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On zeros of some composite functions
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Abstract. We obtain an estimate of the number of zeros for the function F (ζ(s+ imh)),
where ζ(s) is the Riemann zeta-function, and F : H(D) → H(D) is a continuous function,
D = {s ∈ C: 1

2
< σ < 1}.
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The distribution of zeros of zeta and L-functions is the central problem of analytic
number theory, and the results in the field allow to solve many other important
problems. For example, the location of non-trivial zeros of the Riemann zeta-function
ζ(s), s = σ + it, has a direct relation to the distribution of prime numbers. The best
result in this direction asserts that ζ(s) 6= 0 in the region

σ > 1−
c

(log |t|)
2

3 (log log |t|)
1

3

, |t| > t0 > 0,

where c > 0 is an absolute constant. We remind that the Riemann hypothesis says
that all non-trivial zeros of ζ(s) lie on the critical line σ = 1

2
, thus by this hypothesis,

ζ(s) 6= 0 in the half-plane σ > 1

2
.

There are the zeta-functions for which the Riemann hypothesis is not true. For
example, this holds for the Hurwitz-function ζ(s, α), 0 < α 6 1, defined, for σ > 1,
by

ζ(s, α) =

∞
∑

m=0

1

(m+ α)s
,

and by analytic continuation elsewhere. If α is a trancendental number, than [2]
ζ(s, α) has zeros in the strip 1

2
< σ < 1. Also, the derivative ζ′(s) has zeros in the

strip 0 < σ < 1.
For the investigation of zero-distribution of zeta-functions, universality theorems

can be applied. The first universality theorem for the Riemann zeta-function has been
proved by S.M. Voronin in [5]. The last version of this theorem is the following:

Theorem 1. Suppose that K is a compact subset of the strip D = {s ∈ C: 1

2
< σ < 1}

with connected complement, and f(s) is a continuous non-vanishing function on K

which is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ]: sup
s∈K

∣

∣ζ(s+ iτ)− f(s)
∣

∣ < ε
}

> 0.
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Here meas{A} denotes the Lebesgue measure of a measurable set A ⊂ R. The
proof of Theorem 1 is given, for example, in [1].

Also, a discrete version of Theorem 1 is known. Let h > 0 be a fixed number.

Theorem 2. Suppose that K and f(s) satisfy the hypotheses of Theorem 1. Then,

for every ε > 0,

lim inf
N→∞

1

N + 1
♯
{

0 6 m 6 N : sup
s∈K

∣

∣ζ(s+ imh)− f(s)
∣

∣ < ε
}

> 0.

In [3], certain discrete universality theorems were obtained for the composite func-
tion F (ζ(s)).

We recall some of them. Denote by H(D) the space of analytic functions on D

equipped with the topology of uniform convergence on compacte, and set

S =
{

g ∈ H(D): g−1(s) ∈ H(D) or g(s) ≡ 0
}

.

Theorem 3. Suppose that the number exp{ 2πk

h
} is irrational for all k ∈ Z \ {0},

and that F : H(D) → H(D) is a continuous function such that, for every open set

G ⊂ H(D), the set (F−1G ∩ S) is non-empty. Let K ⊂ D be a compact subset with

connected complement, and let f(s) be a continuous function on K which is analytic

in the interior of K. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
♯
{

0 6 m 6 N : sup
s∈K

∣

∣F
(

ζ(s+ imh)
)

− f(s)
∣

∣ < ε
}

> 0.

The next theorem is a simplification of Theorem 3.

Theorem 4. Suppose that the number h, the set K and the function f(s) satisfy the

hypotheses of Theorem 3, and that F : H(D) → H(D) is a continuous function such

that, for every polynomial p = p(s), the set (F−1{p}) ∩ S is non-empty. Then the

assertion of Theorem 3 is true.

Now let V be an arbitrary positive number. Define

DV =

{

s ∈ C:
1

2
< σ < 1, |t| < V

}

and

SV =
{

g ∈ H(DV ): g
−1(s) ∈ H(DV ) or g(s) ≡ 0

}

.

Theorem 5. Suppose that the number h, the set K and the function f(s) satisfy the

hypotheses of Theorem 3, and that V > 0 is such that K ⊂ DV . Let F : H(DV ) →
H(DV ) be a continuous function such that, for every polynomial p = p(s), the set

(F−1{p}) ∩ SV is non-empty. Then the assertion of Theorem 3 is true.

We note that, differently from Theorem 2, the approximated function in Theo-
rems 3–5 is not necessarily non-vanishing.

The aim of his note is to prove the following statement.
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Theorem 6. Suppose that the number exp{ 2πk

h
} is irrational for all k ∈ Z \ {0}, and

that the function F is as in one of Theorems 3–5. Then, for arbitrary σ1 and σ2,
1

2
< σ1 < σ2 < 1, there exists a constant c = c(σ1, σ2) > 0 such that the function

F (ζ(s+ imh)) has a zero in the disc

|s− σ̂| 6
σ2 − σ1

2
, σ̂ =

σ1 + σ2

2
,

for more than cN numbers m, 0 6 m 6 N .

First we will remind the Rouché theorem.

Lemma 1. Suppose that G is a region on the complex plane bounded by a closed con-

tinuous contour L. Let f1(s) and f2(s) be two analytic functions on G, and f1(s) 6= 0
and |f2(s)| < |f1(s)| on L. Then the functions f1(s) and f1(s) + f2(s) have the same

number of zeros on G.

Proof of the lemma can be found, for example, in [4].

Proof of Theorem 6. Let

σ0 = max

(
∣

∣

∣

∣

σ1 −
3

4

∣

∣

∣

∣

,

∣

∣

∣

∣

σ2 −
3

4

∣

∣

∣

∣

)

,

f(s) = s − σ̂ and 0 < ε < σ2−σ1

20
. Then, in virtue of Theorems 3–5, there exists a

constant c = c(σ1, σ2) > 0 such that, for sufficently large N ,

1

N + 1
♯
{

0 6 m 6 N : sup
|s− 3

4
|6σ0

∣

∣F
(

ζ(s+ imh)
)

− f(s)
∣

∣ < ε

}

> c. (1)

The circle |s− σ̂| = σ2−σ1

2
lies in the disc

∣

∣

∣

∣

s−
3

4

∣

∣

∣

∣

6 σ0.

Therefore, for m satisfying (1), we have that

max
|s−σ̂|=

σ2−σ1

2

∣

∣F
(

ζ(s+ imh)
)

− (s− σ̂)
∣

∣ <
σ2 − σ1

20
.

This shows that the functions (s− σ̂) and

F
(

ζ(s+ imh)
)

− (s− σ̂)

satisfy the hypotheses of the Rouché theorem in the disc |s − σ̂| 6 σ2−σ1

2
. However,

the function s− σ̂ has precisily one zero s = σ̂ in that disc. Therefore, by the Rouché
theorem, the function F (ζ(s + imh)) also has one zero in the disc |s − σ̂| 6 σ2−σ1

2
.

Since, in view of (1) the number of such m, 0 6 m 6 N , is larger that cN , this proves
the theorem. ⊓⊔

Liet. mat. rink. LMD darbai, 52:19–24, 2011.
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REZIUMĖ

Apie kai kurių sudėtinių funkcijų nulius
Jovita Rašytė

Tarkime, kad ζ(s), s = σ + it, yra Rymano dzeta funkcija, H(D), D = {s ∈ C: 1

2
< σ < 1},

yra analizinių funkcijų srityje D erdvė, o F : H(D) → (D) yra tolydi funkcija. Straipsnyje gautas
funkcijos F (ζ(s+ imh)) nulių skaičiaus įvertis.

Raktiniai žodžiai: Rymano dzeta funkcija, universalumas.
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