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Abstract. Let P1(n) > P2(n) > · · · be the prime divisors of a natural number n arranged
in the non-increasing order. The limit distribution of the sequences (logPi(mn)/ log(mn),
i > 1) for m/n ∈ (λ1; λ2), n 6 x, are considered. It is proved that under some conditions on
λi the limit distribution of the sequences exists and is closely related to the Poisson–Dirichlet
distribution.
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1 Introduction and the main result

Let N denote the set of natural numbers and R∞ the linear space of all real sequences
x = (x1, x2, . . . ) endowed with the product topology. It is well known that R∞ is a
separable metrizable topological space. Consider the function ξ : N → R∞ defined as
follows: if n = p1 · · · pt with all pi primes and p1 > · · · > pt then

ξ(n) = (log p1, . . . , log pt, 0, 0, . . . ).

Let νx denote the uniform distribution on {n ∈ N: n 6 x}. The function n 7→ n is a
random variable on the probability space (N, νx); we denote it by the same letter n.
Then ξ(n) is a random element of R∞ defined on (N, νx).

It was proved by P. Billingsley in [1] that

ξ(n)

logn
 η,

here  denotes convergence in distribution (as x → ∞) and η is a random element
of R∞ distributed accordingly to the so-called Poisson–Dirichlet law. The new proof
of this fact was given by P. Donnelly and G. Grimmett in [4].

We set the analogous problem of convergence of probabilistic measures, related to
rational numbers.

Let Q+ denote the set of positive rational numbers, I ⊂ (0;∞) and νIx denote the
uniform distribution on

FI
x =

{

m

n
∈ I: n 6 x

}

.

Each element of Q+ is represented in the unique way by an irreducible fraction m/n;
we consider the nominator and denominator of it as random variables on the proba-
bility space (Q+, ν

I
x), denoted by the same letters m and n. The following theorem

was proved by the second author in [7] using the proof in [4] as a model.

http://www.mii.lt/LMR/
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14 V. Kazakevičius, V. Stakėnas

Theorem 1. Let I = (λ1;λ2), where 0 6 λ1 < λ2 < ∞ satisfy the condition: for an

arbitrary 0 < γ 6 1

(1 + λ1)
γ−1(λ2 − λ1)x

γ → ∞, x → ∞.

Then
(

ξ(m)

logm
,
ξ(n)

logn

)

 (η, η′),

where η′ is an independent copy of η.

In this paper we consider the limit distribution of ξ(mn)
log(mn) . Let

∆ =

{

x ∈ R∞: ∀i xi > 0,
∑

i>1

xi = 1

}

and R : ∆ → ∆ be the ranking function of Billingsley (see [2, Chapter 1, Section 4]).
It omits the zero components of the infinite tuple and rearranges the positive ones
into non-increasing order; if the resulting tuple is finite, the infinite tail of zeros is
added. Let T denote the map from R∞ × R∞ to R∞, defined by

T (x, y) = (x1, y1, x2, y2, . . . ).

Our main result is the following theorem.

Theorem 2. Let I = (λ1;λ2), where 0 6 λ1 < λ2 < ∞ satisfy the condition: for an

arbitrary 0 < γ 6 1

(1 + λ1)
γ−1(λ2 − λ1)x

γ → ∞ and
log(λ2x)

log x
→ p, as x → ∞, (1)

where p > 0. Then
ξ(mn)

log(mn)
 RT

(

pη

p+ 1
,

η′

p+ 1

)

,

where η, η′ are the same random elements as in Theorem 1.

Proof. Let m = p1 · · · ps, n = q1 · · · qt with all pi, qj primes, p1 > · · · > ps and
q1 > · · · > qt. Then

ξ(mn)

log(mn)
= R

(

log p1
log(mn)

,
log q1

log(mn)
,

log p2
log(mn)

,
log q2

log(mn)
, . . .

)

= RT

(

ξ(m)

log(mn)
,

ξ(n)

log(mn)

)

= RT

(

logm

log(mn)
·
ξ(m)

logm
,

logn

log(mn)
·
ξ(n)

logn

)

.

Since both R and T are continuous, the theorem follows from Theorem 1 and Lemma 1
below, which is proved in Section 3. ⊓⊔

Lemma 1. If conditions (1) are satisfied, then

logn

log(mn)
 

1

p+ 1
.

It can be shown actually, that only the values p > 1 can appear in (1).
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Note on the prime divisors of Farey fractions 15

2 Marginal distributions

Let P1(n) > P2(n) > · · · be the prime divisors of n arranged in the non-increasing
order. Then the distributions of logPk(n)/ logn converge as x → ∞ to the one-
dimensional marginal distributions of the Poisson–Dirichlet law. Since logn/ logx 1,
the same is true for the distributions of logPk(n)/ log x. The marginal distributions of
the Poisson–Dirichlet measure in the number-theoretic context were discovered indeed
in the form

νx
{

Pk(n) 6 x1/u
}

→ ρk(u), u > 0, x → ∞. (2)

The investigation of these asymptotics was initiated by K. Dickman [3]. The
properties of the function ρ(u) = ρ1(u) were investigated by N.G. de Bruijn. It is
called Dickman–de Bruijn function and is defined by the following differential-delay
equation:

ρ(u) = 1 for 0 6 u 6 1, uρ′(u) + ρ(u− 1) = 0 for u > 1.

The papers of Ramaswami [6], Knuth and Trabb Pardo [5] followed, the functions
ρk(u) were investigated in numerous articles. It was shown, for example, that they
are uniquely determined by the following properties: ρk(u) = 1 for 0 6 u 6 1 and

ρk(u) = 1−

∫ u−1

0

(

ρk(t)− ρk−1(t)
) dt

1 + t
for u > 1, k > 2.

The multidimensional-marginal distributions are described by P. Billingsley [1], [2],
see also A. Vershik [8]. They showed that

νx

{

logP1(n)

logn
6 u1, . . . ,

logPk(n)

logn
6 uk

}

→ Φk(u1, . . . , uk),

where the functions Φk are expressed via the Dickman–de Bruijn function in the
following way:

Φk(u1, . . . , uk) =

∫ uk

0

∫ uk−1

tk

. . .

∫ u1

t2

ρ

(

1− t1 − · · · − tk
tk

)

dt1 · · · dtk
t1 · · · tk

.

In this section we find limit distributions for logPk(mn)/ log(mn), where m and
n are random variables on (Q+, ν

I
x). Suppose that conditions (1) are satisfied and

denote α = p/(p + 1), β = 1 − α. Let η = (η1, η2, . . . ) and η′ = (η′1, η
′

2, . . . ) be
independent random sequences, distributed accordingly the Poisson–Dirichlet law,
and ζ = (ζ1, ζ2, . . . ) = RT (αη, βη′). Then, by Theorem 2,

logPk(mn)

log(mn)
 ζk.

Let Fk and Gk denote the distribution functions of ηk and ζk, respectively. Then
Fk(u) = ρk(1/u). We show how Gk is expressed via Fi with i 6 k.

The case k = 1 is the most simple. Since ζ1 = max(αη1, βη
′

1), we have

G1(u) = P{ζ1 6 u} = P{αη1 6 u}P
{

βη′1 6 u
}

= F1

(

α−1u
)

F1

(

β−1u
)

.

Liet. mat. rink. LMD darbai, 52:13–18, 2011.
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16 V. Kazakevičius, V. Stakėnas

In the general case it is more convenient to work with G∗

k(u) = 1−Gk(u) and F ∗

k (u) =
1− Fk(u). For positive integers i, j define the random events

Ui0 = {αηi > u}, U0j =
{

βη′j > u
}

, and Uij =
{

αηi > u, βη′j > u
}

.

The event {ζk > u} occurs if at least one of the events Uij with i + j = k appears.
Hence

G∗

k(u) = P

(

⋃

i+j=k

Uij

)

.

The probabilities of the events Uij as well as of their intersections can be expressed
via the functions F ∗

k (u). Let us consider the case k = 2 for example. We have

P(U20) = F ∗

2

(

α−1u
)

, P(U02) = F ∗

2

(

β−1u
)

, P(U11) = F ∗

1

(

α−1u
)

F ∗

1

(

β−1u
)

,

P(U20 ∩ U02) = F ∗

2

(

α−1u
)

F ∗

2

(

β−1u
)

, P(U20 ∩ U11) = F ∗

2

(

α−1u
)

F ∗

1

(

β−1u
)

,

P(U02 ∩ U11) = F ∗

1

(

α−1u
)

F ∗

2

(

β−1u
)

and
P(U02 ∩ U20 ∩ U11) = F ∗

2

(

α−1u
)

F ∗

2

(

β−1u
)

hence

F ∗

2 (u) =F ∗

2

(

α−1u
)

+ F ∗

2

(

β−1u
)

+ F ∗

1

(

α−1u
)

F ∗

1

(

β−1u
)

− F ∗

2

(

α−1u
)

F ∗

1

(

β−1u
)

− F ∗

1

(

α−1u
)

F ∗

2

(

β−1u
)

.

3 Proof of Lemma 1

Let Fx denote the distribution function of the random variable log n
log(mn) and F be that

of the random variable which equals 1
p+1 with probability 1:

Fx(z) = νIx

{

logn

log(mn)
6 z

}

, F (z) =

{

0 for z < 1
p+1 ,

1 otherwise.

We need to show that Fx(z) → F (z), as x → ∞, for all z ∈ (0; 1), z 6= 1
p+1 .

Let 0 < z < 1
p+1 . Fix ǫ > 0 and find x0 such that for all x > x0

log(ǫx)

log x
>

z

1− z
·
log(λ2x)

log x
.

Inequalities

ǫx < n 6 x, λ1 <
m

n
< λ2,

logn

log(mn)
6 z

imply

log(ǫx) 6 log n 6
z

1− z
logm 6

z

1− z
log(λ2n) 6

z

1− z
log(λ2x),

which is impossible if x > x0. Therefore

νIx

{

ǫx < n,
logn

log(mn)
6 z

}

= 0

for x > x0.
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Note on the prime divisors of Farey fractions 17

On the other hand, conditions (1) imply (λ2 − λ1)x → ∞, as x → ∞. Therefore,
by Theorem 1 in [7],

#FI
x ∼

3

π2
(λ2 − λ1)x

2,

which yields

νIx{n 6 ǫx} 6
#FI

ǫx

#FI
x

→ ǫ2,

as x → ∞. Hence
lim
x→∞

Fx(z) 6 ǫ2

with ǫ arbitrary small, i.e., Fx(z) → 0.
Now let 1

p+1 < z < 1. Fix ǫ > 0 and find x0 such that

1 <
z

1− z
·
log(ǫ2) + log(λ2x)

log x

for x > x0. Inequalities

ǫx < n 6 x, λ1 + ǫ(λ2 − λ1) <
m

n
< λ2,

logn

log(mn)
> z

imply

log x > logn >
z

1− z
logm >

z

1− z
log(ǫλ2n) >

z

1− z
log

(

ǫ2λ2x
)

,

which is impossible if x > x0. Therefore

νIx

{

ǫx < n, λ1 + ǫ(λ2 − λ1) <
m

n
,

logn

log(mn)
> z

}

= 0

for x > x0. Also

νIx{n 6 ǫx} 6
#FI

ǫx

#FI
x

→ ǫ2

and

νIx

{

λ1 <
m

n
< λ1 + ǫ(λ2 − λ1)

}

=
#F

(λ1;λ1+ǫ(λ2−λ1))
x

#FI
x

→ ǫ.

Therefore
lim
x→∞

(

1− Fx(z)
)

6 ǫ+ ǫ2

with ǫ arbitrary small, i.e., Fx(z) → 1.
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REZIUMĖ

Farey trupmenų pirminiai dalikliai
V. Kazakevičius, V. Stakėnas

Nagrinėjamos racionaliųjų skaičių pirminių daliklių variacinės eilutės. Įrodoma teorema apie sekos,
gautos iš šių eilučių, ribinį skirstinį.

Raktiniai žodžiai: racionalieji skaičiai, pirminiai dalikliai, Puasono-Dirichle skirstinys.


	Introduction and the main result
	Marginal distributions
	Proof of Lemma 1
	References

