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−
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1 Introduction

Temporal logic is a special type of modal logic. It provides a formal system for
qualitatively describing and reasoning about how the truth values of assertions change
over time. Propositional linear discrete time logic PLTL with temporal operators
“next” and “always” is considered in the present paper.

Various syntactical proof-search systems are used for PLTL. Some of them are:

• Sequent calculi with the invariant rule

Γ → ∆, I; I → ©I; I → A

Γ → ∆,�A
(→ � I),

[10, 11]. There are some interesting works in which invariant-free (and cut-free)
calculi for PLTL are constructed [3, 6].

• Sequent calculi with the infinitary rule

Γ → ∆,A;Γ → ∆,©A; . . . ;Γ → ∆,

n
︷ ︸︸ ︷
© . . .©A; . . .

Γ → ∆,�A
(→ �ω),

[12]. There are some interesting works concerning finitization of ω-type rule
(→ �ω) (see, e.g., [4]).

• Proof procedures containing loop-type axioms for logics sub-logic of which is
propositional temporal branching time logic [9].

• Labeled sequent calculi [1, 2].

• Resolution-type proof procedures based on formulas in some normal form, see,
e.g., [5].

http://www.mii.lt/LMR/
mailto:romas.alonderis@mii.vu.lt
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2 R. Alonderis

In the present paper a labeled sequent calculus LSC is presented. Its sub-calculus
LSC

−

TL
is proved to be complete for some easily defined but large class of PLTL

sequents. Unlike the other deductive systems mentioned above, calculi LSC and
LSC

−

TL
are loop-axiom and invariant and infinitary rule free, which allows to construct

effective proof-search procedures based on the calculi.

2 Syntax

Formulas are defined in the traditional way.
Formulas of the shape xk : A, where k ∈ {0} ∪ N (in particular, x0 = x) and A

is a formula, are called labeled formulas, l-formulas for short; x is called a label or
a variable and k its power. Labels/variables are denoted by u, x, y, z, w and the
corresponding powered labels by uk, xk, yk, zk, and wk. The intended meaning of
‘x : A’ is “A holds at some moment of time x” and that one of ‘xk : A’ is “A holds at
the k-th from x moment of time”.

Expressions mn : A, where m,n ∈ {0} ∪ N , are called fixed-label formulas and
‘mn’ fixed labels.

One more type of formulas is xm 6 ym, where m > 0. Such formulas are called
order atoms.

Sequents are objects of the type Γ → ∆, where Γ and ∆ are some finite multisets
of formulas.

Labeled sequents, l-sequents for short, are objects of the type Γ → ∆, where Γ is
some finite multiset of labeled formulas and order atoms; the same for ∆ except that
order atoms do not occur in it.

3 Semantics

Kripke semantics of PLTL is defined as follows.
({0} ∪N ×P)

τ
7→ {⊤,⊥}, where P is the set of propositional variables.

({0} ∪ N × F)
φ
7→ {⊤,⊥}, where F is the set of formulas and φ is defined in the

following way.

1. φ(i, E) = τ(i, E), where E is an atomic formula;

2. φ(i, A) is defined in the common way if A is of the shape ¬B or BθC, where θ
is a logical connective;

3. φ(i,©A) = ⊤ iff φ(i + 1, A) = ⊤; otherwise, φ(i,©A) = ⊥;

4. φ(i,�A) = ⊤ iff φ(j, A) = ⊤ for all j such that j > i; otherwise, φ(i,�A) = ⊥.

Some more notation:

(1) (ik : A) = φ(i+ k,A);

(2) |= ik : A iff (ik : A) = ⊤ for any φ;

(3) |= xk : A iff |= ik : A for all i > 0;

(4) |= A iff φ(i, A) = ⊤ for all i > 0 and every φ

here A is a label free formula, k > 0, and ‘|=’ denotes validity.
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A labeled sequent calculus for propositional linear time logic 3

L
ν
7→ ({0} ∪N), where L is the set of labels.

The stable sequent Sν is obtained from S by substituting every label xi by ν(xi).

Sν
ς
7→ {⊤,⊥}, where Sν is the class of stable sequents and ς is defined as follows:

if

S = xi1
1 : A1, . . . , x

ik
k : Ak → x

ik+1

k+1
: Bk+1, . . . , x

ik+m

k+m : Bk+m,

then ς(Sν) = ⊤, iff there are φ, ν, and t, where 1 6 t 6 (k +m), such that (ν(xt)
it :

At) = ⊥ or (ν(xt)
it : Bt) = ⊤. Otherwise, ς(Sν) = ⊥.

A stable sequent Sν is valid, denoted by |= Sν , iff ς(Sν) = ⊤ for any τ .

A stable sequent Sν is an axiom if it is of the shape Γ, lk : E → mn : E,∆, where
l + k = m+ n.

A labeled sequent S is valid, |= S in notation, iff every stable sequent obtained
from S is valid.

4 Labeled sequent calculi LSC and LSC
−

TL

The labeled sequent calculus LSC for PLTL is defined as follows:

1. Axioms:

Γ, xk : E → xk : E,∆,

where E is an atomic formula.

2. Logical rules:

xk : A, xk : B,Γ → ∆

xk : A ∧B,Γ → ∆
(∧ →),

Γ → xk : A,∆; Γ → xk : B,∆

Γ → xk : A ∧B,∆
(→ ∧),

xk : A,Γ → ∆; xk : B,Γ → ∆

xk : A ∨B,Γ → ∆
(∨ →),

Γ → xk : A, xk : B,∆

Γ → xk : A ∨B,∆
(→ ∨),

Γ → xk : A,∆

xk : ¬A,Γ → ∆
(¬ →),

Γ, xk : A → ∆

Γ → xk : ¬A,∆
(→ ¬),

Γ → xk : A,∆; xk : B,Γ → ∆

xk : A ⊃ B,Γ → ∆
(⊃→),

Γ, xk : A → xk : B,∆

Γ → xk : A ⊃ B,∆
(→⊃).

Here A and B arbitrary formulas.

3. Temporal rules:

Γ → xk+1 : A,∆

Γ → xk : ©A,∆
(→ ©),

xk+1 : A,Γ → ∆

xk : ©A,Γ → ∆
(© →),

x 6 y, Γ → yk : A,∆

Γ → xk : �A,∆
(→ �),

yk+m : A, xk+m 6 yk+m, xk : �A,Γ → ∆

xk+m 6 yk+m, xk : �A,Γ → ∆
(� →).

Here k,m > 0; y in (→ �) does not occur in the conclusion.

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 1–6.
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4 R. Alonderis

4. Rules for order atoms:

x 6 x, Γ → ∆

Γ → ∆
Ref,

xk+1 6 yk+1, xk 6 yk, Γ → ∆

xk 6 yk, Γ → ∆
Fwd+1,

x 6 z, x 6 y, y 6 z, Γ → ∆

x 6 y, y 6 z, Γ → ∆
Trans,

y 6 z, x 6 y, x 6 z, Γ → ∆; z 6 y, x 6 y, x 6 z, Γ → ∆

x 6 y, x 6 z, Γ → ∆
Lin.

Here x, y, z are unequal in pairs in Trans and Lin; x 6 x does not occur in Γ
in Ref; xk+1 6 yk+1 does not occur in Γ in Fwd; x 6 z does not occur in Γ in
Trans; In Lin, neither y 6 z nor z 6 y occur in Γ neither can be obtained by
some backward applications of Trans.

The calculus LSC
−

TL
is obtained from LSC by dropping Trans and Lin.

A formula F is called derivable in the labeled sequent calculus LSC (LSC−

TL
) iff

LSC (LSC−

TL
) ⊢→ x : F .

A sequent S is called derivable in LSC (LSC−

TL
) iff LSC(LSC−

TL
) ⊢ x : S.

The Hilbert-style calculus HSC for PLTL is defined by axioms:
A0: propositional tautologies; A1: ©¬p ≡ ¬©p;
A2: ©(p ⊃ q) ⊃ (©p ⊃ ©q); A3: �(p ⊃ q) ⊃ (�p ⊃ �q);
A4: �p ⊃ p; A5: �p ⊃ ©�p; A6: p ∧ �(p ⊃ ©p) ⊃ �p;

and derivation rules:
p

©p
©,

p

�p
�,

p, p ⊃ q

q
mp,

where p and q are arbitrary PLTL formulas. It is well known that this calculus is
sound and complete for PLTL, see, e.g. [7].

5 Some Properties of LSC and LSC
−

TL

Lemma 1. If LSC (LSC−

TL
) ⊢V S, then LSC (LSC−

TL
) ⊢V ′

S(w/u) and h(V ′) 6

h(V ), where S(w/u) is obtained from S by substituting the label w for the label u.

A rule is height-preserving admissible if, whenever its premiss(es) is (are) derivable,
also its conclusion is derivable with the same bound on the derivation height.

Lemma 2. The rule of weakening

Γ → ∆

Γ ′, Γ → ∆,∆′
(w)

is height-preserving admissible in LSC and LSC
−

TL
.

A rule is height-preserving invertible if, whenever its conclusion is derivable, also
its premiss(es) is (are) derivable with the same bound on the derivation height.

Lemma 3. All LSC rules are height-preserving invertible in LSC, and all LSC−

TL

rules are height-preserving invertible in LSC
−

TL
.
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A labeled sequent calculus for propositional linear time logic 5

Lemma 4. The rules of contraction

C,C, Γ → ∆

C,Γ → ∆
(c →) and

Γ → ∆,C,C

Γ → ∆,C
(→ c)

are height-preserving admissible in LSC and LSC
−

TL
.

A sequent S is called proper if the fact that xk 6 yk occurs in S, where k > 0,
implies that x0 6 y0 occurs in S.

Theorem 1. The rule of cut

Π → C,Λ;C, Γ → ∆

Π,Γ → Λ,∆
cut

is admissible in LSC and LSC
−

TL
, where the premisses are proper.

Lemma 5. All LSC rules are correct: if the premise(s) is (are) valid, then so is the

conclusion. In addition, if the conclusion is valid, then so is (are) the premise(s).

Lemma 6. Any labeled sequent of the shape Γ, x : A → x : A,∆ is derivable in LSC

and LSC
−

TL
.

Theorem 2. HSC ⊢d F implies LSC−

TL
⊢→ x : F , where the induction axiom A6 is

not used in d.

If Γ = A1, . . . , An, then θΓ = (A1θ . . . θAn), where θ ∈ {∧,∨}. If S = Γ → ∆,
then F (S) = ¬(∧Γ ) ∨ (∨∆).

By Theorem 2 and invertibility of the rules (→ ∨), (¬ →), and (∧ →), LSC−

TL
is

complete for sequents S = Γ → ∆ such that F (S) is derivable in HSC without using
the axiom A6.

An example of non-derivable in LSC
−

TL
formula is

�A ⊃ ��A.

Theorem 2 implies that this formula is not derivable in HSC without the axiom A6.
This formula is derivable in LSC.

Some examples of non-derivable in LSC formulas are

(A ∧ ©�A) ⊃ �A and
(
A ∧ �(A ⊃ ©A)

)
⊃ �A.

We get by Theorem 2 that these formulas are not derivable in HSC without A6.
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REZIUMĖ

Žymėtas sekvencinis skaičiavimas propozicinei tiesinio laiko logikai
R. Alonderis

Darbe yra pateiktas žymėtas sekvencinis skaičiavimas propozicinei tiesinio laiko logikai. Įrodyta,
kad šis skaičiavimas yra pilnas tam tikros nagrinėjamos logikos sekvencijų klasės atžvilgiu.

Raktiniai žodžiai: žymėtas sekvencinis skaičiavimas, laiko logika.
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