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Abstract. The new asymmetric cipher algorithm based on matrix power function and ma-
trix conjugation is presented. This algorithm is some alternative between known algorithms
based on conjugacy problem, see e.g. Ko–Lee et al. and Anshel–Anshel–Goldfeld algorithm
based on commutator concept. The security parameters are defined and their values are
determined.
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1 Intoduction

One of the well known problems used in non-commuting cryptography is the conjuga-
tor search problem (CSP) in some non-commuting group G. The problem is to find
any element x satisfying equation h = x−1gx, where h and g are public elements in G.
Two different approaches to CSP based encryption schemes were suggested. The first
one is called the Ko–Lee et al. scheme (see [3]). It uses commuting subgroups concept,
i.e. secret elements are chosen from two mutually commuting subgroups. Another
approach called Anshel–Anshel–Goldfeld algorithm was suggested in [1]. This scheme
uses the commutator concept for obtaining a shared key. It was shown by Spilrain and
Ushakov in [6], that instead of solving CSP an adversary can try to solve a much easier
decomposition problem. Hence the Anchel–Anchel–Goldfeld scheme is reckoned be-
ing more advanced. But nevertheless this scheme has a disadvantage, since it is using
tuples of generators of private keys and hence is increasing memory requirements.

In this paper we suggest a new asymmetric encryption scheme, which is some
alternative to the schemes mentioned above. Our scheme is based on matrix power
function (see [4, 5]) and additional constraint of it’s arguments, namely the conjuga-
tion equation. We reduce memory requirements for key storage.

2 MPF definition and properties

Matrix power function (MPF) was first introduced in [4]. This function is defined for
square m×m matrix arguments X and Y and is denoted by

FQ(X,Y ) = XQY = E (1)
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where Q is a base m×m matrix and E is an MPF value m×m matrix with elements,
defined by the system of equations:
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(2)

To define MPF completely we assume that matrix Q is defined over a platform group

Z
∗

n = {a: a 6 n, gcd(a, n) = 1}. Then matrices X and Y must be chosen from
matrix group over a power ring Zr = {0, 1, . . . , r − 1} as powers of elements of
matrix Q. All the actions in groups Z

∗

n and Zr are performed modulo n and r

respectively. It is shown in [5], that MPF is associative and the left-right actions
identity X(UQV )Y = (XU)Q(V Y ) holds.

In this paper we consider a non-cyclic platform group Z
∗

n, where a composite n

can be expressed as n = pq and p, q are prime factors. This yields a power ring
Zλ(n), where λ(n) is theCarmichael function. This function is defined as the smallest
positive integer t such that at mod n ≡ 1 for all a coprime with n. The choice of a
power ring Zλ(n) is obvious, since for all a ∈ Z

∗

n, aλ(n) = 1, which means, that all
powers can be reduced modulo λ(n). If n = pq, then λ(n) = lcm(p− 1, q − 1), where
lcm stands for least common multiple.

3 Asymmetric cypher

The construction of suggested asymmetric cipher is based on the conjecture, that
MPF is a candidate one-way function (OWF). This means, that direct MPF value i.e.
matrix E calculation for instances Q, X and Y , when MPF system of equations (2)
is supplemented with additional matrix conjugacy equation, is easy, while MPF in-
version operation is hard. We will demonstrate how the sender (Bob) can encrypt a
message, which can then be decrypted by the receiver (Alice).

Let Q be a public matrix selected over platform group and let A be a public
matrix, selected over power ring. Alice has her private key – a pair of matrices
(X,U) = PrKA, where X is a randomly selected non-singular matrix and matrix U

is a polynomial of A i.e. U = PU (A). Her public key is PuKA = {XQU , XAX−1}.
Alice uses her private key to decrypt Bob’s message. Bob encrypts a message M by
using Alice’s PuKA and performing following actions:

1. Bob chooses randomly a non-singular matrix Y and computes Y −1AY ;

2. Bob selects a random matrix V = PV (A) and computes V QY . His public key
is PuKB = {V QY , Y −1AY };

3. Bob uses Alice’s public key to compute the following matrices:

• Bob computes XVX−1 = PV (XAX−1);
• Raises matrix XQU to the power XVX−1 on the left and obtains XV QU ;
• Raises the result matrix to the power Y on the right and obtains XV QUY ,

which is his encryption key matrix KB;

Since the elements of matrix KB are random and uniformly distributed, Bob
can now use an obtained key KB = XV QUY to encrypt a message M .

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 72–77.
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4. The ciphertext is C = KB ⊕M , where ⊕ stands for XOR operation. Bob sends
(C;PuKB) to Alice.

To decrypt Bob’s message Alice does the following:

1. Using matrix Y −1AY and polynomial PU (A) Alice computes Y −1UY =
PU (Y

−1AY );

2. Alice raises matrix V QY to the power Y −1UY on the right and then raises the
result matrix to the power X on the left and hence obtains her decryption key
KA = XV QUY ;

3. Since KA = KB Alice can now decrypt a message using her decryption key KA

and a relation M = KA ⊕ C.

Note that only matrices U and V are commuting. This is the main advantage
of the suggested protocol as compared with the protocols based on CSP. Note also,
that, since Alice and Bob choose their matrices U and V as polynomials of A, only
the coefficients of polynomials must be stored. This shortens private key lengths.

4 Security parameters values determination

The suggested protocol has two main security parameters: parameter n, defining
group Z

∗

n, and the matrix order m. Since we obtain commutating matrices using
polynomials, while non-singular matrices X and Y can be chosen freely, to determine
main security parameters we are referring to the following facts:

1. The number of matrices, commuting with a public matrix A, defined over a
power ring, should be at least 280. Every commuting matrix should be obtained
using polynomials of matrix A;

2. The number of matrices, conjugating with a public matrix A, defined over a
power ring, should be at least 280.

If these requirements are satisfied, then total scan of matrices X and Y is infeasible.
We start with the proof of an important proposition, which will prove useful for

evaluation of security parameters. We denote the idempotents of the group Zpq by
1p and 1q, i.e. 1p mod p = 1, 1p mod q = 0 and 1q mod p = 0, 1q mod q = 1.
The existence and uniqueness of these elements follow from the extended Euclidian
algorithm. If A = {aij} and aij ∈ Zpq, then we define Ap = {aij} mod p, Aq = {aij}
mod q. Note, that according to Chinese Remainder Theorem (CRT) aij = [aij mod p]·
1p + [aij mod q] · 1q.

Proposition 1. If ApBp = Cp and AqBq = Cq, then matrices A, B and C satisfy

identity AB = C.

Proof.

AB = (Ap1p +Aq1q)(Bp1p +Bq1q) = ApBp1p +ApBq1p1q

+AqBp1q1p +AqBq1q = ApBp1p +AqBq1q,

since 1p1q = 0. Since ApBp = Cp and AqBq = Cq, we get AB = C

Hence the following corollaries are true:
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Corollary 1. If ApBp = BpAp and AqBq = BqAq, then matrices A and B are com-

muting i.e. AB = BA.

Corollary 2. A−1 = A−1
p 1p +A−1

q 1q.

Let us denote r = λ(n) and assume that r = 2s where s is prime. We can now
evaluate the number of solutions of commutation and conjugation equations, defined
over a ring Zr using field theory and Proposition 1. We start with the commutation
equation

AX = XA, (3)

which is defined over the field Zp. Let us assume, that matrix A is similar to Jordan
matrix, i.e. it can be expressed in canonical Jordan form

A = K−1JAK (4)

where JA is a Jordan matrix

JA =




µ 1 0 . . . 0 0
0 µ 1 . . . 0 0
0 0 µ . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . µ 1
0 0 0 . . . 0 µ




(5)

and µ is an eigenvalue of A. Then all matrices, commuting with JA, have a following
form (called the regular upper form):




a1 a2 . . . am−1 am
0 a1 . . . am−2 am−1

. . . . . . . . . . . . . . .

0 0 . . . a1 a2
0 0 . . . 0 a1




(6)

We can now see from (6), that there are m different parameters a1, a2, . . . , am. Since
the order of the field Zp |Zp| = p, it is clear, that there are pm different matrices,
commuting with JA. Hence we get all possible solutions of equation (3) by computing

X = K−1X̃K, where matrices X̃ have the form (6). We have proven the following
proposition:

Proposition 2. Let A be a square matrix of order m defined over a field Zp. If A is

similar to Jordan matrix (5), then equation (3) has exactly pm solutions.

We denote the set of matrices, commuting with A (i.e. solutions of equation (3)),
by Com(A) and the number of these matrices by |Com(A)|. Note, that not all
matrices of Com(A) have an inverse, because zero value cannot be chosen for diagonal
elements. If we omit zero diagonal elements, we get exactly pm−1(p − 1) invertible
matrices, satisfying equation (3). We denote the set of these matrices by Com

∗(A).
It has been proven, that for matrix A, satisfying proposition (2), every commuting
matrix can be expressed as a polynomial of A [2]. The degree of polynomial is equal
to m − 1, since there are m linearly independent matrices, commuting with A. The
following corollaries of Proposition 1 give us the evaluation of number of solutions of
equation (3), defined over a ring Zr:

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 72–77.
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Corollary 3. If |Com(A2)| = N2 and |Com(As)| = Ns, then |Com(A)| = N2Ns.

Corollary 4. If A2 and As are similar to Jordan matrix (5) in fields Z2 and Zs

respectively, then |Com(A)| = rm. Furthermore, |Com
∗(A)| = rm−1(s− 1).

The conjugation equation i.e.

X−1AX = B, (7)

defined over the field Zp, can be considered in a similar way. It can be shown, that
the conjugation equation is equivalent to commutation equation in the field Zp, if
we consider only invertible matrices. Hence equation (7) has pm−1(p− 1) solutions if
defined over a field Zp and rm−1(s− 1) solutions if defined over a ring Zr.

Keeping this in mind the choice of parameters is as follows:

1. For the platform group definition we seek to minimize the group order and
to maximize the maximal orders of group elements. In this case the optimal
solution is to choose n = 3p with a prime number p = 2s + 1, where s is also
prime. This yields r = 2s;

2. Since we consider equations (3) and (7) defined over a power ring Zr, the number
rm−1(s−1) must be greater than or equal to 280. Since s−1 = n−9

6 and r = n−3
3

we obtain the following result:

m >

⌈
81 ln 2 + ln(n− 3)− ln(n− 9)

ln(n− 3)− ln(3)

⌉

where ⌈⌉ is the ceiling function.

3. Since we want to make this ciphering algorithm usable in systems with limited
resources, we must choose parameters values reducing memory and computation
resources. We have chosen n = 33, since in this case the total amount of bits
to store information is the smallest. This yields m = 25 and λ(n) = 10. Total
amount of bits used to store information is 17840 bits which is approximately
2.2 kilobytes.
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REZIUMĖ

MLF paremtas asimetrinis šifras ir jo saugumo parametrų įvertinimas
A. Mihalkovich, E. Sakalauskas

Straipsnyje pristatomas naujas asimetrinio šifravimo algoritmas, kuris remiasi matricinio laipsnio
funkcija bei matricų jungtinumo lygtimi. Šis algoritmas yra tam tikra alternatyva žinomiems algorit-
mams, kurie yra paremti jungtinumo uždaviniu, pvz. Ko–Lee algoritmui, ir Anshel–Anshel–Goldfeld
algoritmui, kuris remiasi komutatoriaus idėja. Apibrėžiami saugumo parametrai bei nustatomos šių
parametrų reikšmės.

Raktiniai žodžiai: asimetrinis šifravimas, matricinio laipsnio funkcija, vienkryptė funkcija.
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