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Investigation of the Sturm—Liouville problems with
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Abstract. This paper presents some new results on the spectrum of a complex plane for the
second order Finite-Difference Scheme with one integral type nonlocal boundary condition
(NBC). We analyze how complex eigenvalues of these problems depend on the parameters
of the integral NBC. The integral conditions are approximated by the trapezoidal rule or by
Simpson’s rule.
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Introduction

Problems with integral Nonlocal Boundary Condition (NBC) arise in various fields of
mathematical physics, biology, biotechnology etc. J. Cannon investigates Boundary
Value Problem (BVP) with integral type NBC [1]. Complex eigenvalues with NBC
are less investigated than the real cases. Some results of this problem about complex
eigenvalues are published in [3, 4].

1 A Sturm-Liouville problem with an integral NBC
Let us consider a Sturm-Liouville problem with one classical boundary condition
—u" =X, te(0,1), u(0)=0, (1)

and an integral NBC:

1 3
u(l)fy/5 u(t)dt or u(l):'y/o u(t) dt, (21,2)

with the parameters v € R and £ € [0,1]. Note that, if we write the index in the
formula, as in (21,2), then first part of the formula is related to Case 1 and the second
part is related to Case 2. If we use one index, then the formula is related to the one
case. In Case 1 for ¢ = 0 and Case 2 for £ = 1, we have the same integral NBC. For
vy=0o0r & =01in Case 1 and v = 0 or £ = 1 in Case 2, we have the problem with


http://www.mii.lt/LMR/
mailto:agne.skucaite@mii.vu.lt; arturas.stikonas@mif.vu.lt

298 A. Skucaité, A. Stikonas

— S —
|
|
I
I
I
/
=
[ 2
AN
I
I
/
I
I
[
|
I
I
|
I
| 8 H
T
I
—— T —— Iy
|
I
I
r
I

3 I

f
=

DA

(d)£=1/3,n=6 () £€=1/2,n=14 (f)¢=2/3,n=6

Fig. 1. Generalized R characteristic functions for various £ of discrete problems in Case 1:
(a)—(c) approximated by trapezoid; (d)—(f) by Simpson’s rules.

classical boundary conditions and their eigenvalues and eigenfunctions of them are
well-known [2]:

A = (7rq2)2, u0(t) = sin (wqgt), @ =keN:={1,2,3,...}. (3)

The characteristic function and its domain N for these problems are described in [4].

2 The case of an approximation by the trapezoidal rule

In the interval [0,1], we introduce a uniform grid w" = {t; = jh, j = 0,n; n €
N, nh = 1}. Also, we make an assumption, that £ is coincident with a grid point,
ie., £ = mh = m/n, m = 0,n. Let us denote the greatest common divisor by
K :=gcd(n,m) and N :=n/K, M :=m/K. Then £ = M/N, too. We approximate
differential problem (1), (21,2) by the Finite-Difference Scheme (FDS):

Ujfl — 2Uj + Uj+1

s +AU; =0, j=T,n—1, Uy=0, (4)
n—1 m—1
Un +U, Up+ U,
Un=7h<%+ > Uk), Un:7h<%+ ZUk) (41,2)
k=m+1 k=1

We investigate eigenvalues for the FDS. Rewrite Eq. (4) in another form:
Ujt1 — 2cos(mqh)U; +U;—1 = 0, A = 7% sin®(mqh/2), Uy =0, (5)

where g =z +iy € Ch ={¢ 0 <z <n}U{g 2 =0, y 20} U{g¢ = =n,y > 0}.
We note that, for differential problem (1)—(2) eigenvalues are defined by the formula
A=¢?qeCi={qg0<a}U{ga=0, y=>0}[4].
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Fig. 2. Generalized R and domain A of C-R characteristic functions for problem (4)—(42).

The general solution of difference equation (5) is U = C sin(wgt;) + Cs cos(mqt;)
for g # 0,n; U = C1tj + Cy for ¢ = 0; U = C1(—1)7t; + Co(—1)7 for ¢ = n.
We have the eigenvalue A = 0 for problem (4)—(412), if and only if v = # in

Case 1 and v = E% in Case 2 (the same conditions are for the differential case). We

find the eigenvalue A\ = 4/h?, if and only if v = % . #
odd), and v = % - (3(1_)7{311 in Case 2 (m is odd).
If v = 0, we have the classical BCs and all the n — 1 eigenvalues for the classical

FDS are positive and algebraically simple and do not depend on the parameter &:

in Case 1 (n —m is

4 . -
A\ = 7z sin? (rgph/2), U]’?’O =sin (rqpt;), qp=k=Tn—1. (6)

If g = x € (0,1/h), then A € (0,4/h?) and we calculate the eigenvalues of problem
(4)-(41,2) by the formula A, = - sin®(ZZ:8), where x; are roots of the equation:

2
sin(rz) — yhtan™ ' (rzh/2) (cos(émx) — cos(mx)) /2 = 0, (71)
sin(rx) — yhtan™! (mxh/2) sin®(énx/2) = 0. (72)

The constant eigenvalue points are equal to:
cy = Nk, for odd M, ¢, = 2Nk, for even M, (81)
¢, = Nk, for odd N — M, ¢y = 2Nk, foreven N — M. (82)

k € N such that ¢ € (0,n).
Other (nonconstant) eigenvalues (which depend on the parameter ) as y-values of
the C-R characteristic function (see Figs. 1(a)-1(c) and 2) are defined on the set C}:

sin(mq) . mgh 2 ~ sin(mq) mqgh 2 (9:2)
cos(émq) — cos(mq) 2 A 773 sin?(¢mq/2) 2 K 2

Liet. mat. rink. LMD darbai, 52:297-302, 2011.
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Fig. 3. Projections of the C-R characteristic functions (domain N') in Case 2.

If hq is a sufficiently small number, then tan mgh

4 %qh ~ 1. It follows that, in this
case, the discrete characteristic function is similar to the characteristic function of the
differential problem [2].

All the eigenvalues in Case 1 are real, complex eigenvalues do not exist for any
value of NBC parameters n and m as in the differential case. For some values of n and
m, the complex part spectrum does not exist in Case 2, too (see Fig. 2). In Fig. 3,
we see how complex part of the spectrum depends on the FDS parameter n (number
of the grid points). The grid point ¢ = n is a pole point for even n —m in Case 1 and
even m in Case 2.

3 The case of an approximation by Simpson’s rule

In the interval [0, 1], we introduce a uniform grid w” = {t; = jh, j =0,2n; 2nh = 1}.
Also, we make the an assumption, that £ is coincident with the grid point, i.e.,
& =2mh =m/n, m = 0,n. We approximate differential problem (1), (21 2) by FDS:

Ui_1—-2U;+U; R s YT
7j—1 h2j J+1 + )\Uj — 07 )= ]_, 271 — ]., UO - 0; (10)
’Yh n n—1
Ugn = ? <U2m + U2n + 4 Z U2k71 + 2 Z U2k>7 (101)

k=m+1 k=m+1
h m m—1
Us,, = %<U0+U2m+4ZU2kl+2Z U2k>- (102)

k=1 k=1
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Fig. 4. Generalized R and C-R characteristic functions for various £ for discrete problem (10),
(102).

Let us denote the greatest common divisor K := gcd(2n,2m) and N := 2n/K,
M := 2m/K. Then £ = M/N, too. We can rewrite Eq. (10) in form (5) as for
FDS (4).

The boundary condition Uy = 0 yields that Co = 0. By substituting such a
solution function into NBC (10), we derive that the eigenvalue exists if ¢ = ¢(v,€) is
the root of the equation for ¢ # 0, n:

3sin(mqh)

. vh _

sm(7rq) — ?(COS(fﬂ'q) - COS(ﬂ'q)) . m = 0, (111)
. 29h ., 3sin(mqgh)
sin(mq) — 3o sm (€mq/2) - @+ cos(rgh)) (112)

We obtain the eigenvalue A = 0 for problem (10)—(104,2), if and only if v = #
in Case 1 and v = 2 in Case 2 (the same conditions are for differential (1)-(2) and
for FDS (4)*(41’2)).

If g = € (0,1/h), then X € (0,4/h?) and we calculate the eigenvalues of problem
(10)—(101,2) by the formula Ay = 7% sin®(™2:"), where z;, are roots of the equation:

sin(rz) — %h(cos(&rz) — cos(mz)) - % =0, (129)
sin(mz) — ? sin? (&Tx) : % =0. (129)

Constant eigenvalue points ¢ are describes by formula (8) (the same formula is for
(4)-(41,2)). Other (nonconstant) eigenvalues (which depend on the parameter ) as

Liet. mat. rink. LMD darbai, 52:297-302, 2011.
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~-values of the C-R characteristic function (see Figs. 1(d)-1(f) and 4) are defined on
the set Cl! [4]:

B sin(mq) __3sin(mgh) __ sin(mg)  3sin(mqh)
= cos(&mq) — cos(mq) 2+ cos(mqh)’ T Y (€mq/2) 2+ cos(mqh)’
(131,2)

In Case 1, if nonlocal boundary condition (21) is approximated by Simpson’s rule,
complex eigenvalues do not exist as in the differential case. In Case 2, the spectrum
of complex eigenvalues is more complicated (see Fig. 4). In this case, the complex
part of the spectrum depends on the FDS parameter n (number of the grid points).
We see that, in the case of FDS (10)—(10; 2), there exists one pole point ¢ = n + iy,
where cosh(myh) = 2. Also, some of the complex eigenvalue curves make loops.

4 Conclusions

The spectra of FDS’s (4)—(41,2) and (10)—(1012) in Cases 1 and 2 are different. Like
in the case of the differential problem, in Case 1 of FDSs (4)—(41) and (10)—(10;) only
real eigenvalues exist. With an increase in the value n, the spectra of FDSs (4)—(41.2)
and (10)—(10; 2) are become more similar to that spectrum of the differential problem.
In Case 2 of both FDSs (4), (42) and (10), (102), complex part of the spectrum is
very complicated for some values of NBCs parameters v, £ and n.
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REZIUME

Sturmo ir Liuvilio uzdavinio su nelokaliosiomis integralinémis salygomis tyrimas
A. Skucaité, A. Stikonas

Straipsnyje pateikiami nauji rezultatai, gauti tiriant antros eilés baigtiniy skirtumy schemos su viena
integraline nelokaliaja salyga kompleksinés spektro dalies struktura. IStirta kompleksiniy tikriniy
reikSmiy priklausomybé nuo nelokaliyjuy salygy parametry. Integralinés salygos aproksimuojamos
dviem budais: trapecijy arba Simpsono formule.

Raktiniai ZodzZiai: baigtiniy skirtumy schema, nelokaliosios krastinés salygos, kompleksinés tikrinés
reikSmes.
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