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On the generalized eigenfunctions system of the
Sturm—Liouville problem
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Abstract. In this paper we investigate eigenfunctions ardeyalized eigenfunctions system of the Sturm—
Liouville problem with classical boundary condition on the left boundary and nonlocal boundary condi-
tions of four types on the right boundary.
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Let us analyze the Sturm—Liouville problem
—u" = )u, 1€ (0,1 Q)
with one classical boundary condtition
u(0) =0, 2)

and other nonlocal two-point boundary condition of Samarskii—Bitsadze type:

u'(D) =yu(@), (Casel) )
u'(D)=yu'(€). (Case 2) )
u(l)=yu'(€), (Case 3) )
u(l) = yu(), (Case 4) ©)

with the parameterg € R and¢ € [0, 1]. Also we analyze the Sturm-Liouville prob-
lem (1) with boundary condition

u'(0)=0 4)

on the left side and with nonlocal boundary conditions (3) on the right side of the
interval, we enumerate these cases from Cas#l Case 4 accordingly. We denote
problems (1)—(2) in the case nonlocal boundary conditi8ns-(34) as P1, P2, P3, P4

and problems (1), (4) in the case nonlocal boundary conditi®s(34) as P1, P2,

P3', P4, respectively. Note that the index in references denotes the case. If there are
no index then the rule (or results) hold im all cases of nonlocal boundary conditions.
The dependence of the such Sturnstlville problem spectrum on nonlocal boundary
conditions parameters is analyzed in [1-4].
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Remark 1.[Classical case]. We have classical caseyfet 0. Eigenvalues in this
case are well known:

2 = k272, u$\(1) = sin(krr), k eN; (53.4)
2 = (k —1/2)%72, ul(t) = sin((k — 1/2)1), keN; (51.2)
2 = (k — 1/2)%72, ul\ (1) = cos((k — 1/2)m1), keN; (53 4)
29 = (k — 1?72, ul\(1) = cos((k — Lyr), keN. (51.2)

The same case we get fgr= 0 (Problems P1, P4, P2P3), ¢ =1 andy #1
(Problems P2, P4, P2P4). In the casé& = 1 andy = 1 (Problems P2, P4, P2P4)

we have generate case with one left boundary condition. So, we omit these cases and
defineD; := [0, 1] (Problems P3, P}, D, := (0, 1] (Problems P1, P3, D¢ :=[0, 1)
(Problems P2, P4, D¢ := (0, 1) (Problems P4, P2.

The problem (1)—-(2) has the solutidiA(r) = ¢ for A = 0 and solutionU (¢) =
sin(gt) for A # 0. The problem (1), (3) has the solutidi(¢z) = 1 for A = 0 and solution
U (t) = coqgr) for A £ 0. Note, thatC U (¢) will be nontrivial solution for allC £ 0,
too. Parametey € {z € C: —1/2 < argz < /2} and = ¢2. Further in this paper we
takeqg only in the rays; = x > 0,¢ = —ix, x < O instead of; € C. So, we investigate
only real eigenvalues. We can findg asy -values of characteristic functions.

Let us write expression of characteristic function in each casewibcal boundary
condition [1,2,4] for¢ € Dg:

1 f(x) f(x):=coshr, g(x):=31 forx <O, )
T EgEx) fx)i=cosx, g(x):=3 forx>0; '
f(x) f(x):=coshx, g(x):=coshx forx <0, 5
~g(Ex)’ f(x):=cosx, g(x):=cosx forx>0; (624)
f(x) fx) = e(x) :=coshx forx <0,
Y= . (63)
g(éx) fx):==x" g(x):=cosx forx>0;
1 f(x) fl)=E ()= forx <0, 60)
S Egx) fx) ::Si%, g(x) :=Sixﬂ forx > 0; -2
f(x) f(x):=xsinhx, g(x):=coshx forx <0, 5
~g(Ex)’ f(x):=—xsinx, g):=cosx forx>0; (6r)
f(x) f(x):=coshx, g(x):=xsinhx forx <O,
y=£& : _ (63)
g(éx) f(x):=cosx, g(x):=—xsinx forx > 0.
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We formulate obvious properties of the functiofgndg as following proposition.
Some of these properties were investigated in [1,2,4].

Proposition 1. The pointzg = 0 is zero of the second order for the functigrin
Case 1 and for the functiorg in Case 3:

f(zo) = f'(z0) =0, f"(z0) #0, (71)
g(z0) = g'(z0) =0, g"(z0) #0. (73)
Another zeroes pointsof the functionsf (x), g(x) are zeroes of the first order:
f@=0, f'(2) #0, g(x) =0, g'(z) #0. (8)
These positive zeroes of the first order of the functfoare equal:
7= (k—=1/2m, keN, (91,2,3.4)
2 =km, keN; (93.4.17.2)
positive zeroes of the first order of the functigrare equal:
poi=(*k—-1/2m, keN, (102,3.1.4)
pe =k, keN. (101,4.2.3)

The characteristic function has zero painif f(z) =0 andg(z&) # 0 (Problems
P1-P4, PL-P4). For characteristic functions (6) we have next zeroes points of the
function f:

2=k —Dn, keN, (1)
=k —1/2)m, keN, (11123.4)
Ik = kmw, keN. (113,4,2/)

Note that zeroes points are the same fogadind they are on the vertical lines in the
domainDy ¢ := R x Dg. The pointx = 0 is zero point only for Problem PA&nd it is
zero of the second order for dlle [0, 1].

Characteristic function (Problems P1-P4,/H34, £ # 0) has pole pointg if
g(p) =0andf(p/&) # 0. For characteristic functions (6) we have next zero pgints
for functiong:

pr=(k—=1/2m, keN, (123 1.4)
pk=km, keN, (1214.2)
Pk = (k — 1)7'[, keN. (123/)

For these cases the poles of the characteristic functiop;aesd g, = £pi. So, the
poles are on the hyperbolge = p; in the domainD, ¢. Pointx =0 is pole point
only for Problem P3 and it is the pole of the second order for alk (0, 1] and in
this case hyperbola degenerates to line 0. Characteristic function (Problems P2,
P3, P1, P4) for £ =0 is entire function, i.e., there is no poles points.
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Remark 2. All positive zeroes and positive poles for these problems are the first
order. If for somet we have f(zx) = g(p;) =0, k,1 € N then this point;, = p; =
¢ is constant eigenvalue point. We haywéc) # 0 for problems P1-P4 and RP4.
Geometrically we get constant eigenvalues points as intersection vertical zeroes lines
and poles hyperbolae in the domdin . We note thak = 0 is not constant eigenvalue
point.

The pointx., € R is acritical point of real characteristic function, i#’(x.,) = 0.
Critical points of the characteristic function are maximum and minimum points of this
function. For problems P1-P4 and'PR4 there exist infinitely many positive critical
points. For problem P3, there exists also a negative critical poiatdf(+~/3/3, 1)
and for problem P3negative critical point exists for af € (0,1) [1,2]. We have
y" (x¢r) # 0 for problems P1-P4 and RP4.

Critical points, zeroes, poles of the characteristic function and constant eigenval-
ues points are important for the investigation of multiple eigenvalues and generalized
eigenfunctions [4].

DEFINITION 1. A point is calleddouble pointf it is critical point of the charac-
teristic function and not a constant eigenvalue point; or it is constant eigenvalue point
and not a pole point of the characteristic function. A critical point of the characteristic
function is calledriple pointif it is also constant eigenvalue point.

Double points exist for all investigated problems, triple points exist only for prob-
lems P2, P2 P4, P4[1-4].

If we want to analyze first order generalized functions, we need to consider addi-
tional differential problem

— —ax)w=Ut), te(01) (13)
with one of the two boundary conditions:
v(0)=0 (14)
or
v'(0)=0; (15)

and with other nonlocal boundary condition

V(D) -y () =0, (161,1)
V(@) =y (') =0, (162,2)
v(D) —y (') =0, (163,3)

v(D) — y(x)v(E)=0; (164,4)
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whereU (¢) is an eigenfunction for a real eigenvalue poirandy (x) = +x2. A so-
lution of problems (13)—(14), (16) and (13), (15)—(16) is called a generalized eigen-
function of the first order. If generalized eigenfunctions exist, then the eigenvasue

a multiple eigenvalue.

LEMMA 1. A generalized eigenfunctionsof the first order exist at the positive
double points, anad = C1U (¢) + V (¢), where

tco9xt)
V) := , 17
(1) = (1712,3.4)
tsin(xt)
Vt = . 17/ ' A A
(1) o= (171,2.3.4)

In Case3 and3’ generalized eigenfunctianof the first order exists also at the negative
double points and = CU (¢t) + V (¢), where

t cosh(xt)

V() = o (183)
___tsinh(xt) /
V() = — (183)

Remark 3.We can take on right of the equation (13) functiG (¢) insteadU ().
In this casev = C U (t) + CV (2).

Let us analyze second order generalized eigenfunctions. We consider additional
differential problem

—w —Ax)w=V(#), te(01) (19)
with one of the two boundary conditions:
w(0) =0 (20)
or
w' (0)=0; (21)
and with other nonlocal boundary condition

w' (1) —y@)w'(§)=0, (222.2)
w(l) —y@)wE) =0; (224,4)

whereV (¢) is generalized eigenfunction of the first order (17) or (18).



332 S. Pelulyté, A. Stikonas

LEMMA 2. A generalized eigenfunctiom of the second order exists only at the
triple points, andw = CU (¢) + W (¢), where

coSxt) + 12x sin(xt)

W(t) = — a3 : (2%.2)
W) = £ sin(xt) ;xtjx cog(x?) (230.0)

Remark 4.We can take on right hand side of the equation (19) funadfigti (r) +
CV(¢) insteadV (¢). In this casew = CoU (1) + C1V (1) + CW (¢).
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REZIUME

S. Peiulyte, A. Stikonas. Apie Sturmo ir Liuvilio uzdavinio prijungtini funkciju sistemos

Siame darbe nagrisiamas Sturmo ir Liuvilio uzdavinys su klasikiradgga kairiajame kraste ir keturtipy
nelokaliosiomis dvitadkmis krastiemis slygomis deSiniajame kraste. Spanyje suformuluotos lemos
apie pirmosios ir antrosios e# prijungtiny funkcijyu egzistavina. Surastos Sios funkcijos.

Raktiniai ZodZiaiSturmo ir Liuvilio uZdavinys, prijungtias funkcijos, nelokaliosios krastis slygos.



