_{j}(t_{k}) - \bar{X}_{j}(t_{k-1}) \right) - \\
- \sum_{k=1}^{n} \left(\bar{X}_{i}(t_{k}) - \tilde{X}_{i}(t_{k-1}) \right) \tilde{X}_{j}(t_{k}) - \tilde{X}_{j}(t_{k-1}) \right) = \\
= \sum_{k=1}^{n} \left[\left(\tilde{X}_{i}(t_{k}) - \tilde{X}_{i}(t_{k-1}) + \int_{t_{k-1}}^{t_{k}} \tilde{\Psi}_{i}(u) du \right) \int_{t_{k-1}}^{t_{k}} \tilde{\Psi}_{j}(u) du + \\
+ \left(\tilde{X}_{j}(t_{k}) - \tilde{X}_{j}(t_{k-1}) + \int_{t_{k-1}}^{t_{k}} \tilde{\Psi}_{j}(u) du \right) \int_{t_{k-1}}^{t_{k}} \tilde{\Psi}_{i}(u) du \right], \tag{12}$$

где обозначено

$$\tilde{\psi}(t) = (\tilde{\psi}_1(t), \ldots, \tilde{\psi}_m(t)) = (\psi(t) - \overline{\psi}(t)) A(t).$$

Поскольку мартингалы \overline{X} и \overline{X} непрерывны, то в силу равенства

$$\langle M_1, M_2 \rangle_t = \frac{1}{2} (\langle M_1 + M_2, M_1 + M_2 \rangle_t - \langle M_1, M_1 \rangle_t - \langle M_2, M_2 \rangle_t)$$

и теоремы 2 ([8], стр. 92) можно выбрать подпоследовательность $\{n_r\}$, такую, что суммы, стоящие в левой части равенства (12), п.в сходятся к $\langle \bar{X_i}, \bar{X_j} \rangle_t - \langle \tilde{X_i}, \bar{X_j} \rangle_t$ при $n_r \to \infty$. С другой стороны, сумма, стоящая в правой части

равенства (12), очевидно, п.в сходится к нулю при $n \to \infty$. Отсюда следует, что

$$\langle \bar{X}_i, \bar{X}_j \rangle_t = \langle \tilde{X}_i, \tilde{X}_j \rangle_t = \int_0^t a_{ij}(s) ds.$$

Лемма 2 доказана.

Отметим, что, рассуждая как и при доказательстве (10), можно доказать такое утверждение.

Лемма 2'. Пусть на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbf{P})$ заданы возрастающие системы σ -алгебр $\{\mathcal{F}_t, t \geq 0\}$ и $\{\mathcal{F}_t', t \geq 0\}$ $\mathcal{F}_t' \subset \mathcal{F}_t \subset \mathcal{F}, t \geq 0$, и непрерывный т-мерный случайный процесс $Y(t), t \geq 0$, согласованный с системой $\{\mathcal{F}_t', t \geq 0\}$. Если существуют $\mathcal{B}[0, \infty) \times \mathcal{F}$ — измеримые функции a(t) и a'(t), такие, что a(t) согласована c системой

$$\{\mathscr{F}_t, t \geqslant 0\}, \quad \int\limits_0^t \mid a(s) \mid ds < \infty$$

п.в.,

$$M(t) = Y(t) - \int_{0}^{t} a(s) ds, \qquad t \geqslant 0,$$

является интегрируемым с квадратом мартингалом относительно системы $\{\mathscr{F}_i,\ t\geqslant 0\}$, а a' (t) согласована с системой $\{\mathscr{F}_i',\ t\geqslant 0\}$,

$$\int_{0}^{t} |a'(s)| ds < \infty$$

п.в.

$$M'(t) = Y(t) - \int_0^t a'(s) ds, \qquad t \geqslant 0,$$

является интегрируемым с квадратом мартингалом относительно системы $\{\mathcal{F}_t',\ t\geqslant 0\},$ то $n.\ в.\ для\ всех\ t\geqslant 0$

$$\langle M_i, M_i \rangle_t = \langle M'_i, M'_i \rangle_t, \quad i, j = 1, \ldots, m,$$

в частности, $\langle M_i, M_j \rangle_t$ согласован с системой $\{\mathcal{F}'_t, \ t \geqslant 0\}$.

Замечание 1. В случае, когда $\langle M_i, M_j \rangle_t = \delta_{ij} t$, $i, j = 1, \ldots, m$, где δ_{ij} – символ Кронекера, а $\mathscr{F}_t' = \mathscr{F}^Y$, $t \geqslant 0$, на утверждении леммы 2' и известной теоремы П. Леви (см. [7]–[9]) основан так называемый подход обновлений (см. [10], а также [1], [2], [4]).

Классы функций $ar{\mathbf{F}}_{Q}^{(m)}$, $ar{\mathbf{F}}_{Q}^{(m)}$ и $ar{L}^{(m)}$ определим аналогично классам $F_{P}^{(m)}$, $F_{Q}^{(m)}$ и $L^{(m)}$ лишь с заменой системы $\{\mathscr{F}_{t},\,t\geqslant0\}$ и функций Π $(t,\,\Gamma)$, A(t) системой $\{\mathscr{F}_{t}^{K},\,t\geqslant0\}$ и функциями $ar{\Pi}$ $(t,\,\Gamma)$, A (t), а интегралы по мере $ar{q}$ и мартингалу X будем обозначать

$$\overline{Q}_{\varphi}(t) = \int_{0}^{t} \int_{\mathbf{R}_{m}} \varphi(s, x) \,\overline{q}(ds, dx), \qquad \varphi \in \overline{\mathbf{F}}_{Q}^{(m)},$$

И

$$\bar{X}_{\phi}(t) = \int_{0}^{t} \phi(s) d\bar{X}(s) = \sum_{i=1}^{m} \int_{0}^{t} \phi_{k}(s) d\bar{X}_{k}(s), \qquad \phi \in \bar{\mathbf{L}}^{(m)}.$$

Далее будем пользоваться следующим утверждением.

(A) $E_{CAU} \ \overline{M} \in \mathfrak{M}_X^{(1)} \ u \ \partial_{AB} \ scex \ \varphi \in \overline{F}_O^{(1)}, \ \varphi \in \overline{L}^{(m)}, \ t \geqslant 0$

$$\mathbb{E}\left[\overline{M}(t)\left(\overline{Q}_{\varphi}(t)+\overline{X}_{\varphi}(t)\right)\right]=0,$$

mo $\overline{M}(t) \equiv \overline{M}(0)$ n.e.

Эту гипотезу исследуем в отдельной работе, а теперь лишь заметим, что в силу лемм 1 и 2 она эквивалентна утверждению, что каждый мартингал $\overline{M} \in \mathfrak{M}_{*}^{(p)}$ представим в виде

$$\overline{M}(t) = \overline{M}(0) + \overline{Q}_{\varphi}(t) + \overline{X}_{\varphi}(t)$$

при некоторых $\phi \in \bar{\mathbf{F}}_O^{(1)}$ и $\phi \in \bar{\mathbf{L}}^{(m)}$.

2. Уравнение нелинейной фильтрации

Пусть теперь задан случайный ненаблюдаемый процесс $\Theta(t)$, $t\geqslant 0$, принимающий значения в некотором измеримом пространстве (\mathcal{K} , \mathfrak{A}) и согласованный с системой σ -алгебр $\{\mathscr{F}_{t},t\geqslant 0\}$. Следуя [4], обозначим $\mathbf{D}(\tilde{A})$ пространство действительных \mathfrak{A} — измеримых функций $f(\Theta)$, для которых $\mathbf{E} \mid f(\Theta(t)) \mid^2 < \infty$, $t\geqslant 0$, существует $\mathscr{B}[0,\infty) \times \mathscr{F}$ — измеримая функция $\tilde{A}_t f$, согласованная с системой σ -алгебр $\{\mathscr{F}_t, t\geqslant 0\}$, такая, что для всех $t\geqslant 0$

$$\mathbb{E}\left(\int\limits_{0}^{t}|\tilde{A_{s}}f|^{2}ds\right)<\infty$$

И

$$M_f(t) = f\left(\Theta(t)\right) - \int_0^t \tilde{A}_s f ds \in \mathfrak{M}^{(1)}.$$

Лемма 3. Пусть $f \in \mathbf{D}$ (\tilde{A}) и

$$\overline{M}_{f}(t) = \mathbf{E}^{t} f(\Theta(t)) - \int_{0}^{t} \mathbf{E}^{s} \widetilde{A}_{s} f ds.$$

Тогда $\overline{M}_f \in \mathfrak{M}_X^{(1)}$.

Доказательство. Имеем, что

$$\mathbf{E}^{s}\left(\overline{M}_{f}(t) - \overline{M}_{f}(s)\right) = \mathbf{E}^{s}\left(f\left(\Theta\left(t\right)\right) - f\left(\Theta\left(s\right)\right) - \int_{s}^{t} \tilde{A}_{u}fdu\right) + \int_{s}^{t} \mathbf{E}^{s}\left(\tilde{A}_{u}f - \mathbf{E}^{u}\tilde{A}_{u}f\right)du = \mathbf{E}^{s}\left(\mathbf{E}\left(M_{f}(t) - M_{f}(s)\right) | \mathscr{F}_{s}\right) = 0.$$

Нашей целью является вывод стохастического уравнения для случайного процесса $\mathbf{E}^t f\left(\Theta(t)\right)$, который является оптимальной оценкой в средне-квадратичном смысле функции $f\left(\Theta\left(t\right)\right)$ при известной σ -алгебре $\boldsymbol{\mathscr{F}}^X_t$.

Пусть $f \in \mathbf{D}(\tilde{A})$. Обозначим $\tilde{D_t} f \in \mathbf{L}^{(m)}$ и $\tilde{F_{t,x}} f \in \mathbf{F}_Q^{(2)}$ функции, определяемые однозначно до эквивалентности по лемме 1 соотношениями:

$$\mathbf{E}\left(M_{f}(t)X_{\varphi}(t)\right) = \mathbf{E}\left[\int_{0}^{t} \left(\tilde{D}_{s}f, \ \varphi(s)A(s)\right)ds\right], \qquad t \geqslant 0, \ \varphi \in \mathbb{L}^{(m)}, \ (13)$$

И

$$\mathbb{E}\left(M_f(t) \ Q_{\varphi}(t)\right) = \mathbb{E}\left[\int_0^t \int_{\mathbb{R}_{-m}} \tilde{F}_{s, x} f\varphi(s, x) \Pi(s, dx) ds\right], t \geqslant 0, \varphi \in \mathbb{F}_Q^{(1)}.$$
 (14)

(IV) Предположим, наконец, что для всех t>0

$$\mathbb{E}\left[\int_{0}^{t} \left| f\left(\Theta\left(s\right)\right) \right|^{2} \left(\psi\left(s\right) - \bar{\psi}\left(s\right), \left(\psi\left(s\right) - \bar{\psi}\left(s\right)\right) A\left(s\right)\right) ds \right] < \infty$$
 (15)

и

$$\mathbf{E}\left[\int_{0}^{T}\int_{\mathbf{R}_{m}}\left(\left|f\left(\Theta\left(s\right)\right)\right|^{2}\frac{|\rho\left(s, x\right)-\hat{\rho}\left(s, x\right)|^{2}}{\rho\left(s, x\right)\bar{\rho}\left(s, x\right)}+|\tilde{F}_{s, x}f|^{2}\times\right]\right]$$

$$\times\frac{\rho\left(s, x\right)}{\hat{\rho}\left(s, x\right)}\Pi\left(s, dx\right)ds < \infty.$$
(16)

Теорема. При гипотезе A и предположениях (I)—(IV) для всех $f \in D(\tilde{A})$ имеет место следующее соотношение (уравнение нелинейной фильтрации):

$$\mathbf{E}^{t} f\left(\Theta\left(t\right)\right) = \mathbf{E}^{0} f\left(\Theta\left(0\right)\right) + \int_{0}^{t} \mathbf{E}^{s} \tilde{A}_{s} f ds + \int_{0}^{t} \Phi_{f}(s) d\bar{X}(s) +$$

$$+\int_{0}^{t}\int_{\mathbf{R}_{-}}\varphi_{f}(s, x)\,\bar{q}(ds, dx),\tag{17}$$

где

$$\Phi_{f}(t) = \mathbf{E}^{t} \left[f\left(\Theta\left(t\right)\right) \left(\psi\left(t\right) - \bar{\psi}\left(t\right)\right) + \tilde{D}_{t}f \right]$$
(18)

и

$$\varphi_f(t) = \mathbf{E}^t \left[f\left(\Theta\left(t\right)\right) \left(\frac{\rho\left(t, x\right)}{\bar{\rho}\left(t, x\right)} - 1\right) + \tilde{F}_{t, x} f\left(\frac{\rho\left(t, x\right)}{\bar{\rho}\left(t, x\right)}\right) \right]. \tag{19}$$

Доказательство. Заметим, что при условиях (15) и (16)

$$\Phi_{\ell} \in \bar{\mathbf{L}}^{(m)}$$
 и $\varphi_{\ell} \in \bar{\mathbf{F}}_{Q}^{(1)}$.

Обозначим

$$\overline{M}(t) = \overline{M}_f(t) - \overline{X}_{\Phi_f}(t) - \overline{Q}_{\varphi_f}(t), \qquad t \ge 0.$$
(20)

Очевидно, что $\overline{M} \in \mathfrak{M}_X^{(1)}$ и \overline{M} (0) = $\mathbf{E}^0 f\left(\Theta\left(0\right)\right)$. В силу гипотезы (A) нам следует доказать, что для всех $\varphi \in \overline{F}_O^{(1)}$, $\varphi \in \overline{\mathbf{L}}^{(m)}$ и t>0

$$\mathbb{E}\left[\overline{M}(t)\left(\overline{Q}_{\varphi}(t)+\overline{X}_{\varphi}(t)\right)\right]=0.$$

Используя свойства стохастических интегралов, из (20) находим, что

$$\mathbf{E}\left[\overline{M}\left(t\right)\left(\overline{Q}_{\varphi}\left(t\right) + \overline{X_{\varphi}}\left(t\right)\right)\right] = \mathbf{E}\left[\overline{M}_{f}\left(t\right)\left(\overline{Q}_{\varphi}\left(t\right) + \overline{X}_{\varphi}\left(t\right)\right)\right] - \\
-\mathbf{E}\left[\int_{0}^{t} \int_{\mathbf{R}_{m}} \varphi_{f}(s, x) \varphi\left(s, x\right) \overline{\Pi}\left(s, dx\right) ds\right] - \\
-\mathbf{E}\left[\int_{0}^{t} \left(\varphi_{f}(s), \varphi(s) A\left(s\right)\right) ds\right]. \tag{21}$$

Поскольку

$$\overline{M}_f(t) = \mathbf{E}^t M_f(t) + \mathbf{E}^t \left(\int_0^t \tilde{A}_s f ds \right) - \int_0^t \mathbf{E}^s \tilde{A}_s f ds$$

и в силу (9)

$$\overline{X}_{\Phi}(t) + \overline{Q}_{\varphi}(t) = X_{\Phi}(t) + Q_{\varphi}(t) + \int_{0}^{t} \left(\Phi(s), \left(\psi(s) - \overline{\psi}(s) \right) A(s) \right) ds + \int_{0}^{t} \int_{\mathbf{R}_{m}} \varphi(s, x) \left(\Pi(s, dx) - \overline{\Pi}(s, dx) \right),$$

TO

$$\mathbf{E}\left[\overline{M}_{f}(t)\left(\overline{X}_{\Phi}(t) + \overline{Q}_{\varphi}(t)\right)\right] = \mathbf{E}\left[M_{f}(t)\left(X_{\Phi}(t) + Q_{\varphi}(t)\right)\right] + \\
+ \mathbf{E}\left\{\int_{0}^{t} M_{f}(s)\left[\left(\Phi(s), \left(\psi(s) - \overline{\psi}(s)\right)A(s)\right) + \\
+ \int_{\mathbf{R}_{m}} \varphi(s, x)\left(\Pi(s, dx) - \overline{\Pi}(s, dx)\right)\right]ds\right\} + \\
+ \mathbf{E}\left[\mathbf{E}^{t}\left(\int_{0}^{t} \widetilde{A}_{s}fds\right) - \int_{0}^{t} \mathbf{E}^{s}\widetilde{A}_{s}fds\right]\left(\overline{X}_{\Phi}(t) + \overline{Q}_{\varphi}(t)\right). \tag{22}$$

Однако после простых преобразований имеем, что

$$\mathbf{E}\left\{\left[\mathbf{E}^{t}\left(\int_{0}^{t}\widetilde{A}_{s}fds\right)-\int_{0}^{t}\mathbf{E}^{s}\widetilde{A}_{s}fds\right]\left(\overline{X}_{\Phi}(t)+\overline{Q}_{\varphi}(t)\right)\right\}=$$

$$=\mathbf{E}\left[\int_{0}^{t}\left(\overline{X}_{\Phi}(t)+\overline{Q}_{\varphi}(t)-\overline{X}_{\Phi}(s)-\overline{Q}_{\varphi}(s)\right)\widetilde{A}^{s}fds\right]=$$

$$= \mathbb{E}\left\{\int_{0}^{t} \left[\int_{s}^{t} \left(\left(\phi(u), \left(\psi(u) - \bar{\psi}(u)\right) A(u)\right) + \int_{\mathbb{R}_{m}} \phi(u, x) \left(\Pi(u, dx) - \bar{\Pi}(u, dx)\right) du\right] \tilde{A}_{s} f ds\right\} = -\mathbb{E}\left\{\int_{0}^{t} \left(\int_{0}^{s} \tilde{A}_{u} f du\right) \left[\left(\phi(s), \left(\psi(s) - \bar{\Psi}(s)\right) A(s)\right) + \int_{\mathbb{R}_{m}} \phi(s, x) \left(\Pi(s, dx) - \bar{\Pi}(s, dx)\right)\right] ds\right\}.$$
(23)

Из (22), (23), используя (13) и (14), находим, что

$$\mathbf{E}\left[\overline{M}_{f}(t)\left(\overline{X}_{\Phi}(t) + \overline{Q}_{\varphi}(t)\right)\right] = \mathbf{E}\left\{\int_{0}^{t} \left[\left(\Phi(s), \ \tilde{D}_{s}fA(s)\right) + \right.\right. \\
+ \int_{\mathbf{R}_{m}} \varphi(s, x) \tilde{F}_{s, x} f \Pi(s, dx) ds\right\} + \mathbf{E}\left\{\int_{0}^{t} f\left(\Theta(s)\right) \left[\left(\Phi(s), \left(\psi(s) - \overline{\psi}(s)\right) A(s)\right) + \int_{\mathbf{R}_{m}} \varphi(s, x) \left(\frac{\rho(s, x)}{\bar{\rho}(s, x)} - 1\right) \overline{\Pi}(s, dx)\right] ds\right\} = \\
= \mathbf{E}\left\{\int_{0}^{t} \left[\left(\Phi(s), \left(\mathbf{E}^{s}f\left(\Theta(s)\right) \left(\psi(s) - \overline{\psi}(s)\right) + \tilde{D}_{s}f\right) A(s) + \right.\right. \\
+ \int_{\mathbf{R}_{m}} \varphi(s, x) \mathbf{E}^{s}\left(f\left(\Theta(s)\right) \left(\frac{\rho(s, x)}{\bar{\rho}(s, x)} - 1\right) + \tilde{F}_{s, x} f \frac{\rho(s, x)}{\bar{\rho}(s, x)}\right) \times \\
\times \overline{\Pi}(s, dx) ds\right\}. \tag{24}$$

Из (18), (19), (21) и (24) получаем, что для всех ф $\in \overline{\mathbf{L}}^{(n)}$, $\varphi \in \overline{\mathbf{F}}_Q^{(1)}$ и t>0 $\mathbf{E}\left[\overline{M}\left(t\right)\left(\overline{X}_{\Phi}\left(t\right)+\overline{Q}_{\varphi}\left(t\right)\right)\right]=0.$

Теорема доказана.

Замечание 2. Если матрица A(t) имеет постоянный ранг r, $0 \leqslant r \leqslant m$, $\Pi\left(t,\ \{x\}\right) \equiv 0$ и $\Pi\left(t,\ R_{m}\right) \equiv \infty$, то из результатов работы [9] следует, что можно построить стандартный r-мерный винеровский процесс и не зависящую от него стандартную пуассоновскую меру, согласованные с системой σ -алгебр $\{\mathscr{F}_{t}^{X}, t \geqslant 0\}$ и играющие роль обновленных процессов такие, что стохастические интегралы в уравнении (17) можно представить как соответствующие стохастические интегралы по винеровскому процессу и пуассоновской мере. В общем случае такое представление также возможно при определенном расширении основного вероятностного пространства.

Замечание 3. В случае, когда $\Pi(t, \Gamma) \equiv 0$ и минимальное собственное значение матрицы A(t) больше некоторой положительной константы, из

результатов работы [4] следует, что гипотеза (A) выполнена, а в силу замечания 2 уравнению (17) можно придать такой же вид, как и в [4].

Пример. Пусть случайные процессы $\Theta(t) = (\Theta_1(t), \ldots, \Theta_n(t)), t \ge 0,$ и $X(t) = (X_1(t), \ldots, X_m(t)), t \ge 0$ являются решениями стохастических уравнений К. Ито:

$$\Theta(t) = \Theta(0) + \int_{0}^{t} a^{(1)}(s, \Theta(s), X(s)) ds +
+ \sum_{r=1}^{m+n} \int_{0}^{t} b_{r}^{(1)}(s, \Theta(s), X(s)) dw_{r}(s) +
+ \int_{0}^{t} \int_{|y| \le 1} F^{(1)}(s, \Theta(s), X(s), y) \hat{q}(ds, dy) +
+ \int_{0}^{t} \int_{|y| \ge 1} F^{(1)}(s, \Theta(s), X(s), y) \hat{p}(ds, dy),$$
(25)
$$X(t) = X(0) + \int_{0}^{t} a^{(2)}(s, \Theta(s), X(s)) ds +
+ \sum_{r=1}^{m+n} \int_{0}^{t} b_{r}^{(2)}(s, X(s)) dw_{r}(s) +
+ \int_{0}^{t} \int_{|y| \le 1} F^{(2)}(s, \Theta(s), X(s), y) \hat{q}(ds, dy) +
+ \int_{0}^{t} \int_{|y| \le 1} F^{(2)}(s, \Theta(s), X(s), y) \hat{p}(ds, dy),$$
(26)

где $w(t) = (w_1(t), \ldots, w_{m+n}(t))$ и $\hat{p}(t, \Gamma)$ — взаимно независимые стандартный m+n-мерный винеровский процесс и стандартная пуассоновская мера на $\mathscr{B}[0,\infty) \times \mathscr{B}_{m+n}$, согласованные с системой σ -алгебр $\{\mathscr{F}_t, t \geqslant 0\}$ и независящие от $\Theta(0)$. Будем предполагать, что коэффициенты уравнений (25) — (26) удовлетворяют обычным требованиям существования и единственности решения (см., напр., [11]).

Обозначим

$$\Pi^{(i)}(t, \Gamma) = \int\limits_{\mathbb{R}_m} \chi_{\Gamma} \left(F^{(i)} \left(t, \Theta(t), X(t), y \right) \right) \frac{dy}{|y|^{m+n+1}},$$

$$b^{(1)}(t) = \left\| b_{jk}^{(1)} \left(t, \Theta(t), X(t) \right) \right\|,$$

$$b^{(2)}(t) = \left\| b_{jk}^{(2)} \left(t, X(t) \right) \right\|,$$

$$A^{(i)}(t) = b^{(i)}(t) b^{(i)}(t)^{r+1}$$

^{*) &}quot;" - знак транспонирования матрицы.

$$a^{(i)}(t) = a^{(i)}\left(t, \ \Theta(t), \ X(t)\right) + \int_{\substack{|y| > 1 \\ |F^{(i)}(t, \ \Theta(t), \ X(t), \ y) | \leq 1}} F^{(i)}\left(t, \ \Theta(t), \ X(t), \ y\right) \frac{dy}{|y|^{m+n+1}} - \int_{\substack{|y| < 1 \\ |F^{(i)}(t, \ \Theta(t), \ X(t), \ y) | > 1}} F^{(i)}\left(t, \ \Theta(t), \ X(t), \ y\right) \frac{dy}{|y|^{m+n+1}}, i = 1, \ 2.$$

Имеем, что в этом случае предположения (I) и (II) выполнены, если выбрать

$$\Pi(t, \Gamma) = \Pi^{(2)}(t, \Gamma), \ a(t) = a^{(2)}(t) \quad \text{if} \quad A(t) = A^{(2)}(t).$$

Если функция $f(\Theta) = f(\Theta_1, ..., \Theta_n)$ дважды непрерывно дифференцируема, то $f \in \mathbf{D}(\tilde{A})$ и при помощи формулы К. Ито находим, что

$$\tilde{A}_{t}f = \left(a^{(1)}(t), \nabla f(\Theta(t))\right) + \frac{1}{2}\left(\nabla A^{(1)}(t), \nabla f(\Theta(t))\right) +$$

$$+ \int_{|z| \le 1} \left[f(\Theta(t) + z) - f(\Theta(t)) - \left(z, \nabla f(\Theta(t))'\right)\right] \Pi^{(1)}(t, dz) +$$

$$+ \int_{|z| \ge 1} \left[f(\Theta(t) + z) - f(\Theta(t))\right] \Pi^{(1)}(t, dz)^{*}$$

И

$$M_{f}(t) = f\left(\Theta\left(0\right)\right) + \int_{0}^{t} \sum_{k=1}^{n} \frac{\partial f\left(\Theta\left(s\right)\right)}{\partial \Theta_{k}} \sum_{r=1}^{m+n} b_{rk}^{(1)}\left(s, \Theta\left(s\right), X\left(s\right)\right) dw_{r}(s) + \int_{0}^{t} \int_{\mathbf{R}_{m+n}} \left[f\left(\Theta\left(s\right) + F^{(1)}\left(s, \Theta\left(s\right), X\left(s\right), y\right)\right) - f\left(\Theta\left(s\right)\right) \right] \hat{q}\left(ds, dy\right).$$

Поскольку

$$q(t, \Gamma) = \int_{0}^{t} \int_{\mathbb{R}_{m+n}} \chi_{\Gamma}\left(F^{(2)}\left(s, \Theta(s), X(s), y\right)\right) \hat{q}(ds, dy)$$

И

$$\tilde{X}(t) = \int_{0}^{t} \sum_{r=1}^{m+n} b_{r}^{(2)}(s, X(s)) dw_{r}(s),$$

то для $\phi \in \mathbf{F}_O^{(1)}$ и $\phi \in \mathbf{L}^{(m)}$ имеем, что

$$\mathbf{E}\left[M_{f}(t) Q_{\varphi}(t)\right] = \mathbf{E}\left[\int_{0}^{t} \int_{\mathbf{R}_{m+n}} \left(f(\Theta(s)) + F^{(1)}(s, \Theta(s), X(s), y)\right) - f(\Theta(s)) \varphi\left(s, F^{(2)}(s, \Theta(s), X(s), y)\right) \frac{dy ds}{|y|^{m+n+1}}\right]$$

$$\frac{1}{*} \nabla = \left(\frac{\partial}{\partial \Theta}, \dots, \frac{\partial}{\partial \Theta}\right).$$
(27)

^{4.} Lietuvos matematikos rinkinys, XII 4

И

$$\mathbf{E}\left[M_{f}(t)X_{\Phi}(t)\right] = \mathbf{E}\left[\int_{0}^{t} \left(\Phi(s), \nabla f(\Theta(s))b^{(1)}(s)b^{(2)}(s)'\right)ds\right]. \tag{28}$$

Таким образом, вектор $\tilde{D}_t f$ определяется равенством

$$\tilde{D}_{t} f b^{(2)}(t) b^{(2)}(t)' = \nabla f(\Theta(t)) b^{(1)}(t) b^{(2)}(t)'$$
(29)

И

$$\tilde{F}_{s,x}f = \tilde{\varphi}_f(t, x, \Theta(t), X(t)),$$

где $\tilde{\varphi}_f(t, x, \Theta, \tilde{x})$ является ́производной Радона—Никодима обобщенной меры

$$\mu_{\Theta, t, \tilde{x}}^{f}(\Gamma) = \int_{\mathbf{R}_{m+n}} \left(f\left(\Theta + F^{(1)}\left(t, \Theta, \tilde{x}, y\right)\right) - f(\Theta) \right) \times \\ \times \mathcal{X}_{\Gamma} \left(F^{(2)}\left(t, \Theta, \tilde{x}, y\right) \right) \frac{dy}{|y|^{m+n+1}}$$
(30)

по мере

$$\mu_{\Theta, t, \tilde{x}}(\Gamma) = \int_{\mathbf{R}_{m+n}} \chi_{\Gamma} \left(F^{(2)} \left(t, \Theta, \tilde{x}, y \right) \right) \frac{dy}{|y|^{m+n+1}}, \qquad \Gamma \in \mathscr{B}_{m}$$

Из (29) и (30) вытекает, что $\tilde{D}_t f \equiv 0$, если $b^{(1)}(t) \, b^{(2)}(t)' \equiv 0$ (это при предположениях замечания 3 было отмечено в [2] и [4]), а $\tilde{F}_{t,x} f \equiv 0$, если при каждых t, Θ , x носители функций $F^{(1)}(t, \Theta, x, y)$ и $F^{(2)}(t, \Theta, x, y)$ не пересекаются.

Институт физики и математики Академии наук Литовской ССР Вильнюсский государственный университет им. В. Капсукаса Поступило в редакцию 24.1.1972

Литература

- 1. А. Н. Ширяев, Стохастические уравнения нелинейной фильтрации скачкообразных марковских процессов, Проблемы передачи информации, **П**, 3(1966), 3-22.
- Р. Ш. Липцер, А. Н. Ширяев, Нелинейная фильтрация диффузионных марковских процессов, Труды МИАН им. В. А. Стеклова, CIV, (1968), 135—180.
- G. Kallianpur, C. Striebel, Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes, Теория вероятн. и ее примен., XIV, 4(1969), 597-622.
- 4. M. Fujisaki, G. Kallianpur, H. Kunita, Stochastic differential equations for the nonlinear filtering problem, Osaka J. of Math., 000(1972).
- Д. Сургайлис, О стохастических уравнениях фильтрации марковских процессов, Liet. matem. rink., X, 3(1970), 565-581.
- Л. И. Гальчук, Фильтрация марковских процессов, определяемых стохастическими дифференциальными уравнениями, Канд. дисс., М., 1971.
- H. Kunita, S. Watanabe, On square integrable martingales. Nagoya Math. J., 30(1967), 209-245.

- P. A. Meyer, Intégrales stochastiques, Séminaire de Probabilités I, Lecture Notes in Math., 39(1967), Springer.
- 9. Б. Григелионис, О представлении целочисленных случайных мер как стохастических интегралов по пуассоновской мере, Liet. matem. rink., XI, 1(1971), 93-108.
- T. Kailath, An innovation approach to least squares estimation, Part I: Linear filtering with additive white noise, IEEE Transactions on Automatic Control, AC-13, 6(1968), 646-655.
- И. И. Гихман, А. В. Скороход, Стохастические дифференциальные уравнения, Киев, "Наукова думка", 1968.

APIE ATSITIKTINIŲ PROCESŲ NETIESINĖS FILTRACIJOS STOCHASTINES LYGTIS

B. Grigelionis

(Reziume)

Naudojantis stochastinio integravimo martingalų atžvilgiu teorija, o taip pat kai kuriomis [4] darbo idėjomis, gautos stochastinės netiesinės filtracijos lygtys tuo atveju, kai stebimosios atsitiktinio proceso trajektorijos neturi antrosios rūšies trūkių ir kartu su nestebimuoju atsitiktiniu procesu turi palyginti gana bendrą struktūrą.

ON STOCHASTIC EQUATIONS FOR NONLINEAR FILTERING PROBLEM OF STOCHASTIC PROCESSES

B. Grigelionis

(Summary)

Using the theory of stochastic integrals with respect to martingales and some ideas of the paper [4], stochastic equations for nonlinear filtering problem are given in the case when the observable stochastic process has no discontinuities of the second order and, together with the non-observable stochastic process, are of rather general structure.