Note on the prime divisors of Farey fractions

Vytautas Kazakevičius, Vilius Stakėnas

Department of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius
E-mail: vytautas.kazakevicius@mif.vu.lt; vilius.stakenas@mif.vu.lt

Abstract

Let $P_{1}(n) \geqslant P_{2}(n) \geqslant \cdots$ be the prime divisors of a natural number n arranged in the non-increasing order. The limit distribution of the sequences $\left(\log P_{i}(m n) / \log (m n)\right.$, $i \geqslant 1)$ for $m / n \in\left(\lambda_{1} ; \lambda_{2}\right), n \leqslant x$, are considered. It is proved that under some conditions on λ_{i} the limit distribution of the sequences exists and is closely related to the Poisson-Dirichlet distribution.

Keywords: rational numbers, prime divisors, Poisson-Dirichlet distribution.

1 Introduction and the main result

Let \mathbb{N} denote the set of natural numbers and \mathbb{R}^{∞} the linear space of all real sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ endowed with the product topology. It is well known that \mathbb{R}^{∞} is a separable metrizable topological space. Consider the function $\xi: \mathbb{N} \rightarrow \mathbb{R}^{\infty}$ defined as follows: if $n=p_{1} \cdots p_{t}$ with all p_{i} primes and $p_{1} \geqslant \cdots \geqslant p_{t}$ then

$$
\xi(n)=\left(\log p_{1}, \ldots, \log p_{t}, 0,0, \ldots\right)
$$

Let ν_{x} denote the uniform distribution on $\{n \in \mathbb{N}: n \leqslant x\}$. The function $n \mapsto n$ is a random variable on the probability space $\left(\mathbb{N}, \nu_{x}\right)$; we denote it by the same letter n. Then $\xi(n)$ is a random element of \mathbb{R}^{∞} defined on $\left(\mathbb{N}, \nu_{x}\right)$.

It was proved by P. Billingsley in [1] that

$$
\frac{\xi(n)}{\log n} \rightsquigarrow \eta,
$$

here \rightsquigarrow denotes convergence in distribution (as $x \rightarrow \infty$) and η is a random element of \mathbb{R}^{∞} distributed accordingly to the so-called Poisson-Dirichlet law. The new proof of this fact was given by P. Donnelly and G. Grimmett in [4].

We set the analogous problem of convergence of probabilistic measures, related to rational numbers.

Let \mathbb{Q}_{+}denote the set of positive rational numbers, $I \subset(0 ; \infty)$ and ν_{x}^{I} denote the uniform distribution on

$$
\mathcal{F}_{x}^{I}=\left\{\frac{m}{n} \in I: n \leqslant x\right\}
$$

Each element of \mathbb{Q}_{+}is represented in the unique way by an irreducible fraction m / n; we consider the nominator and denominator of it as random variables on the probability space $\left(\mathbb{Q}_{+}, \nu_{x}^{I}\right)$, denoted by the same letters m and n. The following theorem was proved by the second author in [7] using the proof in [4] as a model.

Theorem 1. Let $I=\left(\lambda_{1} ; \lambda_{2}\right)$, where $0 \leqslant \lambda_{1}<\lambda_{2}<\infty$ satisfy the condition: for an arbitrary $0<\gamma \leqslant 1$

$$
\left(1+\lambda_{1}\right)^{\gamma-1}\left(\lambda_{2}-\lambda_{1}\right) x^{\gamma} \rightarrow \infty, \quad x \rightarrow \infty
$$

Then

$$
\left(\frac{\xi(m)}{\log m}, \frac{\xi(n)}{\log n}\right) \rightsquigarrow\left(\eta, \eta^{\prime}\right),
$$

where η^{\prime} is an independent copy of η.
In this paper we consider the limit distribution of $\frac{\xi(m n)}{\log (m n)}$. Let

$$
\Delta=\left\{x \in \mathbb{R}^{\infty}: \forall i x_{i} \geqslant 0, \sum_{i \geqslant 1} x_{i}=1\right\}
$$

and $R: \Delta \rightarrow \Delta$ be the ranking function of Billingsley (see [2, Chapter 1, Section 4]). It omits the zero components of the infinite tuple and rearranges the positive ones into non-increasing order; if the resulting tuple is finite, the infinite tail of zeros is added. Let T denote the map from $\mathbb{R}^{\infty} \times \mathbb{R}^{\infty}$ to \mathbb{R}^{∞}, defined by

$$
T(x, y)=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)
$$

Our main result is the following theorem.
Theorem 2. Let $I=\left(\lambda_{1} ; \lambda_{2}\right)$, where $0 \leqslant \lambda_{1}<\lambda_{2}<\infty$ satisfy the condition: for an arbitrary $0<\gamma \leqslant 1$

$$
\begin{equation*}
\left(1+\lambda_{1}\right)^{\gamma-1}\left(\lambda_{2}-\lambda_{1}\right) x^{\gamma} \rightarrow \infty \quad \text { and } \quad \frac{\log \left(\lambda_{2} x\right)}{\log x} \rightarrow p, \quad \text { as } x \rightarrow \infty \tag{1}
\end{equation*}
$$

where $p \geqslant 0$. Then

$$
\frac{\xi(m n)}{\log (m n)} \rightsquigarrow R T\left(\frac{p \eta}{p+1}, \frac{\eta^{\prime}}{p+1}\right)
$$

where η, η^{\prime} are the same random elements as in Theorem 1.
Proof. Let $m=p_{1} \cdots p_{s}, n=q_{1} \cdots q_{t}$ with all p_{i}, q_{j} primes, $p_{1} \geqslant \cdots \geqslant p_{s}$ and $q_{1} \geqslant \cdots \geqslant q_{t}$. Then

$$
\begin{aligned}
\frac{\xi(m n)}{\log (m n)} & =R\left(\frac{\log p_{1}}{\log (m n)}, \frac{\log q_{1}}{\log (m n)}, \frac{\log p_{2}}{\log (m n)}, \frac{\log q_{2}}{\log (m n)}, \ldots\right) \\
& =R T\left(\frac{\xi(m)}{\log (m n)}, \frac{\xi(n)}{\log (m n)}\right) \\
& =R T\left(\frac{\log m}{\log (m n)} \cdot \frac{\xi(m)}{\log m}, \frac{\log n}{\log (m n)} \cdot \frac{\xi(n)}{\log n}\right) .
\end{aligned}
$$

Since both R and T are continuous, the theorem follows from Theorem 1 and Lemma 1 below, which is proved in Section 3.

Lemma 1. If conditions (1) are satisfied, then

$$
\frac{\log n}{\log (m n)} \rightsquigarrow \frac{1}{p+1}
$$

It can be shown actually, that only the values $p \geqslant 1$ can appear in (1).

2 Marginal distributions

Let $P_{1}(n) \geqslant P_{2}(n) \geqslant \cdots$ be the prime divisors of n arranged in the non-increasing order. Then the distributions of $\log P_{k}(n) / \log n$ converge as $x \rightarrow \infty$ to the onedimensional marginal distributions of the Poisson-Dirichlet law. Since $\log n / \log x \rightsquigarrow 1$, the same is true for the distributions of $\log P_{k}(n) / \log x$. The marginal distributions of the Poisson-Dirichlet measure in the number-theoretic context were discovered indeed in the form

$$
\begin{equation*}
\nu_{x}\left\{P_{k}(n) \leqslant x^{1 / u}\right\} \rightarrow \rho_{k}(u), \quad u>0, x \rightarrow \infty \tag{2}
\end{equation*}
$$

The investigation of these asymptotics was initiated by K. Dickman [3]. The properties of the function $\rho(u)=\rho_{1}(u)$ were investigated by N.G. de Bruijn. It is called Dickman-de Bruijn function and is defined by the following differential-delay equation:

$$
\rho(u)=1 \quad \text { for } 0 \leqslant u \leqslant 1, \quad u \rho^{\prime}(u)+\rho(u-1)=0 \quad \text { for } u>1 .
$$

The papers of Ramaswami [6], Knuth and Trabb Pardo [5] followed, the functions $\rho_{k}(u)$ were investigated in numerous articles. It was shown, for example, that they are uniquely determined by the following properties: $\rho_{k}(u)=1$ for $0 \leqslant u \leqslant 1$ and

$$
\rho_{k}(u)=1-\int_{0}^{u-1}\left(\rho_{k}(t)-\rho_{k-1}(t)\right) \frac{d t}{1+t} \quad \text { for } u>1, k \geqslant 2
$$

The multidimensional-marginal distributions are described by P. Billingsley [1], [2], see also A. Vershik [8]. They showed that

$$
\nu_{x}\left\{\frac{\log P_{1}(n)}{\log n} \leqslant u_{1}, \ldots, \frac{\log P_{k}(n)}{\log n} \leqslant u_{k}\right\} \rightarrow \Phi_{k}\left(u_{1}, \ldots, u_{k}\right)
$$

where the functions Φ_{k} are expressed via the Dickman-de Bruijn function in the following way:

$$
\Phi_{k}\left(u_{1}, \ldots, u_{k}\right)=\int_{0}^{u_{k}} \int_{t_{k}}^{u_{k-1}} \cdots \int_{t_{2}}^{u_{1}} \rho\left(\frac{1-t_{1}-\cdots-t_{k}}{t_{k}}\right) \frac{d t_{1} \cdots d t_{k}}{t_{1} \cdots t_{k}} .
$$

In this section we find limit distributions for $\log P_{k}(m n) / \log (m n)$, where m and n are random variables on $\left(\mathbb{Q}_{+}, \nu_{x}^{I}\right)$. Suppose that conditions (1) are satisfied and denote $\alpha=p /(p+1), \beta=1-\alpha$. Let $\eta=\left(\eta_{1}, \eta_{2}, \ldots\right)$ and $\eta^{\prime}=\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \ldots\right)$ be independent random sequences, distributed accordingly the Poisson-Dirichlet law, and $\zeta=\left(\zeta_{1}, \zeta_{2}, \ldots\right)=R T\left(\alpha \eta, \beta \eta^{\prime}\right)$. Then, by Theorem 2 ,

$$
\frac{\log P_{k}(m n)}{\log (m n)} \rightsquigarrow \zeta_{k}
$$

Let F_{k} and G_{k} denote the distribution functions of η_{k} and ζ_{k}, respectively. Then $F_{k}(u)=\rho_{k}(1 / u)$. We show how G_{k} is expressed via F_{i} with $i \leqslant k$.

The case $k=1$ is the most simple. Since $\zeta_{1}=\max \left(\alpha \eta_{1}, \beta \eta_{1}^{\prime}\right)$, we have

$$
G_{1}(u)=\mathrm{P}\left\{\zeta_{1} \leqslant u\right\}=\mathrm{P}\left\{\alpha \eta_{1} \leqslant u\right\} \mathrm{P}\left\{\beta \eta_{1}^{\prime} \leqslant u\right\}=F_{1}\left(\alpha^{-1} u\right) F_{1}\left(\beta^{-1} u\right)
$$

In the general case it is more convenient to work with $G_{k}^{*}(u)=1-G_{k}(u)$ and $F_{k}^{*}(u)=$ $1-F_{k}(u)$. For positive integers i, j define the random events

$$
U_{i 0}=\left\{\alpha \eta_{i}>u\right\}, \quad U_{0 j}=\left\{\beta \eta_{j}^{\prime}>u\right\}, \quad \text { and } \quad U_{i j}=\left\{\alpha \eta_{i}>u, \beta \eta_{j}^{\prime}>u\right\} .
$$

The event $\left\{\zeta_{k}>u\right\}$ occurs if at least one of the events $U_{i j}$ with $i+j=k$ appears. Hence

$$
G_{k}^{*}(u)=\mathrm{P}\left(\bigcup_{i+j=k} U_{i j}\right)
$$

The probabilities of the events $U_{i j}$ as well as of their intersections can be expressed via the functions $F_{k}^{*}(u)$. Let us consider the case $k=2$ for example. We have

$$
\begin{gathered}
\mathrm{P}\left(U_{20}\right)=F_{2}^{*}\left(\alpha^{-1} u\right), \quad \mathrm{P}\left(U_{02}\right)=F_{2}^{*}\left(\beta^{-1} u\right), \quad \mathrm{P}\left(U_{11}\right)=F_{1}^{*}\left(\alpha^{-1} u\right) F_{1}^{*}\left(\beta^{-1} u\right), \\
\mathrm{P}\left(U_{20} \cap U_{02}\right)=F_{2}^{*}\left(\alpha^{-1} u\right) F_{2}^{*}\left(\beta^{-1} u\right), \quad \mathrm{P}\left(U_{20} \cap U_{11}\right)=F_{2}^{*}\left(\alpha^{-1} u\right) F_{1}^{*}\left(\beta^{-1} u\right) \\
\mathrm{P}\left(U_{02} \cap U_{11}\right)=F_{1}^{*}\left(\alpha^{-1} u\right) F_{2}^{*}\left(\beta^{-1} u\right)
\end{gathered}
$$

and

$$
\mathrm{P}\left(U_{02} \cap U_{20} \cap U_{11}\right)=F_{2}^{*}\left(\alpha^{-1} u\right) F_{2}^{*}\left(\beta^{-1} u\right)
$$

hence

$$
\begin{aligned}
F_{2}^{*}(u)= & F_{2}^{*}\left(\alpha^{-1} u\right)+F_{2}^{*}\left(\beta^{-1} u\right)+F_{1}^{*}\left(\alpha^{-1} u\right) F_{1}^{*}\left(\beta^{-1} u\right) \\
& -F_{2}^{*}\left(\alpha^{-1} u\right) F_{1}^{*}\left(\beta^{-1} u\right)-F_{1}^{*}\left(\alpha^{-1} u\right) F_{2}^{*}\left(\beta^{-1} u\right) .
\end{aligned}
$$

3 Proof of Lemma 1

Let F_{x} denote the distribution function of the random variable $\frac{\log n}{\log (m n)}$ and F be that of the random variable which equals $\frac{1}{p+1}$ with probability 1 :

$$
F_{x}(z)=\nu_{x}^{I}\left\{\frac{\log n}{\log (m n)} \leqslant z\right\}, \quad F(z)= \begin{cases}0 & \text { for } z<\frac{1}{p+1} \\ 1 & \text { otherwise }\end{cases}
$$

We need to show that $F_{x}(z) \rightarrow F(z)$, as $x \rightarrow \infty$, for all $z \in(0 ; 1), z \neq \frac{1}{p+1}$.
Let $0<z<\frac{1}{p+1}$. Fix $\epsilon>0$ and find x_{0} such that for all $x \geqslant x_{0}$

$$
\frac{\log (\epsilon x)}{\log x}>\frac{z}{1-z} \cdot \frac{\log \left(\lambda_{2} x\right)}{\log x}
$$

Inequalities

$$
\epsilon x<n \leqslant x, \quad \lambda_{1}<\frac{m}{n}<\lambda_{2}, \quad \frac{\log n}{\log (m n)} \leqslant z
$$

imply

$$
\log (\epsilon x) \leqslant \log n \leqslant \frac{z}{1-z} \log m \leqslant \frac{z}{1-z} \log \left(\lambda_{2} n\right) \leqslant \frac{z}{1-z} \log \left(\lambda_{2} x\right)
$$

which is impossible if $x \geqslant x_{0}$. Therefore

$$
\nu_{x}^{I}\left\{\epsilon x<n, \frac{\log n}{\log (m n)} \leqslant z\right\}=0
$$

for $x \geqslant x_{0}$.

On the other hand, conditions (1) imply $\left(\lambda_{2}-\lambda_{1}\right) x \rightarrow \infty$, as $x \rightarrow \infty$. Therefore, by Theorem 1 in [7],

$$
\# \mathcal{F}_{x}^{I} \sim \frac{3}{\pi^{2}}\left(\lambda_{2}-\lambda_{1}\right) x^{2}
$$

which yields

$$
\nu_{x}^{I}\{n \leqslant \epsilon x\} \leqslant \frac{\# \mathcal{F}_{\epsilon x}^{I}}{\# \mathcal{F}_{x}^{I}} \rightarrow \epsilon^{2}
$$

as $x \rightarrow \infty$. Hence

$$
\varlimsup_{x \rightarrow \infty} F_{x}(z) \leqslant \epsilon^{2}
$$

with ϵ arbitrary small, i.e., $F_{x}(z) \rightarrow 0$.
Now let $\frac{1}{p+1}<z<1$. Fix $\epsilon>0$ and find x_{0} such that

$$
1<\frac{z}{1-z} \cdot \frac{\log \left(\epsilon^{2}\right)+\log \left(\lambda_{2} x\right)}{\log x}
$$

for $x \geqslant x_{0}$. Inequalities

$$
\epsilon x<n \leqslant x, \quad \lambda_{1}+\epsilon\left(\lambda_{2}-\lambda_{1}\right)<\frac{m}{n}<\lambda_{2}, \quad \frac{\log n}{\log (m n)}>z
$$

imply

$$
\log x \geqslant \log n \geqslant \frac{z}{1-z} \log m \geqslant \frac{z}{1-z} \log \left(\epsilon \lambda_{2} n\right) \geqslant \frac{z}{1-z} \log \left(\epsilon^{2} \lambda_{2} x\right)
$$

which is impossible if $x \geqslant x_{0}$. Therefore

$$
\nu_{x}^{I}\left\{\epsilon x<n, \lambda_{1}+\epsilon\left(\lambda_{2}-\lambda_{1}\right)<\frac{m}{n}, \frac{\log n}{\log (m n)}>z\right\}=0
$$

for $x \geqslant x_{0}$. Also

$$
\nu_{x}^{I}\{n \leqslant \epsilon x\} \leqslant \frac{\# \mathcal{F}_{\epsilon x}^{I}}{\# \mathcal{F}_{x}^{I}} \rightarrow \epsilon^{2}
$$

and

$$
\nu_{x}^{I}\left\{\lambda_{1}<\frac{m}{n}<\lambda_{1}+\epsilon\left(\lambda_{2}-\lambda_{1}\right)\right\}=\frac{\# \mathcal{F}_{x}^{\left(\lambda_{1} ; \lambda_{1}+\epsilon\left(\lambda_{2}-\lambda_{1}\right)\right)}}{\# \mathcal{F}_{x}^{I}} \rightarrow \epsilon
$$

Therefore

$$
\varlimsup_{x \rightarrow \infty}\left(1-F_{x}(z)\right) \leqslant \epsilon+\epsilon^{2}
$$

with ϵ arbitrary small, i.e., $F_{x}(z) \rightarrow 1$.

References

[1] P. Billingsley. On the distribution of large prime divisors. Periodica Mathematica Hungarica, 2:283-289, 1972.
[2] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1999.
[3] K. Dickman. On the frequency of numbers containing prime factors of a certain relative magnitude. Arkiv för Mat., Astron. och Fys. A, 22:1-14, 1930.
[4] P. Donnelly and G. Grimmett. On the asymptotic distribution of large prime factors. J. London Math. Soc., 47:395-404, 1993.
[5] D.E. Knuth and L. Trabb Pardo. Analysis of simple factorization algorithm. Theoretical Comput. Sci., 3:321-348, 1976/77.
[6] V. Ramaswami. On the number of positive integers less than x and free of prime divisors greater than x^{c}. Bull. Amer. Math. Soc., 55:1122-1127, 1949.
[7] V. Stakėnas. Sieve result for Farey fractions. Lith. Math. J., 39(1):108-127, 1999.
[8] A. Vershik. The asymptotic distribution of factorizations of natural numbers into prime divisors. Sov. Math. Dokl., 34:57-61, 1987.

REZIUMĖ

Farey trupmenu pirminiai dalikliai

V. Kazakevičius, V. Stakėnas

Nagrinėjamos racionaliưjų skaičių pirminių daliklių variacinės eilutės. Irodoma teorema apie sekos, gautos iš šių eilučių, ribinị skirstinị.
Raktiniai žodžiai: racionalieji skaičiai, pirminiai dalikliai, Puasono-Dirichle skirstinys.

