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The properties of Green’s functions for one stationary
problem with nonlocal boundary conditions
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Abstract. In this paper we research Green’s function properties for stationary problem with four-point
nonlocal boundary conditions. Dependence of these functions on values § and y is investigated. Green’s
functions graphs with various values & and y are presented.
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1. Introduction

In this paper we consider inhomogeneous two-order differential equation with two
nonlocal boundary conditions

—u"=f xe(,1), (1)
u(0) = you(o), (2
u(l) = yiu&), (3)

where f € C[0, 1], &y, &1 € [0, 1], 10, ¥1 € R. This problem becomes classical for yy =
y1 = 0. Similar problems have been investigated in articles [1-4,6].

In [1] problems with more general nonlinear right-hand side f(x, u,u’) of diffe-
rential equation were investigated. Also sufficient conditions for existence of positive
solutions were found. In [6] Green’s functions for linear case were considered, when
one boundary condition is classical and another condition is two-point nonlocal boun-
dary condition. The second-order differential equation with two additional conditions
was investigated in [5]. In this paper expression of Green’s function was derived. Some
examples of various boundary conditions were presented in [2,3].

Green’s function of this problem exists and is unique if 8 = 60(yy, y1, £0,&1) =
1 —yo(1 — &) — y1&1 — yovi1(éo — &€1) # 0. Then Green’s function has the following
form (see [3,5]):

vox — 1 —y1(x —&1))
I —yo(1 —&) — vié1 — vovi(6o — &1)

Y1(x — yo(x —§0)) o
-G ,8), 4
=900 &) — & —yom@—&n © &Y )

G(x,s) = GYx,s) — -GY&, 5)
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where G is classical Green’s function of problem (1)—(3) when yg = y; =01s

cl _Jsd=x), s<x,
G (x’s)_{x(l—s), x <. )

Let’s denote
80=280(x, 0, v1,61) ===y (x — 1 —y1 (x — &),
g1 = 81(x, 0, ¥1, §0) :== y1(x — yolx — &0)).

Therefore Green’s function can be written down in a following form:
G(x,5) =G (x,5) + 07" (y0. 1. 0. &1)(80Cx. Y0, ¥1. 1) - G (0. 5)
+g1(x, 10, 71, £0) - G (61, 9)). (6)

In this paper we investigate properties of Green’s functions in relation to parame-
ters yo, ¥1, o0, &1-

2. Green’s function properties in the case §y = &;

Let & = &y = &,. Then formula (6) for Green’s function is
G(x,s)=G"(x.5)+07 g GI.5), (7)

where g = g(x, 0, y1) :=y0+ x(y1 — y0) and 0 (yo, ¥1,6) := 1 = (1 — ¥0) — Yo.
Dependence of function g from values y;, i =0, 1, is represented on Fig. 1(a).

If y9 > y1, then function g increases; if 9 = yj, then function g is constant; and if
10 < Y1, then function g decreases. Fig. 1(b) is classical Green’s function G%(x, s)
(see, formula (5) ). Dark line on this graph is line, when s = £. The graphs of function
GCI(S, s) for fixed £ we can see in Fig. 1(c).

Example 1. Case &y =& = 1/3. In this case existence condition of Green’s func-
tionis 0 =1 — %yo — %yl # 0. On Figs. 2(a)—(g) are shown Green’s functions with

&4 AG(E,5)
/ 12
YooY
e=1/2
Y Yo=Y é 79; &=1/4 / 23
3/16
Yo<Yi
X 14 12 23 s
(a) (b) (c)

Fig. 1. (a) Function g = yo + x(y1 — y0); (b) classical Green’s function; (c) function G (&,5).
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Fig. 2. Graphs of Green’s function with §y = &} = 1/3 and (a)—(g) Yo = 0 and various
y1=—100,—1.5,0,1.5,2.8,3.2,100; (h)-(@i) y1 = 0 and various yp = —2, 1.2.

1o = 0 and various y;. When y; converges to a minus or plus infinity (see Figs. 2(a)
y1 = —100 and 2(g) y; = 100), Green’s functions are identical. Green’s function,
when y; — 0 (see Figs. 2(b), (d)) smoothly passed in classical Green’s function (see
Fig. 2(c)). For this problem, when y = 0, existence condition is y; # 3. On Figs. 2(e)
(y1 =2.8) and (f) (y; = 3.2) are shown functions where y; converges to value, when
Green’s function does not exist, in our case to 3.

On Figs. 2(h)—(i) are shown Green’s functions with various yy and y; = 0. If to
replace in equation (4) s > 1 —s, x > 1 —x, & — 1 — &y and y; — )0, then again
we will receive Green’s function (4), as G°/(1 — x, 1 —s) = G(x, 5). Then a case,
when y| = 0 is similar to a case when yg = 0.
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(a) o =217 =-1

(®) =19,y =-1

Fig. 3. Graphs of Green’s function with §y =& = 1/3.
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On Fig. 3 are shown Green’s functions with nonzero different parameters y and y;.

Values yy and y; of Fig. 3(a), (b) converge to solutions of line 1 — %yo — %)/1 =0, when
Green’s function does not exist, in this case to yy =2, y; = —1.

3. Green’s function properties in the case §y # &;

Now we consider the case, when &; and & are different and investigated the formula

(4) for Green’s function.

In Fig. 4 we have graphs of Green’s functions with different £y and &;. On the

Figs. 4(a)—(c) are fixed yy = 2, y; = 4. Green’s function the discontinuity lines of
derivative are s = &;,i =0, 1, and s = x.
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(b) & = 6/8, & = 3/8

(d)vo=-2,11=-3

(€) vo=-2,m=-27

(f) %0 =15, 71 =10

Fig. 4. Graphs of Green’s function with (a)—(c) yo =2, y1 =4 and (d)—(f) § =2/3, & =1/4.
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Example 2. Case & = %, & = +. On Figs. 4 (d)~(f) are fixed & = %, & = 1. With
these parameters existence condition is 12 — 4yg — 3y — Sypy1 # 0. One of many
non-existence points is yg = —2, y| = —27—0. In Figs. 4(d), (e) yp and y; converge to
such points. Fig. 4(f) is graph of Green’s function, when yy = 15, y; = 10.

4. Conclusions

The Green’s functions properties for problem (1) with nonlocal boundary condi-
tions (2) are similar to properties of the classical Green’s function (i.e., Green’s func-
tion for problem (1) with classical boundary conditions yy = y; = 0). Green’s function
existence conditions is 0 =1 — yo(1 — &) — v1&1 — Yoy1 (€0 — &1) # 0. For fixed &
and &; “bad” points lie on hyperbola or two lines or one line. Additionally, on lines
s = &y and s = & have discontinuities of derivative of the Green’s function as in line
x = s. Nonclassical Green’s functions are nonsymmetrical.
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REZIUME

S. Roman, A. Stikonas. Vieno stacionariojo uidavinio su nelokaliomis salygomis Gryno funkciju savybés

Siame straipsnyje mes nagrinéjame Gryno funkcijos savybes stacionariojo udavinio su 4-ta¥kémis
nelokaliosiomis salygomis. Tyriama §iy funkciju priklausomybeé parametry & ir y atZvilgiu. Pateikti Gryno
funkcijy grafikai su ivairiais parametrais.

Raktiniai ZodZiai: stacionarus diferencialinis uzdavinis, Gryno funkcija, nelokaliosios krastinés salygos.



