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Abstract. In this paper we use the pluged-in Bayes discriminant function (PBDF) for
classification of spatial Gaussian data into one of two populations specified by different para-
metric mean models and common geometric anisotropic covariance function. The pluged-in
Bayes discriminant function is constructed by using ML estimators of unknown mean and
anisotropy ratio parameters. We focus on the asymptotic approximation of expected error
rate (AER) and our aim is to investigate the effects of two different spatial sampling designs
(based on increasing and fixed domain asymptotics) on AER.

Keywords: Bayes discriminant function, actual risk, expected error rate, Gaussian random field,

increasing domain asymptotics, infill asymptotics.

Introduction

Bayesian discriminant function (BDF) is known as an optimal classification rule in
the sense of minimum risk, then populations are completely specified and the loss
function is known. If populations are not completely specified unknown parameters
could be estimated from training sample and pluged-in BDF. The expected error
rate (ER) is the performance measure of PBDF, but the expressions for the ER
are very complicated even for the simplest forms of PBDF, therefore, asymptotic
approximations of the ER are used.

The first investigation of PBDF quality for spatial classification was done by
Switzer (1980) [7]. Later some extensions were done in [1, 8, 9]. However, correla-
tions between observations to be classified and training sample were assumed to equal
zero in all these publication. The first extension rejecting assumption about spatial
independence was done by Dučinskas (2009) [4]. Here only the trend parameters and
variance is assumed to be unknown. The extension of the latter approximation to the
case of complete parametric uncertainty (all means and covariance function param-
eters are unknown) was implemented in Dučinskas and Dreižienė (2011) [5]. In all
recently mentioned publications the pluged-in Bayes discriminant function (PBDF)
was constructed using maximum likelihood estimators of unknown mean and covari-
ance parameters.

The asymptotic behavior of spatial covariance parameter estimators can be differ-
ent under the different asymptotic spatial frameworks. We consider two types of sam-
pling framework in spatial statistics. One is the fixed-domain asymptotic framework
or infill asymptotic framework. Here more and more observations might be sampled
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in the same finite domain (Cressie, 1993) [2]. The other type is called increasing do-
main asymptotic framework in which the minimum distance between sampling points
is bounded away from zero and thus the spatial domain of observation is unbounded
(Zhang, Zimmerman, 2005) [10]. This is the spatial analogue of the asymptotics
observed in time series.

In this paper we seek to investigate the influence of training sample increase on
AER using two different spatial sampling frameworks. We use the AER expression in
the case of the unknown mean parameters and unknown anisotropy ratio. This AER
expression in closed form was derived in [3].

1 Spatial classification problem

This paper deal with Gaussian random field (GRF) observations {Z(s): s ∈ D ⊂ Rp}
and the main goal is to classify Z(s) into one of two populations Ωj , j = 1, 2. Model
of Z(s) in the population Ωj is

Z(s) = x′(s)βj + ε(s), (1)

where x(s) is a q × 1 vector of non random regressors and βj is a q × 1 vector of
parameters, j = 1, 2. ε(s) is the error term with zero-mean and covariance function
defined by model for all s, u ∈ D

cov
{

ε(s), ε(u)
}

= C(s− u; θ), (2)

where θ ∈ Θ is a p× 1 parameter vector, Θ being an open subset of Rp.
Denote by T = (Z(s1), . . . , Z(sn))

′ training sample and Sn = {si ∈ D; i =
1, . . . , n} the set of locations where training sample T is taken and call it the set of
training locations (STL).

We shall assume the deterministic spatial sampling design and all analyses are
carried out conditionally on Sn.

Sn is partitioned into the union of two disjoint subsets, i.e. Sn = S(1)∪S(2), where
S(j) is the subset of Sn that contains nj locations of feature observations from Ωj ,
j = 1, 2.

For given training sample T , consider the problem of classification of the Z0 =
Z(s0) into one of two populations when x′(s0)β1 6= x′(s0)β2, s0 ∈ D.

The model of training sample has the following form T = Xβ + E, where β =
(β′

1, β
′

2)
′ is 2q × 1 vector of regression parameters, X is n × 2q design matrix of

training sample T . E is the n × 1 vector of random errors that has multivariate
Gaussian distribution Nn(0, C(θ)).

Denote by c0 the covariance between Z0 and T . Let t denote the realization of T .
Since Z0 follows model specified in (1), the conditional distribution of Z0 given

T = t, Ωj is Gaussian with mean

µ0
lt = E(Z0|T = t;Ωj) = x′

0βj + α′

0(t−Xβ), j = 1, 2 (3)

and variance
σ2
0(θ) = var(Z0|T = t;Ωj) = C(0)− c′0C

−1c0, (4)

where x′

0 = x′(s0), α
′

0 = c′0C
−1.

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 24–29.
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Under the assumption of complete parametric certainty of populations and for
known finite nonnegative losses {L(i, j), i, j = 1, 2}, the BDF has the following form

Wt(Z0, Ψ) =

(

Z0 −
1

2

(

µ0
1t + µ0

2t

)

)

(

µ0
1t − µ0

2t

)

/σ2
0 + γ, (5)

Ψ = (β′, θ′)′, γ = ln(π∗

1/π
∗

2), π∗

j = πj(L(j, 3 − j) − L(j, j)), j = 1, 2, where π1, π2

(π1 + π2 = 1) are prior probabilities of the populations Ω1 and Ω2, respectively.

Denote by β̂, θ̂ the estimators of corresponding parameters. Replacing parameters
with their estimates in BDF (5) we form the PBDF

Wt(Z0; Ψ̂) =

(

Z0 − α̂′

0(t−Xβ̂)−
1

2
x′

0Hβ̂

)

(

x′

0Gβ̂
)

/σ̂2
0 + γ, (6)

with H = (Iq, Iq) and G = (Iq ,−Iq), where Iq denotes the identity matrix of order q.
We will use the maximum likelihood (ML) estimators of parameters based on the

training sample. The asymptotic properties of ML estimators established by Mardia
and Marshall (1984) [6] under increasing domain asymptotic framework and subject
to some regularity conditions are essentially exploited. Hence, the ML estimator Ψ̂ is
weakly consistent and asymptotically Gaussian [5].

Denote Λ′ = α′

0X − x′

0(H/2 + γG/∆2
0), Kβ = Λ′J−1

β Λ, Jβ = X ′C−1X . Here ∆2
0

is the squared Mahalanobis distance between conditional distributions of Z0 given
T = t.

Under assumptions (A1) and (A2) in Dučinskas, Dreižienė (2011) [5] approxima-
tion of ER in the case of estimated unknown mean parameters and estimated unknown
covariance parameters is

AER = R(Ψ) + π∗

1ϕ(−∆0/2− γ/∆0)∆0(Kβ +Kθ)/2σ
2
0 , (7)

where
Kθ = tr

(

CBJ−1
θ B′

)

+ γ2
((

σ̂2
0

)(1)

θ

)

′

J−1
θ

(

σ̂2
0

)(1)

θ
/∆2

0σ
2
0 , (8)

R(Ψ) is the risk of BDF, (i, j)-th element of Jθ is tr(C−1CiC
−1Cj)/2. B = ∂α̂0/∂θ̂

is the n × k matrix of partial derivatives evaluated at point θ̂ = θ. ϕ(·) denotes

the standard normal distribution density function and (σ̂2
0)

(1)
θ is first order partial

derivatives of σ̂2
0 (4) evaluated at point θ̂ = θ. More details can be found in [5].

2 Numerical example

Numerical example is considered to investigate the influence of training sample in-
crease on AER using different spatial frameworks. Assume that D is a regular
2-dimensional lattice with unit spacing. Consider the case s0 = (4, 4) and eight
fixed STL Sm,n, m = 1, 2, where 1 denotes infill asymptotic sampling framework,
2 denotes increasing domain asymptotic sampling framework and n represents the
size of training sample, n = 8, 16, 32, 98. For example Sm,8 contains 8 neighbors of
s0, Sm,16 contains 16 neighbors of s0 and so on. Sm,n is partitioned into a union of
two disjoint subsets, i.e. Sm,n = S(1) ∪ S(2), where S(j) is the subset of Sm,n that
contains nj locations of feature observations from Ωj , j = 1, 2 and n1 = n2.
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(a) (b) (c) (d)

Fig. 1. Infill asymptotic sampling framework with different training sample sizes
(a) n = 8, (b) n = 16, (c) n = 32, (d) n = 98; the symbols •, ◦, and the triangle △

represent S(1), S(2), and s0, respectively.

(a) (b) (c) (d)

Fig. 2. Increasing domain asymptotic sampling frameworks with different training sample
sizes (a) n = 8, (b) n = 16, (c) n = 32, (d) n = 98; the symbols •, ◦, and the triangle △

represent S(1), S(2), and s0, respectively.

Figure 1 represents STL for infill asymptotic sampling framework (S1,n), here extra
locations are taken from between observed locations. The STL for increasing domain
asymptotic sampling framework (S2,n) are shown in Fig. 2. In this case number extra
locations are taken by increasing the domain of observations.

With an insignificant loss of generality the case with πj = 0.5 and L(i, j) = 1−δij ,
i, j = 1, 2 is considered. Observations are assumed to arise from stationary GRF
with different constant mean and common nugget-less covariance function given by

C(h) = σ2r(h), where σ2 is variance (sill) and r(h) = exp
{

−
√

h2
x + λ2h2

y/α
}

is the

exponential geometric anisotropic correlation function with anisotropy ratio λ and
anisotropy angle ϕ = π/2. Here α denotes the range parameter.

We consider the case with unknown mean and anisotropy ratio parameters.

Figure 3 shows the values of AER using infill asymptotic sampling frameworks and
increasing domain asymptotic sampling frameworks. AER are calculated assuming
Mahalanobis distance between marginal distributions ∆ = (µ1 − µ2)/σ = 1, α=0.6,
σ2 = 1. The results show that less values of AER are obtained using increasing
domain sampling framework. AER values are decreasing while training sample size
increases for both sampling frameworks and for both isotropic and anisotropic cases
(λ = 1 and λ = 2).

Table 1 shows the ratio of AER calculated using an increasing domain asymptotic
sampling framework (AERinc) to infill asymptotic sampling framework (AERinf ). It
is obvious that AERInc/AERInf increases while α is increasing for all training sample
sizes. This leads to the conclusion that for greater α values and greater training sample
size the infill asymptotic sampling framework gives lower values of AER in comparison
with the increasing domain asymptotic sampling framework.

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 24–29.
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(a) (b)

Fig. 3. AER values using different asymptotic frameworks: (a) isotropic case (λ = 1),
(b) anisotropic case (λ = 2).

Table 1. AERinc/AERinf with different α values and fixed ∆ = 1 and λ = 1.

α N = 16 N = 32 N = 98 N = 338

0.8 0.9954 0.9947 0.9925 0.9920
1.2 0.9960 0.9962 0.9955 0.9960
1.6 0.9972 0.9983 0.9988 1.0001
2.0 0.9981 1.0000 1.0015 1.0034
2.4 0.9987 1.0014 1.0037 1.0061
2.8 0.9992 1.0025 1.0055 1.0084
3.2 0.9996 1.0035 1.0070 1.0104
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REZIUMĖ

Skirtingų erdvinių asimptotikų įtaka klasifikavimo klaidai
L. Dreižienė, M. Karaliutė

Straipsnyje tiriama mokymo imčių didumo įtaka klasifikavimo klaidai, kai naudojami du skirtingi
erdvinio ėmimo tipai, pagrįsti didėjančios ir fiksuotos erdvės asimptotikomis. Analizuojamas Gauso
erdvinių duomenų klasifikavimo į vieną iš dviejų populiacijų, kurių vidurkio modeliai skirtingi, o ge-
ometriškai anizotropinė kovariacinė funkcija tokia pat, uždavinys. Naudojama tiesioginio pakeitimo
Bajeso diskriminantinė funkcija (PBDF), kuri gaunama vietoj nežinomų parametrų tiesioginio pa-
keitimo būdu įstačius jų įvertinius.

Raktiniai žodžiai: Bajeso diskriminantinė funkcija, klasifikavimo rizika, anizotropijos koeficientas,
atsitiktinis Gauso laukas, didėjančios srities asimptotika, baigtinės srities asimptotika.
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