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Abstract. For the linear combinations of order statistics (L-statistics), we present con-
ditions sufficient for the consistency of their finite-population bootstrap variance estimator
and the classical jackknife variance estimator.
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1 Results
Let X = {x1,...,zn} denote measurements of the study variable x of the popula-
tion {1,...,N}. Let X = {Xy,..., X,,} denote measurements of units of the simple

random sample of size n < N drawn without replacement from the population. Let
Xin <o+ < X, denote the order statistics of X. Define the L-statistic

1
L, = Ln(X) = E chXj:"’
=1

and define its normalized version
Sy =S, (X) =n'?(L, —ELy,). (1)

Here cq,...,c¢, is a given sequence of real numbers called weights. It is convenient
(and always possible) to determine these weights by a weight function J: (0,1) — R

as follows: ‘
J .
i=J 1<j<n.
¢ <n+1)’ i<n

Denote 62 = Var S,,.
Note that for correct formulation of any statement on the consistency of finite pop-

ulation statistics, we need to consider a sequence of populations X, = {x,1,...,2r N, },
with NV, — co as r — 00, and a sequence of statistics Ly, (X, ), based on simple ran-
dom samples X, = {X,.1,..., X, .} drawn without replacement from X,. In order

to keep the notation simple, we shall skip the subscript r in what follows. Denote
n, = min{n, N — n}. Then the population size N and the sample size n tend to
infinity as n, — oo.
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The bootstrap estimator of variance. We consider here the finite population boot-
strap of [5]. It is important to mention that there are more adaptations of Efron’s
bootstrap to the case of finite populations, see, e.g., [1, 6, 12, 14]. Write N = mn + ¢,
where 0 < ¢t < n. The empirical population A* is defined by taking m copies
X =A{X1,....Xjn}, 1 < j <mof Xand, if ¢t > 0, drawing the simple random
sample Y = {Y1,...,Y:} of size ¢ without replacement from X. If ¢ = 0, then put

Y = . Then
X+ = <U)(j>uy. (2)

j=1

For the population parameter of interest 52 = 52 (X), the bootstrap estimator is then
defined as the conditional expectation

Grp =B (0, (X7) | X), (3)
i.e., the expectation is taken over all (?) empirical populations conditional on X.

Theorem 1. Assume that n, — 0o and 6, = ¢1 > 0 for all n,. Suppose that EX12 <
Cy < oo for all n, and that J(-) is bounded and satisfies the Holder condition of order
0>1/2 on (0,1). Then

e % as Ny — 00.

Let us mention that asymptotic properties of the bootstrap variance estimator for
in a sense similar statistics (U-statistics) were studied in [3]. In the case of L-statistics,
an exact approximation to &i p is proposed in [8], i.e., the error is eliminated, which
typically appears in resampling approximations of (3).

In the case of the m out of n bootstrap (independent and identically distributed
(i.i.d.) observations), a similar result obtained in [10].

The jackknife estimator of variance. We define the jackknife variance estimator
of (1) in the same way as it is done in [4] for symmetric finite population statistics:
consider the extended sample X; = {X3,..., X,,4+1} drawn without replacement from
the population; then

n n+1 1 n+1
52, = (1_N) > (Swy -8, S= n+1ZS(k).
k=1 k=1

Here S(;y = Sn(X1\{X#}), 1 <k <n+1. In comparison to the classical Quenouille-
Tukey estimator in the case of independent observations, 53 7 additionally includes
the finite population correction factor.

Theorem 2. Assume that n, — oo and 6, = c¢1 > 0 for all n.. Suppose that, for
some 0 > 0, B|X1*™ < Cy < 0o for all n, and that J(-) is bounded and satisfies the
Hélder condition of order § > 1/2 on (0,1). Then
~ P .9

Gy —> 05 aS My — 0.

In the case of finite population symmetric statistics, properties of &72” were studied
in [2] (see also [4]). In the proof of Theorem 2, we apply some of these general results.

For a comparison with the i.i.d. case, see [11]. See also [13].
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2 Proofs

Proof of Theorem 1. Since L-statistic is a symmetric statistic (symmetric function
of observations), results on the Hoeffding decomposition from [4] are applicable, i.e.,
we write S, = Uy + R, where Uy = 22;1 91(X;) is a linear statistic and R; is a
remainder term. More specifically, by [4], the components U; and R; are centered
and uncorrelated, and, see [9], for 1 < k < N,

gr(xn) = —1/2N 1(11{1 %)az Ai, (4)

i=1
with . .
i1—1\ /N —i—1\ /N -2\
a; = AN pi = Cj
o= () ()G
where it is assumed that, without loss of generality, 1 < --- < . Here we denote

A= xiy1 — x; and I{-} is the indicator function. Since J(-) satisfies the Holder
condition of order § > 1/2 on (0,1), we have |¢; — ¢j_1] < B(n + 1)7%, for some
finite constant B > 0. By Theorem 1 of [4] we have E R? < §2(S,,). Here 62(S,,) =
E(n.D3S,,)?, where

DQSn = Sn (XQ\{XnJrlaXnJrQ}) - Sn (XQ\{XlaXnJrQ})
— Sy (XQ\{X27Xn+1}) +Sn (XQ\{XlaXQ})

with the extended sample Xo = {X1,..., X,,42}, see [4]. Since it is proved in [7, p. 42]
that

62(Sy, 432771271 i Var X
<2 ar Xy, 5
we get
ER% < 24 B%n! 20 Var X;. (6)

Next, we conclude from &Z = Var U; + Var R; and the conditions of the theorem
that
G2 — VarU; as n, — oo. (7)

Consider bootstrap population (2) and draw a simple random sample without
replacement X* = {X7,..., X} from this population. Then the bootstrap estimator
of statistic (1) is S} = 5, (X*). We analogously decompose S} = Uj + R}, with Uy =
S g1(X[), where the possible realizations g1(z}), 1 <k < N of g1(X}) are based
on the bootstrap population X* = {7, ..., 2% }. Then, by (6), we get E(R;? | X, ) <
24B%n1'~2° Var(X; | X,)), and then, taking the conditional expectation given X, we
obtain

E (R | X) < 24B%*n' (X)), (8)

where we denote h(X) = E[Var(X; | X,)) | X]. Let us establish an asymptotic
behaviour of h(X) as n, — co. We have

1
Var (X7 [X,0) =55 > (af —af)
1<k<IKN
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and find that, for 1 <i # j < n,

2
Pklijg = P{IZ = Xi,ac;‘ = Xj | X} = ﬁP{X“X]‘ ¢ y | X}
m(m + 1) . ‘ (m+1)° e
+ QWP{& €V, X; ¢V [X}+ mP{X’HX] €Y |X}

- m*(n—t)(n—t—1)+2m(m + 1)t(n —t) + (m + 1)%t(t — 1)
N N(N —1n(n-1)
_ N(N —m) — (m+ 1)t

N(N —1)n(n—1)

Therefore, we obtain

1
=gz X | 5 - X0y
1<k<ISN H1<i#j<n

N2 n—14
=1

where X =n~! o, X;. It follows from here and by the law of large numbers that
h(X) 225 Var X;  as n. — oo. (9)

Thus, by (8) and from 625 = Var(U; | X) + E(R;? | X), we get
52— Var (U7 | X) as n, — oo. (10)

Since, by (2.6) in [4], VarU; = n(N — n)o?/(N — 1), where 0 = E g3(X1), we
find, using (4),

N-1
1 1 1 i J
2 2 .2 2: s As A
o] = —{ E —(1——)ai A7 2 (1 )azaj AzA]}

i=1 1<i<j<N—1

Observe that 02 = n~! Var Z;, where Z; is drawn from the new population with
values: zj41 =2z +a; A, i=1,...,N — 1, and z; := 0. Since J(-) is bounded, there
exists an absolute constant a > 0 that

| < 11
max |ej| < a (11)

for all n. Therefore Var Z; < a? Var X; < oo. Then the fact
Var (Uy | X) L5 VarU;  as ny, — 00 (12)

follows from the same arguments as that of the proof of (9).
Finally, the theorem follows from (7), (10) and (12).

Proof of Theorem 2. Since J(-) is bounded, condition (11) is satisfied for some a > 0.
Then the condition 62 < ¢a, for some ¢z > 0, of Proposition 2 in [4] follows from the
bound &2 < 2a%(1 — n/N) Var Xy, see [7, p. 41].
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Bound (5) implies that the condition d5(S,) = o(1) of Proposition 2 in [4] is

satisfied.

Next, as it is pointed in [4, p. 904], condition (3.3) (ibidem) can be replaced by

the condition lim sup,, E(n.g%(X1))**? < oo, for some 6 > 0. Using (2.31) from [7],
we get the bound E(n.g? (X)) < (2a)20+9) E| X |>?0+9. The theorem is proven.
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REZIUME

Baigtiniy populiacijuy L-statistiky savirankos ir visrakc¢io dispersijos jvertiniy pa-

gristumas

A. Ciginas

Poziciniy statistiky tiesinéms kombinacijoms (L-statistikoms) pateikiame pakankamas salygas, ku-
rioms esant statistiky baigtinés populiacijos savirankos dispersijos jvertinys ir klasikinis visrak¢io
dispersijos jvertinys yra pagristieji.

Raktiniai Zodziai: baigtiné populiacija, émimas be grazinimo, L-statistika, Hoeffding’o skleidinys,
saviranka, visraktis, pagristumas.
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