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Note on the prime divisors of Farey fractions
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Abstract. Let Pi(n) > P2(n) > --- be the prime divisors of a natural number n arranged
in the non-increasing order. The limit distribution of the sequences (log P;(mn)/log(mn),
i > 1) for m/n € (A1; A2), n < x, are considered. It is proved that under some conditions on
A the limit distribution of the sequences exists and is closely related to the Poisson—Dirichlet
distribution.
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1 Introduction and the main result

Let N denote the set of natural numbers and R the linear space of all real sequences
x = (x1,22,...) endowed with the product topology. It is well known that R> is a
separable metrizable topological space. Consider the function £ : N — R defined as
follows: if n = py - - - p; with all p; primes and p; > --- > p; then

&(n) = (logps, ..., logp:, 0,0,...).

Let v, denote the uniform distribution on {n € N: n < x}. The function n — n is a
random variable on the probability space (N, v,); we denote it by the same letter n.
Then £(n) is a random element of R* defined on (N, ).

It was proved by P. Billingsley in [1] that

&)

logn =

here ~» denotes convergence in distribution (as © — o) and 7 is a random element
of R*> distributed accordingly to the so-called Poisson—Dirichlet law. The new proof
of this fact was given by P. Donnelly and G. Grimmett in [4].

We set the analogous problem of convergence of probabilistic measures, related to
rational numbers.

Let Q. denote the set of positive rational numbers, I C (0;00) and v% denote the

uniform distribution on
m
fi{—e[:ngaz}.
n

Each element of Q. is represented in the unique way by an irreducible fraction m/n;
we consider the nominator and denominator of it as random variables on the proba-
bility space (Q4, L), denoted by the same letters m and n. The following theorem
was proved by the second author in [7] using the proof in [4] as a model.
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Theorem 1. Let I = (A1; A2), where 0 < A\ < A2 < 00 satisfy the condition: for an
arbitrary 0 < v < 1

(14 X)) A2 = A)z” = 00, = — c0.

(e<m> §<n>) o)

logm’ logn

Then

where 0’ is an independent copy of 7.

In this paper we consider the limit distribution of 15&7};2). Let

A:{xERm:Vixi>0, inzl}
i>1

and R: A — A be the ranking function of Billingsley (see [2, Chapter 1, Section 4]).
It omits the zero components of the infinite tuple and rearranges the positive ones

into non-increasing order; if the resulting tuple is finite, the infinite tail of zeros is
added. Let T denote the map from R*>® x R*> to R*>°, defined by

T(l‘,y) = (xlayla T2,Y2,.-- )
Our main result is the following theorem.

Theorem 2. Let I = (A1; A2), where 0 < A\ < A2 < 00 satisfy the condition: for an
arbitrary 0 < v < 1

log(A
14+ M) A2 = M\)2” = o0 and % =P, asxT — 00, (1)
ogw
where p > 0. Then
/
§(mn) WRT< P >
log(mn) p+1'p+1

where n,n’ are the same random elements as in Theorem 1.

Proof. Let m = p1---ps, n = q1---q with all p;, ¢; primes, p1 > --- > p, and
q1 2=+ 2= q- Then

§mn) _ o logpi  logqr  logpy  logags
log(mn) log(mn)’ log(mn)’ log(mn) log(mn)’ """

_ §m) _&(n)

B RT(log(mn)7 1og(mn))

B logm  §(m) logn  £(n)

B RT(log(mn) logm’ log(mn) 1ogn)'

Since both R and T are continuous, the theorem follows from Theorem 1 and Lemma 1
below, which is proved in Section 3. O
Lemma 1. If conditions (1) are satisfied, then

logn 1
~ .
log(mn) p+1

It can be shown actually, that only the values p > 1 can appear in (1).
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2 Marginal distributions

Let Pi(n) = Py(n) > --- be the prime divisors of n arranged in the non-increasing
order. Then the distributions of log Py(n)/logn converge as © — oo to the one-
dimensional marginal distributions of the Poisson—Dirichlet law. Since logn/logz ~> 1,
the same is true for the distributions of log Py (n)/log z. The marginal distributions of
the Poisson—Dirichlet measure in the number-theoretic context were discovered indeed
in the form

Vx{Pk(n)gxl/“}ﬁpk(u), u>0, r— oo. (2)

The investigation of these asymptotics was initiated by K. Dickman [3]. The
properties of the function p(u) = p1(u) were investigated by N.G. de Bruijn. It is
called Dickman—de Bruijn function and is defined by the following differential-delay
equation:

pluy=1 for0<u<1l, up'(u) + plu—1)=0 foru> 1.

The papers of Ramaswami [6], Knuth and Trabb Pardo [5] followed, the functions
pr(u) were investigated in numerous articles. It was shown, for example, that they
are uniquely determined by the following properties: pi(u) =1 for 0 < u < 1 and

Pk(u)zlf/% (Pk(t)*l)kfl(t))i foru>1, k=2

0 1+¢

The multidimensional-marginal distributions are described by P. Billingsley [1], [2],
see also A. Vershik [8]. They showed that

" { log Py (n) o log Py (n)

Xx Wlyev-y guk %@k(ula-"auk)v
logn logn

where the functions @) are expressed via the Dickman—de Bruijn function in the
following way:

Uk Uk 1—¢ c— e\ dty - dt
@k(ul,...,uk) :/ / / ( L k> tl 7 k
0 Tk to k 1k

In this section we find limit distributions for log P (mn)/log(mn), where m and
n are random variables on (Q4,7f). Suppose that conditions (1) are satisfied and
denote « = p/(p+ 1), B =1—a. Let n = (n1,m2,...) and ' = (N}, nh,...) be
independent random sequences, distributed accordingly the Poisson—Dirichlet law,
and ¢ = ((1,¢2,...) = RT(an, Bn’). Then, by Theorem 2,

log Py, (mn)

log(mn) G-

Let Fj and Gy denote the distribution functions of n; and (i, respectively. Then
Fi(u) = pr(1/u). We show how G}, is expressed via F; with ¢ < k.
The case k = 1 is the most simple. Since {; = max(an, 8n;), we have

Gi(u) = P{¢ < u} = P{am <u}P{Bn; <u} = Fi(a  u)F (87 u).

Liet. mat. rink. LMD darbai, 52:13-18, 2011.



16 V. Kazakevicius, V. Stakénas

In the general case it is more convenient to work with G (u) = 1—Gg(u) and F}f (u) =
1 — Fj(u). For positive integers ¢, j define the random events

Uo = {an; > u}, Uoj = {Bn; > u}, and U;; = {am > u, Bn;» > u}

The event {(; > u} occurs if at least one of the events U;; with i + j = k appears.

Hence
itj=k
The probabilities of the events U;; as well as of their intersections can be expressed
via the functions F}(u). Let us consider the case k = 2 for example. We have

P(Un) = F5(a™'u),  PUn) = F5(87'),  P(Un) = Fy (a"u)Fy (57"u),
P(Uzo NUp2) = Fy (a—lu)FQ* (6_1“)7 P(Uzo NU) = Fy (a_lu)Fl* (ﬁ_lu)’
P(Upz NUn) = Fy (@ tu) F5 (87 1u)

and
P(Up2 N Uz NU) = F3 (o™ 'u) Fy (8~ u)
hence
Fy (u) =F5 (a7 u) + F5 (87 1) +
= By (o ) FY (B ) —

3 Proof of Lemma 1

Let F, denote the distribution function of the random variable log’(géln) and F' be that

of the random variable which equals # with probability 1:

1 0 f L
Fz(z)yi{Ln)iz}, F(z){ OrZ S o

log(mn 1 otherwise.

We need to show that F,(z) — F(z), as ¢ — oo, for all z € (0;1), z # ﬁ.
Let 0 < 2z < p—}rl. Fix € > 0 and find g such that for all x > xq

log(ex) S _Z log(Aax)

log x 1—=z log x

Inequalities
m logn
ex <n <z, AL < — < Ao, i\z
n log(mn)

imply
z z

1 < log(\ <
1_Zogm\1_zog( 2n) 11—z

log(ex) < logn < log(Aax),

which is impossible if z > zg. Therefore

z/i ex < n, Mgz =0
log(mmn)

for x > xo.
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On the other hand, conditions (1) imply (A2 — A1)z — oo, as & — co. Therefore,
by Theorem 1 in [7],

3
#]:g{ ~ F()\Q - )\1)3027

which yields

as ¢ — 0o. Hence

with e arbitrary small, i.e., F,(z) — 0.

Now let # < z < 1. Fix € > 0 and find zg such that
1< 7 log(€?) + log(Aax)
1—2z log x
for x > xp. Inequalities
It
ex <n <z, )\1+e()\2—)\1)<m<)\2, 081,
n log(mn)
imply
logx > logn > c logm > c log(eAan) > - log (€ Aox)
- T 1-z T 1-z T 1-z ’

which is impossible if x > zy. Therefore
1
V£{€$<n, At e(Aa— ) < m, Ln) >z} =0

for > xy. Also

I
vi{n <ex} < % — €2
and (A te(Aa—A1))
i m B #.7:3: 13A1TE(A2— AL
l/x{)\1<g<)\1 +€()\2—)\1)}— #]__a{ — €.
Therefore

lim (1 - F,(2)) <e+é€

Tr— 00

with € arbitrary small, i.e., F,.(z) — 1.
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REZIUME

Farey trupmenuy pirminiai dalikliai

V. Kazakevicius, V. Stakénas

Nagrinéjamos racionaliyjy skaic¢iy pirminiy dalikliy variacinés eilutés. Jrodoma teorema apie sekos,
gautos i$ Siy eiluciy, ribinj skirstinj.

Raktiniai Zodziai: racionalieji skaiciai, pirminiai dalikliai, Puasono-Dirichle skirstinys.
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