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Abstract. A mathematical model of dissociative adsorption and associative desorption
for diatomic molecules is considered. The model is described by a system of parabolic
and ordinary differential equations. The existence and uniqueness theorem of the classical
solution is proved.
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1 Introduction

According to Langmuir a unimolecular heterogeneous catalytic reaction can be mod-
eled by the reaction of the Michaelis—Menten type

A+ K= AK 3 B,

K1

where k and kq are adsorption and desorption rate constants, ko is a constant of
adsorbate and catalyst compound AK reaction (conversion into product B) rate.
When the adsorbate diffusion is not taken into account, reactant diffuses to a sur-
face from a bounded domain and product desorption is fast or slow the existence
and uniqueness theorems of classical solutions are proved in [2] and [1], respec-
tively. In [6], these problems are solved numerically. The case where the reactant
diffuses in an unbounded domain, the adsorbent is planar, cylindrical or spheri-
cal, the adsorbate cannot diffuse along the catalyst surface and desorption of the
product is instantaneous is considered in [3]. Authors of this paper reduce the
problem into a nonlinear Voltera-type integral equation, which they solve numeri-
cally. In [7], taking into account the surface diffusion of the adsorbate and product
(before its slow desorption) unimolecular surface reactions are examined numeri-
cally.

* Authors are thankful to Prof. V. Skakauskas for formulation of the problem and fruitful dis-
cussions. This work has been supported by the Lithuanian Council of Science (Grant No MIP-
052/2012).
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2 Statement of the problem

In [4], a model of dissociative adsorption and associative desorption for a diatomic
reactant is presented. This process is modeled by formula

Ay +2K = 24K, (1)
K1

where £ and & are adsorption and desorption rate constants. According to this
scheme a diatomic molecule of the reactant A, interacts with two active sites of the
catalyst K forming adsorbate 2AK which during desorption releases two active sites.
Suppose, the reactant occupies a bounded domain 2 C RP, p > 3, a = a(x,1)
is the concentration of reactant at the point x € (2 at time ¢, S := 02 is p — 1
dimension surface, So is a closed part of surface S of the same dimension (surface
of the adsorbent), S; = S\S2. Let p = p(x) be a concentration of active sites of
a surface S at point x € S, p € C(S), p(x) > 0 for x € S, p(x) = 0, for x € 5.
Suppose, pf = p(z)f(x,t) is a concentration of active sites of a surface occupied by
the adsorbate (then p(z)(1—0(x,t)) is a concentration of free active sites of surface S)
at the point x € Sy at time ¢. From (1) and the law of mass action we have Cauchy

problem for function 6

0 = arp(l — 0)* — k1pd?, t € (0,T), 0i=0 = Oo(z), © € Sa, (2)

where 0/ = df/dt, k = 2, k1 = 2Ry, 0 < Op(x) < 1, Vz € Ss.

Note that this equation is nonlinear with respect to 6, while the corresponding
equation for 6 used in [2, 1] is linear.

The diffusion of reactant Ay can be described by the problem

a; — kAa =0, x e, te(0,T),

kda/on = 0, x e Sy, te(0,7),

kda/On + kap?*(1 — 0)? = k1p*0%, = € Sq, t € (0,T], ®)
ali=o = ap(x), x € 0,

where a; = da/0t, k = const > 0 is a diffusion coefficient, Aa = Y"1 | ag,4,, a/On is
the outward normal derivative to S, ap = ag(x) is the initial concentration of reactant
at point z € 0.

Hence, mathematical model of dissociative adsorption and associative desorption
for diatomic molecules is a coupled system (2) and (3).

3 Main results
Suppose, that surface S and known functions ag, 6y and p satisfy following conditions:

Assumption 1.
1.Sec*e ae(0,1),

2.8 =51US8,, S is a closed part of surface S of n — 1 dimension.
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Assumption 2.

1.ag € C(2), ap(x) =0, Vz € 02,

2.0y € C(S2), 0 < Og(x) <1,V € 59,

3. pe C(S2),

4. ap is a continuously differentiable function in any neighbourhood of surface S.
Definition 1. We say that functions a and 6 are classical solutions to (2), (3), if

l.a € CHY N2 x (0,T))NC (2 x [0,T)),

2.0 € C%(Sy x (0,T))NC(Sy x [0,T]),

3.0a/0n € C(S1 x[0,T))UC(S2 x [0,T7)).

The main result of the present paper is the following theorem:

Theorem 1. Let surface S and known functions ag, 0y and p satisfy conditions of
Assumptions 1 and 2. Then problem (2), (3) has a unique classical solution.

The proof of this theorem is based on the heat potential theory and a priori
estimates of solutions to problem (2), (3). We prove the following proposition.

Lemma 1. Let a € C(S2 x [0,T)), a(z,t) > 0, V(x,t) € Sz x [0,T], 6y € C(S2),
0 < O(x) <1, Vo€ Sy and 0 be a solution of Cauchy problem (2). Then

0<0(x,t) <1, VzeSy, telo,T]. (4)
Proof. We multiply equation (2) by elo r1p0(@,9)ds anq rewrite it as follows
(H(x,t)ef(f rw1p(2)0(x,s) dS)’ — /@p(ac)a(x,t)(l — 0(, t))Qefg r1p(2)0(z,s) ds
By integrating latter equation from 0 to ¢, we get the integral equation
0(x,t) = 0o (x)e™ [ kip(2)0(a,s) ds

t
+ e Jo rap(@)0(@s) ds/ kp(x)a(e, 1) (1 — O(z, 7)) el mr@0@s)ds g
0

Similarly, we multiply equation (2) by elo ro(@)a(z,9)(1-0(x.5)) ds gpq get the integral
equation

Q(x,t) -1 _ (1 o 90(1’))67 f(f rkp(z)a(z,s)(1—0(z,s))ds

t
e s ~p<x>a<x,s><1—e<x,s>>ds/ k1 p(@)02 (2, 5)e 1§ p@a(e)1=0G) ds g
0

According to these integral equations and conditions of lemma, estimates (4) are true.
Lemma is proved.
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Corollary 1. Let 0 be a solution of Cauchy problem (2). Then

where m = Max(; e s, x[0,7) a(x,t).

Proof. Set

Then Cauchy problem (2) can be rewritten:

90 ($)

v = Kkpa — K1pu?, Ulgmo = T bo@)

For any fixed value x € Sy function u € C[0, T]. Hence, there exists a point t* € [0, T']
at which function v has its maximum value. If t* = 0, then

u(z,t) < u(x,0) = %, vt € [0,T].

If t* > 0, then v'(x,t*) > 0, and

ka(xz,t) _ Kkm

2 2 *
1) < ) <
W (o0) < (e, ) < TADY

where m = max,ecg,, tejo,r] a(z,t). According to these inequalities, estimate (5) is
true.

Lemma 2. Let € C'(S2 x [0,T]), 0 < 0(x,t) <1, Vo € Sy, t € [0,T]. Moreover, let

agp € C(92), ap(x) =0, Vo € 2 and a be a classical solution to problem (3). Then

0 < alz,1) <max{mag<ao(ac), ax A (Lﬂ)r} (6)

zc0 zes?,lte[o,T] K\ 1— O(x,t
forallx € 2, t€[0,T).

Proof. Let the conditions of lemma be satisfied and a be a classical solution of prob-
lem (3). Then

a; —kAa=0, ze, te(0,T),
kda/on =0, x€ Sy, tel0,T],
kda/on + kp*(1 — 0)%a = k1p?0* >0, 2 €Sy, t€0,T],
ali—o = ap(z) =20, z €.

By using the positivity lemma (see [5, Lemma 2.1, p. 54]), we get, that a(z,t) > 0
V(x,t) € £2 x[0,T).
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Set

K1 O(x,t) 2
A =max{ maxag(z), max —-— "—
zeR z€8s,t€[0,7] k \1—0(z,t)
and p = A — a. Then

—kAp=0, xze€, te(0,7T),
kOp/On =10, x€ S1, t€][0,T],

2
kop/on + kp*(1 — 0)*p = kp*(1 — 0)? <A d (—1 b 9> > >0,
K —
plico = A —ag(x) =0, z €.

According to positivity lemma, we can state, that p(x,t) > 0, Vz € 2, t € x[0,T].
Hence, a(z,t) < A and Lemma 2 is proved.

Remark 1. This lemma can also be proved using the same technique as in [2].

The proof of uniqueness of the classical solution is analogous to the proof of the
same proposition in [2] (with trivial changes).

Now we give the scheme for the proof of the existence of the classical solution.

Let 29 = (2, if ag = 0 in any neighbourhood of surface S, and 2y D 2, if ag is
continuously differentiable in any neighbourhood of surface S. In the last case, we
extend function ag on 2y \ 2 preserving the same smoothness.

Let

t
ai(xvt) = /O/SF(IatafaT)cpi(gaT) ng d7'+ /.Q F(:c,t,{,())ao(é) dfa 1= 1a27 s

be a solution to problem (3) with § = 6;_; and 6; a solution to problem (2) with
a = a;, where
1 o —y|?

e = Gy T T

is a fundamental solution to heat transfer equation (3) and ; is a solution to the
integral equation

//(6f T )+k (1,8, 0i-1)1" (n,tvé,r))soi(g,r)dsgdf

ony,

- %wn,t,&;n - [ (PR o017 0..0) o)
20

ony,

in cylinder S x [0,7],

B 0, if (x,t) € 51 x [OvT]’
ot = { o e, i (o) € Sox 0]
0, if (z,t) € S1 x [0,T],

Y =1(z,t,0) = {mp 2(2)0%(z,t)g(x, 0(x, 1)), if (z,t) € Sy x [0,T).

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 7-12.
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Finally, we get sequences: {a;}2;, {0;}52,. Similarly as in [2], we prove that sequence
{a;}22, converges uniformly to its limit function a, a € C*(£2 x (0,T])NC (2 x [0,T))
and this function is a classical solution to problem (3), sequence {6;}5°, converges
uniformly to its limit function 6, 8 € C([0,T] x S2), ¢ € C((0,T] x S2) and 0 is a
solution to Cauchy problem (2).
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REZIUME

Apie vieng disociatyviosios adsorbcijos ir asociatyviosios desorbcijos matematinj
modelj
A. Ambrazevicius, A. Eismontaité

Nagrinéjamas dviatomiy molekuliy disociatyviosios adsorbcijos ir asociatyviosios desorbcijos matem-
atinis modelis, aprasomas susieta paraboliniy ir paprastyjy diferencialiniy lygciy sistema. [rodoma
klasikinio sprendinio egzistavimo ir vienaties teorema.

Raktiniai Zodziai: Parabolinés ir paprastosios diferencialinés lygtys, pavirsinés reakcijos.
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