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Abstract. In this paper the Sturm—Liouville problem witine classical and other nonlocal two-point or

integral boundary conditionis investigated. There aitgcad points of the characteristic function analysed.
We investigate how distribution of the critical pd$ depends on nonlocal boundary condition parameters.
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1. Introduction

In recent scientific literature, a great attention is paid to differential problems with
nonlocal boundary conditions. They are inigated both in foreign and in Lithua-
nian scientists papers. Differential problems with nonlocal two-point boundary condi-
tions are investigated by A.V. Gulin, V.A. Morozova [1], V.A. llyin, E.l. Moiseev [2],
N.1. lonkin, E.A. Valikova [3], M. Sapagovas, A. Stikonas [7,8], ScRé/te [4-6].

In this paper the Sturm-Liouville problem with one classical and other nonlocal
two-point or integral boundary conditions is analysed. Problems with such boundary
conditions were investigated in papers [4—6]. Dependence of such problems spectrums
on nonlocal boundary conditions parametdparametet was fixed) was investigated
in previous research. Furthermore, conditions, when constant, negative and only real
eigenvalues exist were drawn in the articles.

In this paper we investigate critical points of real characteristic function. New re-
sults on constant and critical points distribution dependence on paragnaterpre-
sented.

2. Problems with nonlocal boundary conditions
Let us analyze the Sturm—Liouville problem with one classical boundary condition
—u” = \u, te€(0,1), ()
u(0) =0, 2
and another nonlocal two-point boundary condition of Samarskii—Bitsadze or integral
type:
u' (1) =yu), (Case 1) €)

u'(D) =yu'(§), (Case 2) @
u(D) =yu'(§), (Case 3) @
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u(l) =yu(®), (Case 4) €)
&

u(l) = y/ u(t) de, (Case b) 3
0
1

u(l) = y/ u(t) de, (Case 6) ®
&

with the parameterg € R andé¢ € [0, 1]. Also we analyze the Sturm—Liouville prob-
lem (1) with boundary condition

u'(0)=0 (4)

on the left side and with nonlocal boundary conditions (3) on the right side of the
interval. We enumerate these cases from Cagél Lase 6 accordingly. Note that

the index in references denotes the case. If there are no index then the rule (or results)
holds on in all cases of nonlocal boundary conditions.

Let us define aonstant eigenvaluas the eigenvalug = ¢2 which does not de-
pend on the parametere C. For such a constant eigenvalue we definedbmstant
eigenvalue poing € C, :={z € C. —n/2 < argz < w/2 orz = 0} and theconstant
eigenvaluey-value point(q, y) € C, x C, respectively. Other eigenvalues will be
named asionconstant

All nonconstant eigenvalues (which depend on the paramgtarey -points of the
meromorphic functiong,.: C, — C. We call this functiony, as acomplex characte-
ristic function

We call the pointg. € C,, g, # 0 such thaty/(g.) = 0 a critical point for the
complex characteristic function, and we call an image of the critical pgif@t.) a
critical value of the complex characteristic function.

3. Real characteristic function

If we takeg only in the raysg = x > 0, ¢ = —ix, x < 0 instead olg € C,, we get
positive eigenvalues in case the ray= x > 0, and we get negative eigenvalues in
the rayq = —x, x < 0. The pointg = x = 0 corresponds ta. = 0. We have two
restrictions of the functiory.: C, — R on those raysy, (x) := y.(x +i0) for x >

0 andy_(x) := y.(0 — ix) for x < 0. The functiony corresponds to the case of
positive eigenvalues, while the functign to that of negative eigenvalues. All the real
eigenvalues

xkz, forx; >0,
A= k eN, (5)
—xkz, for x; <0,
can be investigated using@al characteristic functiory: R — R:

Y (x) =y.(x), forx >0,
y(x)=

y_(x) = y.(—ix), forx <0.

We enumerate the eigenvalues using the classicalycas8. Eigenvalues.; (and
eigenvalue points;) depend on the parametercontinuously. Let us enumerate all the
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polespy, k € N in anincreasing order. Then the real characteristic fungtimdefined
forx €P;:= (pi_1, pi), i € Nand Pg:= (—o0, 0). If p; is a constant eigenvalue point
¢j or co, then we add this point to the interval, i 8;:= (p;_1,c;] or P;:= [c;_1, pi)
or Pj:= [cj—1.cj]. The pointx,, €P; is acritical point of real characteristic function,
if ¥'(xcr; &) = 0. Note, thatpy = pi(§), cj = ¢j (&), xer = xc-(§). For such a critical
pointx., we define theritical point (x.,(£),£) € R x [0, 1] C R, x Rg. If the criti-
cal point is an extremum, i.e. the maximum or minimum point, then we use notation
“extremum” instead “critical”. Note, that the property “to be critical point” or “to be
extremum” is only inx-direction.

We write expressions of the characteristic function in Casesahd 6:

y4(x;s>=$2’;), x <0,
va(x; &)= N sinx - (64)
)/4+(.X',$)— Sln({;'x)’ )
x Sinhx
yr—(x;8)=——, x<0,
yu(x: §) = o coshsx) . (61)
y1/+(-x’$)__coqsx), )
yo_(x: €)= x coshe _ ,
o 2cosh((1+£)%)sinh((1—£)3) .
Yo (x; €)= .  COSK L, (6¢)
/1 (X = - , X =z U.
ot 2cos((1+£)3)sin((L—£)3)

In other cases of nonlocal boundary conditions characteristic functions and their
graphs are presented in [4,7]. Characteristic functions coincide in Cases 1, amd 5
Cases 2 and'4in Cases 4 and accordingly.

The spectrum of Sturm-Liouville problems (1)—(3) were investigated in papers
[5-8]. There are presented lemmas on existence of characteristic functions zeroes,
poles, minimums and maximums and conditions when constant eigenvalues exist. We
noticed (see, [6]) that two negative real eigenvalues can exist in negative part of the real
spectrum in problems (1)—(2),4Band (1),(4), (3) for somey and¢ values. Negative
multiple and complex eigenvalues can also exist. In other cases of nonlocal boundary
conditions one negative real eigenvalue exists for particular values of the parganeter

4. Critical points

Critical points of the characteristic function are important for investigation of multiple
eigenvalues. Generalized eigenfunctions can exist for these points. In papers [5-7] cri-
tical points of the characteristic function were investigated in environment of a point,
when values of parametérwere fixed. In this paper, we present the interesting distri-
bution of curves, that shows the change of the critical points (minimum and maximum
points) of the characteristic function whére [0, 1].
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There are presented critical points distribution in some cases in Figs. 1-3 as an
example. Note, that-axe is scaledr times andx = 1 is reallyx = = in all figures.
There are shown curves of critical points, zeroes (vertical line), poles (hyperbolas)
points.

We analyze Sturm-—Liouville problem (1)—(2) 3}3(see, Fig. 1) as an example in
detail. The graph of characteristic function minimums is also shown wher0, as
in this problem two negative eigenvalues can exist in some cases. Whe%], we
have one negative minimum of characteristic function (see Fig. 1, point 1), then pole
(point 2), zero (point 3) and positive maximum (point 4) of characteristic function.
In the crossing points of vertical lines and hyperbolas, we have constant eigenvalue
point (point 6) which is turning type bifurcation point for critical points. Critical points
curves intersect constant eigenvalue points. We noticed that minimum point appear
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Fig. 2. Critical points of the characteristic function in Case’}i5e left figure, E and F) and Case 2, 4
(the right figure, G and H).



Distribution of the critical and other points in boundary problems 409

Ac
1.0

0.757

0.5

0.25

v=

O.G-||||]||||]I||||]||||
0.0 25 5.0 7.5 10.0

] X
0.0 | LR L LR L >
0.0 25 5.0 7.5 10.0

Fig. 3. Critical points of the characteristic functionin Case 5 (the left figure) and Cé$eGight figure).

on the left side of the pole when value of paramétegrows. This point joins with
maximum point (see, Fig. 1, point 5) by particular value of paramigtand we have
another turning type bifurcation point. This point is bifurcation point of the critical
points. Qualitative view of critical points curves is shown in figures A, B, C, D (see,
Fig. 1).

Now we present few interesting results for critical points and constant eigenvalue
points of the problems (1)—(3) and (1), (4), (3).

PropPosITION 1. Critical points curves, the lines of zeroes and the hyperbolas of
the poles points intersect in the constant eigenvalue points.

Remark 4.1. In Case 5 hyperbolas are curves of second order poles. In case of
constant eigenvalue points they degenerate into the first order poles.

Remark 4.2. There are no critical points in Case 6 and Casdrbthis case we
have two families of the first order poles.

PROPOSITION2. The curves of the first order poles in Case 6 and Caisgaisect
only with zeroes lines and these cross points coincide with constant eigenvalue points.

ProPOsSITION3. In the case of nonlocal two-point boundary conditions (Cases 2
and 4) the type (maximum or minimum) of critical points does not change when we
go through constant eigenvalue point (see, Fig. 2, G and H), while in case of boundary
conditions 1, 3, 1and 3 the type of critical points changes (see, Fig. 1, A and D;
Fig. 2, E and F). In case of the nonlocaldgral boundary condition the type of points
changes (Case 5, see, Fig. 3) or there are no such points (Case 6 and,Gase 6
Fig. 3).

PrRoOPOSITION4. In case of nonlocal two-point Case 1 and Case 3 boundary con-
ditions bifurcation point of critical values is next to constant eigenvalue point (in Case
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1 on the right, in Case 3 on the left), in case of two-point Case 2 and Case 4 boundary
conditions and in Case 5 of integral nonlocal boundary condition there are no bifurca-
tion points.

Remark 4.3. There is only one bifurcation point (which is constant eigenvalue
point too) for(x, &) = (=, 0.5) in Case 3 (see, Fig. 1, C).

Remark 4.4. In case of two-point nonlocal boundary conditions the curves of crit-
ical points converge to lineé = 1 asymptotically, while in Case 5 of nonlocal integral
boundary conition they reach this line in constant eigenvalues points. Curves of criti-
cal points reach lin€ = 0 in all the cases except one curve in Case 3.
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REZIUME

S. Pelulyte, A. Stikonas. Kritinig ir kit y tasky pasiskirstymas krastiniuose uzdaviniuose su
nelokaliosiomis krastiemis slygomis

Siame straipsnyje nagefemas Sturmo ir Liuvilio uZdavinys su viena nelokgdidvitaske arba integraline
krastine alyga. Analizuojami charakterists funkcijos kritiniai taSkai,\j priklausomyle nuo nelokalio-
sios flygos parametr.



