On zeros of some composite functions

Jovita Rašytė

Department of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius
E-mail: jovita.ras@gmail.com

Abstract

We obtain an estimate of the number of zeros for the function $F(\zeta(s+i m h))$, where $\zeta(s)$ is the Riemann zeta-function, and $F: H(D) \rightarrow H(D)$ is a continuous function, $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$.

Keywords: Riemann zeta-function, universality.

The distribution of zeros of zeta and L-functions is the central problem of analytic number theory, and the results in the field allow to solve many other important problems. For example, the location of non-trivial zeros of the Riemann zeta-function $\zeta(s), s=\sigma+i t$, has a direct relation to the distribution of prime numbers. The best result in this direction asserts that $\zeta(s) \neq 0$ in the region

$$
\sigma>1-\frac{c}{(\log |t|)^{\frac{2}{3}}(\log \log |t|)^{\frac{1}{3}}}, \quad|t| \geqslant t_{0}>0
$$

where $c>0$ is an absolute constant. We remind that the Riemann hypothesis says that all non-trivial zeros of $\zeta(s)$ lie on the critical line $\sigma=\frac{1}{2}$, thus by this hypothesis, $\zeta(s) \neq 0$ in the half-plane $\sigma>\frac{1}{2}$.

There are the zeta-functions for which the Riemann hypothesis is not true. For example, this holds for the Hurwitz-function $\zeta(s, \alpha), 0<\alpha \leqslant 1$, defined, for $\sigma>1$, by

$$
\zeta(s, \alpha)=\sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^{s}}
$$

and by analytic continuation elsewhere. If α is a trancendental number, than [2] $\zeta(s, \alpha)$ has zeros in the strip $\frac{1}{2}<\sigma<1$. Also, the derivative $\zeta^{\prime}(s)$ has zeros in the strip $0<\sigma<1$.

For the investigation of zero-distribution of zeta-functions, universality theorems can be applied. The first universality theorem for the Riemann zeta-function has been proved by S.M. Voronin in [5]. The last version of this theorem is the following:

Theorem 1. Suppose that K is a compact subset of the strip $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$ with connected complement, and $f(s)$ is a continuous non-vanishing function on K which is analytic in the interior of K. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\varepsilon\right\}>0
$$

Here meas $\{A\}$ denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. The proof of Theorem 1 is given, for example, in [1].

Also, a discrete version of Theorem 1 is known. Let $h>0$ be a fixed number.
Theorem 2. Suppose that K and $f(s)$ satisfy the hypotheses of Theorem 1. Then, for every $\varepsilon>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N+1} \sharp\left\{0 \leqslant m \leqslant N: \sup _{s \in K}|\zeta(s+i m h)-f(s)|<\varepsilon\right\}>0 .
$$

In [3], certain discrete universality theorems were obtained for the composite function $F(\zeta(s))$.

We recall some of them. Denote by $H(D)$ the space of analytic functions on D equipped with the topology of uniform convergence on compacte, and set

$$
S=\left\{g \in H(D): g^{-1}(s) \in H(D) \text { or } g(s) \equiv 0\right\}
$$

Theorem 3. Suppose that the number $\exp \left\{\frac{2 \pi k}{h}\right\}$ is irrational for all $k \in \mathbb{Z} \backslash\{0\}$, and that $F: H(D) \rightarrow H(D)$ is a continuous function such that, for every open set $G \subset H(D)$, the set $\left(F^{-1} G \cap S\right)$ is non-empty. Let $K \subset D$ be a compact subset with connected complement, and let $f(s)$ be a continuous function on K which is analytic in the interior of K. Then, for every $\varepsilon>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N+1} \sharp\left\{0 \leqslant m \leqslant N: \sup _{s \in K}|F(\zeta(s+i m h))-f(s)|<\varepsilon\right\}>0 .
$$

The next theorem is a simplification of Theorem 3.
Theorem 4. Suppose that the number h, the set K and the function $f(s)$ satisfy the hypotheses of Theorem 3, and that $F: H(D) \rightarrow H(D)$ is a continuous function such that, for every polynomial $p=p(s)$, the set $\left(F^{-1}\{p\}\right) \cap S$ is non-empty. Then the assertion of Theorem 3 is true.

Now let V be an arbitrary positive number. Define

$$
D_{V}=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1,|t|<V\right\}
$$

and

$$
S_{V}=\left\{g \in H\left(D_{V}\right): g^{-1}(s) \in H\left(D_{V}\right) \text { or } g(s) \equiv 0\right\} .
$$

Theorem 5. Suppose that the number h, the set K and the function $f(s)$ satisfy the hypotheses of Theorem 3, and that $V>0$ is such that $K \subset D_{V}$. Let $F: H\left(D_{V}\right) \rightarrow$ $H\left(D_{V}\right)$ be a continuous function such that, for every polynomial $p=p(s)$, the set $\left(F^{-1}\{p\}\right) \cap S_{V}$ is non-empty. Then the assertion of Theorem 3 is true.

We note that, differently from Theorem 2, the approximated function in Theorems $3-5$ is not necessarily non-vanishing.

The aim of his note is to prove the following statement.

Theorem 6. Suppose that the number $\exp \left\{\frac{2 \pi k}{h}\right\}$ is irrational for all $k \in \mathbb{Z} \backslash\{0\}$, and that the function F is as in one of Theorems 3-5. Then, for arbitrary σ_{1} and σ_{2}, $\frac{1}{2}<\sigma_{1}<\sigma_{2}<1$, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}\right)>0$ such that the function $F(\zeta(s+i m h))$ has a zero in the disc

$$
|s-\hat{\sigma}| \leqslant \frac{\sigma_{2}-\sigma_{1}}{2}, \quad \hat{\sigma}=\frac{\sigma_{1}+\sigma_{2}}{2}
$$

for more than $c N$ numbers $m, 0 \leqslant m \leqslant N$.
First we will remind the Rouché theorem.
Lemma 1. Suppose that G is a region on the complex plane bounded by a closed continuous contour L. Let $f_{1}(s)$ and $f_{2}(s)$ be two analytic functions on G, and $f_{1}(s) \neq 0$ and $\left|f_{2}(s)\right|<\left|f_{1}(s)\right|$ on L. Then the functions $f_{1}(s)$ and $f_{1}(s)+f_{2}(s)$ have the same number of zeros on G.

Proof of the lemma can be found, for example, in [4].
Proof of Theorem 6. Let

$$
\sigma_{0}=\max \left(\left|\sigma_{1}-\frac{3}{4}\right|,\left|\sigma_{2}-\frac{3}{4}\right|\right)
$$

$f(s)=s-\hat{\sigma}$ and $0<\varepsilon<\frac{\sigma_{2}-\sigma_{1}}{20}$. Then, in virtue of Theorems 3-5, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}\right)>0$ such that, for sufficently large N,

$$
\begin{equation*}
\frac{1}{N+1} \sharp\left\{0 \leqslant m \leqslant N: \sup _{\left|s-\frac{3}{4}\right| \leqslant \sigma_{0}}|F(\zeta(s+i m h))-f(s)|<\varepsilon\right\}>c \text {. } \tag{1}
\end{equation*}
$$

The circle $|s-\hat{\sigma}|=\frac{\sigma_{2}-\sigma_{1}}{2}$ lies in the disc

$$
\left|s-\frac{3}{4}\right| \leqslant \sigma_{0} .
$$

Therefore, for m satisfying (1), we have that

$$
\max _{|s-\hat{\sigma}|=\frac{\sigma_{2}-\sigma_{1}}{2}}|F(\zeta(s+i m h))-(s-\hat{\sigma})|<\frac{\sigma_{2}-\sigma_{1}}{20}
$$

This shows that the functions $(s-\hat{\sigma})$ and

$$
F(\zeta(s+i m h))-(s-\hat{\sigma})
$$

satisfy the hypotheses of the Rouché theorem in the disc $|s-\hat{\sigma}| \leqslant \frac{\sigma_{2}-\sigma_{1}}{2}$. However, the function $s-\hat{\sigma}$ has precisily one zero $s=\hat{\sigma}$ in that disc. Therefore, by the Rouché theorem, the function $F(\zeta(s+i m h))$ also has one zero in the disc $|s-\hat{\sigma}| \leqslant \frac{\sigma_{2}-\sigma_{1}}{2}$. Since, in view of (1) the number of such $m, 0 \leqslant m \leqslant N$, is larger that $c N$, this proves the theorem.

References

[1] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht, 1996.
[2] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer, Dordrecht, 2002.
[3] A. Laurinčikas and J. Rašytė. On discrete universality of a composite function. Submitted.
[4] E.C. Titchmarsh. The Theory of Functions. Oxford University Press, Oxford, 1939.
[5] S.M. Voronin. Theorem on the "universality" of the riemann zeta-function. Math. USSR Izv., 9:443-453, 1975.

REZIUMĖ

Apie kai kuriu sudėtinių funkciju nulius
 Jovita Rašytė

Tarkime, $\operatorname{kad} \zeta(s)$, $s=\sigma+i t$, yra Rymano dzeta funkcija, $H(D), D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$, yra analiziniu funkciju srityje D erdvé, o $F: H(D) \rightarrow(D)$ yra tolydi funkcija. Straipsnyje gautas funkcijos $F(\zeta(s+i m h))$ nuliu skaičiaus ìvertis.
Raktiniai žodžiai: Rymano dzeta funkcija, universalumas.

