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Abstract. Two-dimensional parabolic equation with nonlocal integral boundary conditions
in a rectangle domain in this paper is solved by alternating direction method. To find the
solutions of this problem we are looking to solve a linear system of equations. This algorithm
is realized on particular example and assess the error of solution.
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Introduction

We consider boundary value problem of two-dimensional parabolic equation in rectan-
gular with two integral boundary conditions. We investigate boundary value problem
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Numerical methods for two-dimensional and three-dimensional parabolic equations
with nonlocal conditions are considered in many articles (for example [1, 2, 3, 4, 5, 6]).
The specifity of the problem (1)—(6) is that boundary conditions (5)—(6) include inte-
gral through entire domain (2. Integral condition of this type in more general form is

w(z, .t / K (z,y, &, n)u(€.n, £) d€ dn + p(z, y. 1), (7)
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when (x,y) € 9(2. Parabolic equation with this type of condition is solved in article [7]
by finite difference method when the kernel K (x,y,&,n) satisfies

J[K@vemdcan<p<r ayeon (8)
(9]

In our article assumption (8) is disposed. However, numerical experiment performed
by our method confirms, that K (z,y,£,n) should satisfy certain condition the differ-
ence scheme would be stable.

1 Numerical method

We apply alternating direction method for differential problem (1)—(6). So we have to
solve two systems of difference equations. First we consider one-dimensional problem
with boundary conditions:
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We solve it by using Thomas algorithm and find solution (n + %)-th layer of time.
Then we are looking for solution in (n + 1)-th layer of time from second difference
problem with nonlocal boundary conditions
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where gﬁrol and ggj]\l, depends on u&“, u’ﬁlrl, l=0,N, h= %, T= %, and

{1, 0N,
Pi= 12, j=0, j=N.

The main question is how to solve system of difference equations (13)—(15).
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Let’s rewrite equation (13) in the shorter way and have

au Ty — el 4 bult = FY (16)
where a = 575, b= 557, ¢c=1+ 37 and ¢ > a+0.
Solution of the equation (16) is taken as following
n n 1)ntt n 2)ntt o)yntt .
ultt = T T W@ =012, N, (17)
where u(-jl-) and u(2) are two solutions of homogeneous system (13) with boundary
conditions u( ) = =1, S\; = 0, and u( ) = 0, (2) =1, and u( ) is solution of the

system (13) with u(g) = ui?v) 0.

Remark 1. ¢t and ¢4 should be choosen in the way boundary conditions (14)
and (15) Would be correct.

So ¢t = utt and eyt =l
We again rewrite expresion (17) as

uzﬂ = u?oﬂu(l) + ufﬁlu@) + u(o)Hl. (18)

When we put (18) to conditions (14) and (15) recieving 2(N — 1) linear algebraic
equations
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with 2N — 2 unknowns u%‘l uZ]‘Cl, k=1,N — 1. We rewrite equations (19) and (20)
in the form of matrix equation:

Au=F, (21)
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Here

N N
a=h? Z plul(l), B = h? Z plul@). (22)
=0 =0

We apply Gausian elimimation method for solving the system of equations (21) and
obtain solutions u}i " and u}'%' (k = 1,N —1). The solutions u}{' and u}:l'" (k =
1, N — 1) we put into equation (18) and then find solution we were looking in (n+1)-th
layer of time.

2 Numerical experiment

The method considered in this paper for the solution of the system of difference
equations is applied for solving of testing example (1)—(6) with v3(z, &) = vys3(z) and
Ya(z, &) = v4(x). Choosing appropriate functions f(z,y,t), o(x,y), p1(y,t), pe(y,t),
us(z,t), pa(z,t), v3(z) and y4(z) the solutions would be u(z, y,t) = sin(wz) sin(mry)e?.
The accuracy of solution depends on the selection of functions v3(x) and v4(x). Errors

of solution u%ﬂ (i,j = 1,N — 1) are given in four tables, with functions ~s(x) and
Y4(2).
Here
o= 2 ol = g, o ) — | @

The results of numerical experiment shows, that difference scheme is stable (Table 1),
when

Iyl < 1, Iyl < 1. (24)

The similar conclusion was derived in some other papers, where more simple non-
local conditions were considered [5, 7]. However our difference scheme is stable even
in the case, when 3 and 74 don’t satisfy conditions (24) but at the same time are
negative (Table 2).

Furthermore, taken with some positive values of 73 and 74, not satisfy condi-
tions (24) the errors of the solutions in the case of T = 1, also are of the order

Table 1.
h : 0.2 0.1 0.05 0.025
T : 0.1 0.025 0.00625 0.0015625
Eu
v3(z) =0, va(z) =0 : 0.5476 0.1485 0.0369 0.0092
v3(z) =1, ya(z) =1 : 0.5762 0.1567 0.0391 0.0098
v3(z) = e*, ya(z) = 0.1e* : 0.5809 0.1556 0.0388 0.0097
Table 2.
h 0.2 0.1 0.05 0.025
T 0.1 0.025 0.00625  0.0015625
Eu
v3(z) = —2e%, y4(z) = —10e* : 0.5271 0.1408 0.0350 0.0087
v3(z) = =5, va(z) = —10 ¢ 0.5245  0.1412  0.0351 0.0088
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Table 3.
h © 02 0.1 0.05 0.025
T © 01 0.025  0.00625 0.0015625
Eu
v3(z) =5, ya(z) = —0.3  : 317.393 6.224  1.065 0.236
ya3(z) = 2.3, ya(x) =23 : 36578  1.9426 0.3964  0.0940
Table 4.
h © 02 0.1 0.05 0.025
T : 0.1 0.025 0.00625 0.0015625
Eu
v3(x) =5, ya(x) =1 : 15035 4.531 x 106 2.895 x 10°  6.736 x 10*
ya(x) = 2%, ya(x) = e® :  1.229 x 103 18.754 16.950 5.419

O(7 + h?) (Table 3). But with the growth of T, the scheme generally becomes unsta-
ble. Moreover, in the case of sufficiently big meanings of 3 and 4 the instability of
the difference scheme could be seen even, then T'=1 (Table 4).

3 Conclusions

The numerical experiment based on the method provided in this paper was performed
with various meanings of 3 and 74 investigating the influence of these parameters on
the stability of the difference scheme. It was proven in the papers [8] that stability
of the difference scheme depends on the structure of the spectrum of matrix of this
scheme. It was shown, that in the case of more simple nonlocal conditions (see [5]) the
difference scheme might be stable with considerably big in absolute values negative
meanings of v3 and 4. In our case, considering the results of the numerical experi-
ment, this characteristic was observed. More precised conclusions about the stability
of the difference scheme could be obtained investigating the spectrum of the system
of difference equations.
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REZIUME

Dvimatés parabolinés lygties su dviem nelokaliosiomis integralinémis salygomis
sprendimas
K. Jakubéliené

Straipsnyje iSnagrinétas dvimatés parabolinés lygties su nelokaliosiomis integralinémis krastinémis
salygomis sprendimas kintamyjy krypciy metodu. Uzdavinio sprendinj randame iSsprende¢ tiesing
lygciy sistemsg. Pateikti skaitinio eksperimento rezultatai.

Raktiniai Zodziai: dvimaté paraboliné lygtis, nelokalioji integraliné salyga, baigtiniy skirtumy meto-
das, kintamyju krypciy metodas.
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