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Abstract. For the linear combinations of order statistics (L-statistics), we present con-
ditions sufficient for the consistency of their finite-population bootstrap variance estimator
and the classical jackknife variance estimator.
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1 Results

Let X = {x1, . . . , xN} denote measurements of the study variable x of the popula-
tion {1, . . . , N}. Let X = {X1, . . . , Xn} denote measurements of units of the simple
random sample of size n < N drawn without replacement from the population. Let
X1:n 6 · · · 6 Xn:n denote the order statistics of X. Define the L-statistic

Ln = Ln(X) =
1

n

n
∑

j=1

cjXj:n,

and define its normalized version

Sn = Sn(X) = n1/2(Ln −ELn). (1)

Here c1, . . . , cn is a given sequence of real numbers called weights. It is convenient
(and always possible) to determine these weights by a weight function J : (0, 1) → R

as follows:

cj = J

(

j

n+ 1

)

, 1 6 j 6 n.

Denote σ̃2
n = VarSn.

Note that for correct formulation of any statement on the consistency of finite pop-
ulation statistics, we need to consider a sequence of populations Xr = {xr,1, . . . , xr,Nr

},
with Nr → ∞ as r → ∞, and a sequence of statistics Lnr

(Xr), based on simple ran-
dom samples Xr = {Xr,1, . . . , Xr,nr

} drawn without replacement from Xr. In order
to keep the notation simple, we shall skip the subscript r in what follows. Denote
n∗ = min{n,N − n}. Then the population size N and the sample size n tend to
infinity as n∗ → ∞.
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20 A. Čiginas

The bootstrap estimator of variance. We consider here the finite population boot-
strap of [5]. It is important to mention that there are more adaptations of Efron’s
bootstrap to the case of finite populations, see, e.g., [1, 6, 12, 14]. Write N = mn+ t,
where 0 6 t < n. The empirical population X ∗ is defined by taking m copies
Xj = {Xj1, . . . , Xjn}, 1 6 j 6 m of X and, if t > 0, drawing the simple random
sample Y = {Y1, . . . , Yt} of size t without replacement from X. If t = 0, then put
Y = ∅. Then

X ∗ =

(

m
⋃

j=1

Xj

)

∪ Y. (2)

For the population parameter of interest σ̃2
n = σ̃2

n(X ), the bootstrap estimator is then
defined as the conditional expectation

σ̃2
nB = E

(

σ̃2
n

(

X ∗
) ∣

∣ X
)

, (3)

i.e., the expectation is taken over all
(

n
t

)

empirical populations conditional on X.

Theorem 1. Assume that n∗ → ∞ and σ̃n > c1 > 0 for all n∗. Suppose that EX2
1 6

C1 < ∞ for all n∗ and that J(·) is bounded and satisfies the Hölder condition of order
δ > 1/2 on (0, 1). Then

σ̃2
nB

a.s.
−−→ σ̃2

n as n∗ → ∞.

Let us mention that asymptotic properties of the bootstrap variance estimator for
in a sense similar statistics (U -statistics) were studied in [3]. In the case of L-statistics,
an exact approximation to σ̃2

nB is proposed in [8], i.e., the error is eliminated, which
typically appears in resampling approximations of (3).

In the case of the m out of n bootstrap (independent and identically distributed
(i.i.d.) observations), a similar result obtained in [10].

The jackknife estimator of variance. We define the jackknife variance estimator
of (1) in the same way as it is done in [4] for symmetric finite population statistics:
consider the extended sample X1 = {X1, . . . , Xn+1} drawn without replacement from
the population; then

σ̃2
nJ =

(

1−
n

N

) n+1
∑

k=1

(S(k) − S)2, S =
1

n+ 1

n+1
∑

k=1

S(k).

Here S(k) = Sn(X1\{Xk}), 1 6 k 6 n+1. In comparison to the classical Quenouille–
Tukey estimator in the case of independent observations, σ̃2

nJ additionally includes
the finite population correction factor.

Theorem 2. Assume that n∗ → ∞ and σ̃n > c1 > 0 for all n∗. Suppose that, for
some θ > 0, E |X1|

2+θ
6 C1 < ∞ for all n∗ and that J(·) is bounded and satisfies the

Hölder condition of order δ > 1/2 on (0, 1). Then

σ̃2
nJ

P
−−→ σ̃2

n as n∗ → ∞.

In the case of finite population symmetric statistics, properties of σ̃2
nJ were studied

in [2] (see also [4]). In the proof of Theorem 2, we apply some of these general results.
For a comparison with the i.i.d. case, see [11]. See also [13].
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2 Proofs

Proof of Theorem 1. Since L-statistic is a symmetric statistic (symmetric function
of observations), results on the Hoeffding decomposition from [4] are applicable, i.e.,
we write Sn = U1 + R1, where U1 =

∑n
i=1 g1(Xi) is a linear statistic and R1 is a

remainder term. More specifically, by [4], the components U1 and R1 are centered
and uncorrelated, and, see [9], for 1 6 k 6 N ,

g1(xk) = −n−1/2
N−1
∑

i=1

(

I{i > k} −
i

N

)

ai △i, (4)

with

ai = aN,n,i =

n
∑

j=1

cj

(

i− 1

j − 1

)(

N − i− 1

n− j

)(

N − 2

n− 1

)−1

,

where it is assumed that, without loss of generality, x1 6 · · · 6 xN . Here we denote
△i= xi+1 − xi and I{·} is the indicator function. Since J(·) satisfies the Hölder
condition of order δ > 1/2 on (0, 1), we have |cj − cj−1| 6 B(n + 1)−δ, for some
finite constant B > 0. By Theorem 1 of [4] we have ER2

1 6 δ2(Sn). Here δ2(Sn) =
E(n∗D2Sn)

2, where

D2Sn = Sn

(

X2\{Xn+1, Xn+2}
)

− Sn

(

X2\{X1, Xn+2}
)

− Sn

(

X2\{X2, Xn+1}
)

+ Sn

(

X2\{X1, X2}
)

with the extended sample X2 = {X1, . . . , Xn+2}, see [4]. Since it is proved in [7, p. 42]
that

δ2(Sn) 6 24B2 n2
∗n

−1

(n+ 1)2δ
VarX1, (5)

we get
ER2

1 6 24B2n1−2δ
VarX1. (6)

Next, we conclude from σ̃2
n = VarU1 + VarR1 and the conditions of the theorem

that
σ̃2
n −−→ VarU1 as n∗ → ∞. (7)

Consider bootstrap population (2) and draw a simple random sample without
replacement X∗ = {X∗

1 , . . . , X
∗
n} from this population. Then the bootstrap estimator

of statistic (1) is S∗
n = Sn(X

∗). We analogously decompose S∗
n = U∗

1 +R∗
1, with U∗

1 =
∑n

i=1 g1(X
∗
i ), where the possible realizations g1(x

∗
k), 1 6 k 6 N of g1(X

∗
1 ) are based

on the bootstrap population X ∗ = {x∗
1, . . . , x

∗
N}. Then, by (6), we get E(R∗2

1 | X,Y) 6
24B2n1−2δ

Var(X∗
1 | X,Y), and then, taking the conditional expectation given X, we

obtain
E
(

R∗2
1

∣

∣ X
)

6 24B2n1−2δh(X), (8)

where we denote h(X) = E[Var(X∗
1 | X,Y) | X]. Let us establish an asymptotic

behaviour of h(X) as n∗ → ∞. We have

Var
(

X∗
1

∣

∣ X,Y
)

=
1

N2

∑

16k<l6N

(

x∗
l − x∗

k

)2

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 19–23.
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and find that, for 1 6 i 6= j 6 n,

pklij = P
{

x∗
k = Xi, x

∗
l = Xj

∣

∣ X
}

=
m2

N(N − 1)
P{Xi, Xj /∈ Y | X}

+ 2
m(m+ 1)

N(N − 1)
P{Xi ∈ Y, Xj /∈ Y | X}+

(m+ 1)2

N(N − 1)
P{Xi, Xj ∈ Y | X}

=
m2(n− t)(n− t− 1) + 2m(m+ 1)t(n− t) + (m+ 1)2t(t− 1)

N(N − 1)n(n− 1)

=
N(N −m)− (m+ 1)t

N(N − 1)n(n− 1)
.

Therefore, we obtain

h(X) =
1

N2

∑

16k<l6N

[

∑

16i6=j6n

(Xj −Xi)
2pklij

]

=
N(N −m)− (m+ 1)t

N2

1

n− 1

n
∑

i=1

(Xi −X)2,

where X = n−1
∑n

i=1 Xi. It follows from here and by the law of large numbers that

h(X)
a.s.
−−→ VarX1 as n∗ → ∞. (9)

Thus, by (8) and from σ̃2
nB = Var(U∗

1 | X) +E(R∗2
1 | X), we get

σ̃2
nB

a.s.
−−→ Var

(

U∗
1 | X

)

as n∗ → ∞. (10)

Since, by (2.6) in [4], VarU1 = n(N − n)σ2
1/(N − 1), where σ2

1 = E g21(X1), we
find, using (4),

σ2
1 =

1

n

[N−1
∑

i=1

i

N

(

1−
i

N

)

a2i △
2
i +2

∑

16i<j6N−1

i

N

(

1−
j

N

)

aiaj △i△j

]

.

Observe that σ2
1 = n−1

VarZ1, where Z1 is drawn from the new population with
values: zi+1 = zi + ai △i, i = 1, . . . , N − 1, and z1 := 0. Since J(·) is bounded, there
exists an absolute constant a > 0 that

max
16j6n

|cj | 6 a (11)

for all n. Therefore VarZ1 6 a2 VarX1 < ∞. Then the fact

Var
(

U∗
1

∣

∣ X
) a.s.
−−→ VarU1 as n∗ → ∞ (12)

follows from the same arguments as that of the proof of (9).
Finally, the theorem follows from (7), (10) and (12).

Proof of Theorem 2. Since J(·) is bounded, condition (11) is satisfied for some a > 0.
Then the condition σ̃2

n 6 c2, for some c2 > 0, of Proposition 2 in [4] follows from the
bound σ̃2

n 6 2a2(1− n/N)VarX1, see [7, p. 41].
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Bound (5) implies that the condition δ2(Sn) = o(1) of Proposition 2 in [4] is
satisfied.

Next, as it is pointed in [4, p. 904], condition (3.3) (ibidem) can be replaced by
the condition lim supn E(n∗g

2
1(X1))

1+θ < ∞, for some θ > 0. Using (2.31) from [7],
we get the bound E(n∗g

2
1(X1))

1+θ 6 (2a)2(1+θ)
E |X1|2(1+θ). The theorem is proven.
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REZIUMĖ

Baigtinių populiacijų L-statistikų savirankos ir visrakčio dispersijos įvertinių pa-
grįstumas
A. Čiginas

Pozicinių statistikų tiesinėms kombinacijoms (L-statistikoms) pateikiame pakankamas sąlygas, ku-
rioms esant statistikų baigtinės populiacijos savirankos dispersijos įvertinys ir klasikinis visrakčio
dispersijos įvertinys yra pagrįstieji.

Raktiniai žodžiai: baigtinė populiacija, ėmimas be grąžinimo, L-statistika, Hoeffding’o skleidinys,
saviranka, visraktis, pagrįstumas.
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