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Abstract. We explore a class of random combinatorial structures called weighted multisets.
Their components are taken from an initial set satisfying general boundedness conditions
posed on the number of elements with a given weight. The component vector of a multiset
of weight n taken with equal probability has dependent coordinates, nevertheless, up to
r = o(n) of them as n — oo, we approximate by an appropriate vector comprised from
independent negative binomial random variables. The main result is an estimate of the total
variation distance. For illustration, we present a central limit theorem for a sequence of
additive functions.
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Introduction

We examine weighted combinatorial multisets. They are comprised from components
belonging to an initial class P of elements having weights in N. The repetitions are
allowed while the order is irrelevant. The weight of a multiset is the sum of weights
of its components. The empty multiset has the zero weight.

Let us denote by P; C P the subset of elements of weight j € N and let 7(j) =
|P;| < oo be its cardinality. For an n € N, set 5 := (s1,...,5,) € Z7 and {(5) :=
1sy + -+ + ns,. Let M, be the class of multisets o of weight n and denote by
k;(o) = 0 the number of components of weight j, 1 < j < n, in 0 € M,,. The vector
k(o) := (ki(0),... ,kn(0)) is called the component vector of o. Note that £(k(c)) = n
if o0 € M,,. All quantitative information about the introduced class of multisets lays
in the following formal relation satisfied by the generating function:

(o) (o)
1+ (Mla" =T (1 —27) "

n=1 j=1
If the uniform probability measure v, is introduced in the set M,,, then the distri-
bution of component vector satisfies the conditioning relation v, (k(c) = 5) = P(y =
5/(5) = n), where ¥ = (v1,...,7), and v; = NB(7(j),27), 1 < j < n, are mutually
independent negative binomial random variables (i.r.vs) defined on some probabil-
ity space (£2,F,P) with parameters (7(j),z), where 0 < z < 1 is arbitrary. An
extensive list of instances and the historical survey on investigations of random mul-
tisets can be found in [2] and [1]. In the present note, we discuss only the results
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concerning the total variation approximations of the truncated component vectors
k-(0) = (ki(o),..., k(o)) by appropriate vectors with independent coordinates if
r=r(n) and r = o(n) as n — co.

Let pry denote the total variation distance and L(-) be the distribution under the
relevant probability measure. For brevity, we will use < as an analog of O(-). As it
has been proved by D. Stark [7] (see also [1]), the regularity condition 7(j) ~ 0¢7j 1,
j — oo, where 8 > 0 and ¢ > 1 are constants, and some other extra technical
requirements imply

prv (L(k(0)), L)) < (r/n)". (1)

Here and afterwards 3, = (v1,...,7%) and v; = NB(7(j),¢77), 1 < j < r < n, are
mutually independent negative binomial r.vs. The positive quantity v depends on the
constants in the conditions. A similar problem for the so-called additive arithmetical
semigroups has been dealt with by J. Knopfmacher and W.-B. Zhang [3]. Putting
regularity conditions on the number of semigroup elements of a given degree, they
actually exploited some regularity of the number of prime elements. We generalize
the estimates obtained in [1] and the most interesting part of that from [3].

In the sequel, the hidden constants, if not indicated otherwise, will depend only
on cg, 1 and q.

Theorem 1. Let the class of multisets be generated by a set P such that
co <jg7n(j) < (2)

for all 3 > 1, where 0 < ¢y < ¢ < 00 and ¢ > 1 are constants. Then there is a
positive constant v = v(co,c1) such that (1) holds for 1 < r < n.

Theorem 1 will be proved using the analytical method proposed in 2002 by E. Mans-
tavi¢ius [5] and applied by him for other combinatorial structures called assemblies
(see [4]). In Section 1, we present the main steps of the proof, the detailed expo-
sition can be found in our master thesis [6]. In the last section, we prove a central
limit theorem for a sequence of additive functions defined on the discussed class of
multisets.

1 Sketch of the proof

For 5 = (s1,...,8,) € Z%, set £;(5) := (1 + 1)sip1 + -+ js; f 0 < i < j < n.
Moreover, let £,.(3) := £o.(3), 7 = (y1,..-,7), where 1 < r < n and, as previously,
v; = NB(7(j),q77), 1 < j < r, are independent. We will use the following formula
(see [1]) for the total variation:

prv(Enle) =n).£60) = X P(6(a) =) (1= D=t g

mMEZy
Here x4y = max{0,z} if x € R.
Denote
j=r+1 s=0
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where w € C, |w| = 1. Then

- ~ m F w
> P(len(¥) =m)w™ = %
m=0
and, by Cauchy’s formula,
_ 1 F'(w)
Pl = e . 4
(i) =) = g [ (@

M{w) := exp{ Z W(j)q_jwj}, H(w —eXp{ Z Z —kaJ }7

Jj=r+1 k=2

Moreover, set

f[ 1fq_3w3 — Zq_éDw
j=1

Let 0 < a < 1,0 < 0 < 1/2, and K > r be arbitrary parameters to be chosen later
and such that 1 < dn < K <n. We set

K .
Gl(w)exp{a Z ij,)wj}, Ga(w )exp{a Z }
j=r+1 j=K+1

and G3(w) = M*(w) — G1(w).
Using introduced functions, we split integral in (4) to obtain

e ([ 4 )Gy, L[ WG,

|Jw|=1
=0 +J1 + Jo.

Here Ng = {w=¢": t| <T}, A={w=¢e":T < |t|<7},and T = (dn)~*
The further steps are based upon a few estimates obtained under condition (2).
We use some estimates taken from articles [5] and [4].

Lemma 1. We have D(1)n™! < ¢7"D,, < D(1)n~! for all n > 1. Moreover,

max |F(w)| < max | M (w)| < e,D(1)5,

ifon>1and 0 <r < on.

Proof. Since 1 < H(w) < 1, we can apply Lemmas 2 and 3 in [4].
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Lemma 2. Let0 < a < 1 be arbitrary and én > 1. Then J; < e,ng "D, K ~1§c01-a)
uniformly inn/2 <m <nand0 < r < dn < K <n. Here the constant in < depends
also on a.

Proof. Repeat the argument used in [4, Lemma 5].

Lemma 3. If0 < a <1 and 1 < dn < K <n, then

1 Fl'(w)G K\ *°
Jo = 5 M dw < e.q "D, (—)
mwim |w|=1 w n

uniformly inn/2 < m < n.
Proof. Combine 1 < H(w) < 1 and Lemma 4 in [4].
Lemma 4. If T = (6n)~! < 1, then there exists a constant ¢ = c(co) such that
g "F, =Jy+ O(e,.qannéc) (5)
uniformly in 0 < r < dén and n/2 < m < n. Moreover,

271.12’” /Ao D/(w)(l a G2(U})) Z}_z: + O(qinDnac)- (6)

qinDn =

Proof. To prove (5), use Lemmas 2 and 3. Formula (6) follows from (5) if » = 0.

The next claim is crucial in the applied approach. Instead of integrating the
remaining integral Jy, we change its integrand and return to D,,.

Lemma 5. If0 < n < 1/2 and 1/n < § < 1/2 are arbitrary, then
Joq"(exDp) P =1 < s+ 0+ (r/n)1{r = 1}5 1%, cs = ccr /o,
uniformly inn(l—n) <m < n and 0 < r < dn. Here ¢ = ¢(co) comes from Lemma 4.

Proof. As in the proof of Lemma 7 in [4] approximate the integrand of Jy by D’(w) (17
Ga(w))w™™ and apply (6).

Lemma 6. Assume that parameters 0 <r <n, 0<n<1/2 and 1/n <6 < 1/2 are
arbitrary. Then there exists positive constants ¢ = c(co) and c3 = c3(co,c1) such that

""" Fp(e,Dp) Tt — 1< pdT 45 Fr/nd{r > 1}6 e
uniformly when 0 <r < dn, n(1 —n) <m < n.
Proof. Applying Lemma 5 for relation (5), we attain lemma’s proof.
Proof of Theorem 1. We have
P(ten(3) =n—m) = "™ F,_/(e,D(1)),  P(U(3) = n) = ¢~"Du/D(1).

Thus,
P(ﬂm("y) =n— m) /P(E("y) = n) =q"Fn_m/(e-Dy).

We apply Lemma 6 with n — m instead of m choosing n = (r/n)'/? and § = (r/n)¥,
where 0 < y < min{1/2,1/(1+ ¢3)} is a fixed number. So we obtain
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Pllm(¥) =
p(e (ﬁ)

where v = v(¢g, ¢1) > 0, uniformly in 0 < m < /rmand 1 < r <27 /¥n =: ¢yn. The
summands in (3), if m > /rn, contribute not more than

(rn) 2R (5) = (rn) V2N By < er(L— 7)) T (/)2

Jj<r

m)

— 1< (/)Y (/) (/)R < (/)

Consequently, pry (L(k:(0)),L(7,)) < (r/n)? for 1 < r < con. Seeing that the
theorem claim is trivial in the case con < r < n, we finish the proof.

2 Central limit theorem

As an application of Theorem 1, we now present an analog of the well-known Feller—
Lindeberg theorem. As previously, let condition (2) be satisfied and ~; = NB(7(j),
q7), where ¢ > 1 and 1 < j < n, are i.r.vs. Let anj € R, Xpj = an;y; if 1 <j < m,
and X,, = X,,1 + -+ X, Set @(x) for the standard normal distribution function,
u* := min{|u|, 1 }sgnu, and

a. .
a<y>:=2%, 0<y<n
ISy

Assume that n — oo in the limit relations.

Lemma 7. In the notation above, let an; = o(1) for each fized j € N. The relation
P(X,, —b, < x) =P(x)+o0(1) with some b, € R uniformly in x € R holds if and only
if, for every e >0,

2

Z%1{|anj| > e} = o(1), Z%l{|am|<1}:1+o(1), (7)

Jjsn J<n

and

by, = a(n) + o(1). (8)

Proof. The ir.vs X,;, 1 < j < n, are infinitesimal. Hence the claim is just a special
case of the mentioned Feller—Lindeberg theorem.

Let hyj(k) be a three-dimensional real sequence such that h,;(0) = 0 for j < n.
Define the sequence of additive functions h,, : M, — R by setting h,(c) =

ngn hnj(kj (o).

Theorem 2. Let the class of multisets M, satisfy condition (2). Assume that hy,;(k) =
o(1) for every fized j,k € N. If conditions (7) and (8) are satisfied for anj := hyj(1),
then

Vn(2) := vy (hn(0) — by < ) = B(x) + o(1) (9)

uniformly in x € R. Conversely, if
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3 7 = o(1) (10)

on<j<n

for every 0 < 6 < 1, then convergence (9) with some b,, implies relations (7) and (8).

Proof. We indicate the main steps only. First, we verify that convergence (9) can
hold only simultaneously with that for the sequence of functions h, (o) defined via
hyn;(k) satisfying the condition h,j(k) = khn;(1) =: ka,j for 1 < j < n. Next, we
split the latter into two parts: hn(0) = (3¢, + 22,2 <, )anjkj(0) = h%r)(g) + fu(o)
As in [4], one can check that condition (7) yields a sequence r = r(n) — oo such that
r = o(n) and

I/n<|fn(0') — (a(n) — a(r))‘ > 5) =o(1) (11)

for every € > 0. Moreover, by Theorem 1 and Lemma 7,

Vn(hgf) (0) —a(r) <z) = P(anj —a(r) < x) +o0(1) =P(x) + o(1)
J<r
uniformly in € R. The last two relations furnish the proof of the sufficiency part.
In the necessity part, we can again use Theorem 1 and Lemma 7 because of
condition (10) also implies (11). So we arrive at the last relation. Consequently, the
necessity in Theorem 2 is assured by that in Lemma 7. The theorem is proved.
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REZIUME

Kombinatoriniy multiaibiy komponenciy vektoriy skirstiniai

E. Manstavicius, R. Petuchovas

Nagrinéjamos atsitiktinés kombinatorinés strukturos, vadinamos svorinémis multiaibémis. Jos sudary-
tos i§ komponenciy, priklausanéiy aibei P, kurioje yra 7(j) elementy, o pastaroji seka tenkina apréz-
tumo salyga. Tegul o yra n svorio multiaibé, paimta su vienoda tikimybe, ir k;(o) — svorio j
komponenciy skaicius joje, ¢ia 1 < j < n. Apibréze atsitiktinj vektoriy kr (o) = (k1(0), ..., kr(0)),
1 < r < n, istiriame jo skirstinio pilnosios variacijos atstuma nuo atitinkamo nepriklausomy koordi-
naciy vektoriaus. Rezultatas panaudotas adityviyjy funkcijy centrinés ribinés teoremos jrodyme.
Raktiniai Zodziai: atsitiktinés kombinatorinés struktiros, svorinés multiaibés, neigiamasis binominis
skirstinys.
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