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Abstract. We consider three sequent calculi for propositional linear temporal logic (PLTL)
which allow us to formalize the properties of operator “always”.

The main new results presented in the paper are: (1) introduction of the calculus with
looping axioms; (2) the direct proof that the presented calculi are equivalent; (3) the proof
of completeness of the calculi with looping axioms and with invariant-like rule based on
completeness of the calculus with the infinitary ω-type rule.
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1 Introduction

In this paper, we consider propositional linear temporal logic (PLTL) with temporal
operators “next” and “always”. These operators allow us to explain in simple and
evident way that combinations of them requires use of induction-like tools.

We consider only sequent-like calculi for PLTL. Such calculi allow us (1) to present
in evident way induction-like properties of operators “next” and “always”; (2) to
construct sequent calculi with the nice constructive properties. For this reason we do
not consider calculi of the type [3] since this calculus destroys sub-formula property,
introducing the new operator “unless”.

2 Description of language and infinitary calculus for PLTL

The language of considered PLTL contains a set of propositional symbols P, P1, P2, . . . ,

Q,Q1.Q2, . . ., the set of logical connectives ⊃,∧,∨,¬, temporal operators � (“always”)
and © (“next”). The language does not contain the temporal operator ⋄ (“some-
times”), assuming that ⋄A = ¬�¬A. We assume that time is linear, discrete, and
ranges over the set of natural numbers.

Formulas are constructed in the traditional way from propositional symbols, using
the logical connectives and temporal operators. The formula ©A means “A is true at
the next moment of time”; the formula �A means “A is true now and in all moments
of time in the future”.

We consider Gentzen-type calculi, which are based on sequents, i. e., the formal
expressions Γ → ∆, where Γ and ∆ are final multisets of formulas.

The infinitary calculus GωT is defined by the following postulates:

1. Axioms: Γ,A → ∆,A;
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2. Traditional logical rules;

3. Temporal rules:

Γ → ∆

Π,©Γ → Θ,©∆
(©),

A,©�A,Γ → ∆

�A,Γ → ∆
(� →),

Γ → ∆,A; Γ → ∆,©A; . . . Γ → ∆,

n

︷ ︸︸ ︷
© . . .©A; . . .

Γ → ∆,�A
(→ �ω).

Here: A and B denote arbitrary formulas; Γ,∆,Π,Θ denote finite, possibly
empty, multisets of formulas.

It follows from [10] that GωT is sound and complete for PLTL.
There are some interesting works concerning finitization of ω-type rule (→ �ω)

(see, e.g., [1]).
Derivation in GωT are built in the form of infinite trees each branch of which is

finitary. The height of a derivation D (denoted by O(D)) is evaluated in ordinal.
A derivation containing some application of the rule (→ �ω) is called informal.
A GωT derivation D is called atomic if every axiom occurring in D is of the type

Γ, P → ∆,P , where P is a propositional variable.

Lemma 1. An arbitrary GωT derivation can be transformed into an atomic one.

It is easy to see that all rules of GωT, except the rule (©), are invertible.
We further present a specialization of the rule (©), obtaining the invertible rule (©)′.
A sequent S is a primary one iff S = Σ1,©Γ1 → ©Γ2, Σ2, where Σi (i ∈ {1, 2})

is empty or consists of propositional symbols; ©Γi (i ∈ {1, 2}) is empty or consists of
formulas of the type ©A, where A is arbitrary.

Lemma 2. By backward application of GωT rules, except the rule (©), any sequent

S can be reduced to a (infinite) set of primary sequents Ψ = S1, . . . , Sn, . . . such that

if GωT ⊢ S, then GωT ⊢ Si, for any sequent Si ∈ Ψ . Here S is the root and the

sequents in Ψ are the leaves of a GωT backward proof-search tree.

Let G
′

ω
T be the calculus obtained from GωT by replacing the rule (©) by the

following one
Π → ∆

Σ1,©Π → Σ2,©∆
(©)′,

where the conclusion is primary and Σ1 ∩Σ2 = ∅. It is obvious that the rule (©)′ is
invertible. It follows from Lemma 2 that GωT and G

′

ω
T are equivalent.

3 Finitary calculi GIT and GLT

The infinitary calculi GωT and G
′

ω
T posses several nice properties, for example:

(1) they allow us to present simple and evident completeness proof (see, e.g., [10]);

(2) all rules of G′

ωT are invertible.

Despite of these properties these calculi have the serious shortcoming that deriva-
tions containing the infinitary rule (→ �ω) are informal. To avoid this shortcoming,
several finitary calculi can be presented.
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3.1 Calculus with invariant-like rule

The calculus GIT (G′

I
T) is obtained from the calculus GωT (G′

ωT, correspondingly)
by:

(1) Assuming that F in the axioms is an atomic formula or F = �F ′.

(2) Replacing the infinitary rule (→ �ω) by the rule

Γ → ∆, I; I → ©I; I → A

Γ → ∆,�A
(→ � I),

where the formula I (called an invariant formula) is constructed from subformulas of
formulas in the conclusion of rule (→ � I). There are some works in which some con-
structive methods for finding invariant formulas are presented, e.g., [7]. It follows [12]
(see also [6]) that the calculus GIT is sound and complete for PLTL.

Remark 1. The sequent �P → �P is a simple example showing that GIT does not
posses the atomic derivation property.

3.2 Calculus with loop-type axioms

The calculus GLT (G′

L
T) is obtained from the calculus GωT (G′

ω
T, correspondingly)

by:
(a) replacing the infinitary rule (→ �ω) by the weak-induction rule

Γ → ∆,A; Γ → ∆,©�A

Γ → ∆,�A
(→ �L)

and

(b) adding loop-type (or looping) axioms: a sequent S′ is a loop-type (or looping)
axiom, iff (1) S′ is above a sequent S on a branch of a derivation tree, (2) S is
such that it subsumes S′ (S < S′ in notation), i.e., S′ can be obtained from S

by using the structural rule of weakening, and (3) there is the right premise of
(→ �L) between S and S′, and there is not the left premiss of (→ �L) between
S and S′.

Analogously as in [5], it can be proved that GLT (G′

L
T) is sound and complete

for PLTL.
Defining that ©�A is a sub-formula of �A and that ©�A and �A have the same

complexity, we get that all rules of the calculi GLT and G
′

L
T have the sub-formula

property, and complexity of any premiss of any rule is not greater than that of the
conclusion.

All rules of G′

L
T are invertible.

We do not consider the invariant-free sequent calculus of [3], since this calculus
does not preserves sub-formula property, introducing the new operator “until” (“un-
less”).

We do not consider tableaux-like calculi, see, e.g., [13, 9].
We do not consider resolution-like calculi, see, e.g., [2].
From soundness and completeness of the infinitary calculus GωT, invariant-like

calculus GIT, and loop-type calculus GLT, we get that all the three calculi are
equivalent. In the next section we present the direct proof that the considered calculi
are equivalent.

Liet. matem. rink. Proc. LMS, Ser. A, 54, 2013, 1–5.
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4 Direct proof of equivalence of the calculi GωT, GIT, and

GLT

First we prove

Lemma 3. If GLT ⊢ S, then GIT ⊢ S, where S is an arbitrary sequent.

Lemma 4. The rule

S1 = Γ → ∆,A; S2 = A,Π → Λ

S∗ = Γ,Π → ∆,Λ
(cut)

is admissible in GLT.

Lemma 5. For each n > 1, it is true that GLT ⊢ S∗

n
= ©�A →

n

︷ ︸︸ ︷
© · · ·©A.

Lemma 6. If GLT ⊢ S, then GωT ⊢ S, where S is an arbitrary sequent.

To prove that a sequent is derivable in GIT if it is derivable in GωT we extend
the notion of a sequent allowing infinitary sequents. An infinitary sequent can contain
not only finitary but also infinitary formulas. Infinitary sequents are often studied
(with various notions of infinintary) in modal logics (see, e.g., [8, 11]).

Let G
∞

I
T b×e the calculus obtained from GIT by:

(1) extending the language by infinitary conjunction and infinitary sequents and

(2) adding the infinitary rules

A0, . . . , An, . . . , Γ → ∆

∧∞

i=0
Ai, Γ → ∆

(∧∞ →)

and
Γ → A0, ∆; . . . Γ → An, ∆; . . .

Γ → ∧∞

i=0
Ai, ∆

(→ ∧∞).

Lemma 7. If GωT ⊢ S, then G∞

I
T ⊢ S for an arbitrary sequent S.

Lemma 8. If GωT ⊢ S, then GIT ⊢ S for an arbitrary sequent S.

Proposition 1. The (cut) rule is admissible in GωT.

Lemma 9. If GωT ⊢ S1 = I → ©I and GωT ⊢ S2 = I → A, then GωT ⊢ S3 = I →
©
nA for each n > 0 and any formulas I and A.

Lemma 10. If GIT ⊢ S, then GωT ⊢ S for an arbitrary sequent S.

To prove that an arbitrary sequent is derivable in GLT if it is derivable in GIT,
we introduce the semi-Hilbert type calculus HGIT, which is obtained from GIT by
replacing the rule (→ � I) by the induction axiom

A,�(A ⊃ ©A) → �A

and adding the (cut) rule. Completeness of HGIT is proved almost in the same way
as completeness of the Hilbert type version of GIT (see, e.g., [4]).
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Lemma 11. If HGIT ⊢ S, then GLT ⊢ S, where S is an arbitrary sequent.

Lemma 12. If GIT ⊢ S, then GLT ⊢ S, where S is an arbitrary sequent.

Proof. The proof of the lemma follows from completeness of HGIT and Lemma 11.

Theorem 1. The calculi GωT, GIT, and GLT are equivalent.

Proof. The proof of the theorem follows from Lemmas 3, 6, 8, 10, and 12.

Theorem 2. The calculi GLT and GIT are complete for PLTL.

Proof. The proof follows from Theorem 1 and completeness of the calculus GωT.
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REZIUMĖ

Sekvencinės sistemos PTL logikai
R. Alonderis, R. Pliuškevičius

Straipsnyje nagrinėjami trys sekvenciniai skaičiavimai skirti propozicinei tiesinio laiko logikai. Sin-
taksiniu būdu įrodytas šių skaičiavimų ekvivalentumas.

Raktiniai žodžiai: laiko logika, sekvenciniai skaičiavimai, ω taisyklė, silpnos indukcijos taisyklė, cik-
linės aksiomos, invariantinė taisyklė.
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