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Introduction

Let us consider a special Cox process – mixed Poisson process Nt := N ′

Λ(t), t > 0,

where the mean value function Λ(t) is a general random process with non-decreasing
sample paths, independent of the standard Poisson process N ′ (for more details see,
e.g., [5, 7]). Such processes have proved useful, for example, in medical statistics
where every sample path represents the medical history of a particular patient which
has his/her own mean value function.

By a mixed Poisson distribution with the mixing distribution FΛ(t)(x) =
P(Λ(t) < x) we will mean (see, e.g., [6, 5])

qs = P(Nt = s) =
1

s!

∫

∞

0

e−xxs dFΛ(t)(x), s ∈ N0. (1)

The most well-known and most widely used mixed Poisson distribution is the negative
binomial distribution which is generated by the mixing Gamma distribution. To
elaborate on, assume that Λ(t) is distributed according to the gamma law with positive
parameters (nt, bt) and density function

pΛ(t)(x) =
bnt

t

Γ (nt)
xnt−1e−btx, x > 0, (2)

where Γ (nt) =
∫

∞

0 xnt−1e−x dx is gamma function. Obviously, considering on (1)
and (2), Nt is distributed according to the negative binomial law with the following
probability qs and parameters 0 < p̄ < 1, nt > 0:

qs =
Γ (nt + s)

Γ (s+ 1)Γ (nt)
p̄nt(1− p̄)s, p̄ =

bt
1 + bt

, s ∈ N0. (3)

Nt process is called negative binomial or Pólya process and is often used in insurance
and other dynamic population models. If nt is positive integer, then negative binomial
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On large deviations for compound mixed Poisson process 17

distribution is called Pascal distribution, and in case nt = 1 – geometric distribution.
In virtue of (2), (3), the mean and the variance of Nt and Λ(t) are

ENt = αt, β2
t = DNt = αt + β̂2

t = αt(1 + αt/nt) > αt, (4)

where EΛ(t) = αt = nt/bt, DΛ(t) = β̂2
t = nt/b

2
t . The property β2

t > αt for any t > 0
is well-known and is called over-dispersion.

Suppose that {X, Xj , j = 1, 2, . . .} is a family of independent identically dis-
tributed (i.i.d) random variables (r.vs.) with mean µ = EX , finite, positive variance
σ2 = DX < ∞ and having a distribution function FX(x) = P(X < x) for all x ∈ R.
The kth order cumulants and the characteristic function (ch.f.) of the random vari-
able (r.v.) X will be denoted by Γk(X), k = 1, 2, . . . , fX(u) = E exp{iuX}, u ∈ R,
respectively (for definitions see [9, pp. 6–8]). Furthermore, we say that the centered
moments of the r.v. X with σ2 < ∞ satisfy generalized S.N. Bernstein’s condition
(Bernstein’s condition is placed, e.g., in [9, p. 42]): if there exist γ > 0 and K > 0
such that

∣

∣E(X − µ)k
∣

∣ 6 (k!)1+γKk−2σ2, k = 3, 4, . . . . (B̄γ)

Taking into consideration that Γk(X) = Γk(X − µ), k = 2, 3, . . . and according to
Lemma 3.1 in [9, p. 42], we take up the position that

∣

∣Γk(X)
∣

∣ 6 (k!)1+γMk−2σ2, M = 2max{σ,K} := 2(σ ∨K), k = 3, 4, . . . . (5)

In this paper we consider the compound mixed Poisson process

SNt
=

Nt
∑

j=1

Xj, S0 = 0, (6)

where we suppose that Nt for each t > 0 is independent of {X, Xj , j = 1, 2, . . .}.
Since in most cases the accurate distribution for the sum (6) is not available, derivering
asymptotic relationship for it’s tail probability becomes important. Such asymptotic
results often appear in actuarial situations, see, e.g., [5, 7].

The aim of this paper is to consider an instance of large deviation theorems for
a distribution function of a sum of a random number of summands of i.i.d, weighted
r.vs., considered in the papers [3, 2]. That is, to obtain large deviation theorems both
in the Crámer and power Linnik zones for a distribution function of standardized
compound mixed Poisson process

S̃Nt
=

SNt
−ESNt

√

DSNt

, (7)

where with reference to (8) in [2, p. 2],

ESNt
= µαt, DSNt

= β2
t µ

2 + αtσ
2. (8)

Here αt, β
2
t are defined by (4). To achieve the purpose of this paper, the cumulant

method that was offered by V. Statulevičius (1966) and generalized by R. Rudzkis,
L. Saulis, V. Sataulevičius (1978) (for references see [9]), is used.

There is a very extensive literature on the asymptotic behavior of (6) (see, e.g.,
[1, 4, 6, 5, 7]). For example, general theorems presenting necessary and sufficient
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conditions for the convergence of the distributions of (6) with non-zero and zero
mean have been proved, e.g., in [6, 5]. In [1] logarithmic asymptotic for probabilities
of large deviations for compound Cox processes have been derivered. Large deviation
results for generalized compound negative binomial risk models, in case considered
i.i.d. r.v. have heavy-tailed distribution function, have been extended and improved
in [4]. However, between the huge amount of literature authors have not found any
published results on considered problem in case when cumulant method is employed,
although it is a powerful method that permits the systematic investigation of large
deviations for the distributions of sums of a random number of summands.

1 The upper estimates for the cumulants

Since we are interested in a more accurate asymptotic analysis FS̃Nt
(x), at first we

must find the accurate upper estimates for the kth order cumulants Γk(S̃Nt
), k =

3, 4, . . . . Considering the following relation (for more details see [3, p. 136])

Γk(SNt
) = k!

∗
∑

1

Γm(Nt)

m1! · · · · ·mk!

k
∏

j=1

(

1

j!
Γj(X)

)mj

, k = 1, 2, . . . , (9)

it becomes obvious in order to obtain upper bounds for Γk(S̃Nt
), we must impose

conditions not only for the kth order cumulants of the r.v. X but for Nt, too. Here
∑

∗

1 denotes a summation over all non-negative integer solutions 0 6 m1, . . . ,mk 6 k
of the equation m1 + 2m2 + · · ·+ kmk = k, m1 + · · ·+mk = m, 1 6 m 6 k.

Proposition 1. Assume that Λ(t) > 0, t > 0, is distributed according to the gamma

law with the parameters nt > 0, 0 < bt 6 1 and density function (2). Then for the

kth order cumulants of the mixed Poisson process Nt the upper estimate (Lt) holds:

Γk(Nt) 6 (k − 1)!
nt

2

(

2

bt

)k

, k = 1, 2, . . . . (Lt)

Proof of Proposition 1. Pursuant to (2),

fΛ(t)(u) = EeiuΛ(t) = (1− iu/bt)
−nt , u ∈ R. (10)

Wherefore, the definition of the kth order cumulants leads to

Γk(Λ(t)) =
1

ik
dk

duk
ln fΛ(t)(u)

∣

∣

∣

∣

u=0

= (k − 1)!nt/b
k
t , k = 1, 2, . . . . (11)

Further, in view of (3) together with (10) the ch.f. of Nt is

fNt
(u) =

((

1− (1− p̄)eiu
)

/p̄
)

−nt
= fΛ(t)

(

ln fN1
(u)/i

)

, (12)

where 0 < p̄ < 1 is defined by (3), and N1 is distributed according to the Poisson law
with unit parameter. It is easy to make sure that ln fN1

(u) = exp{iu} − 1.
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Now let us derive the kth order cumulants of Nt. Based on Lemma 1 in [8, p. 135],
taking into account the definition of the kth order cumulants together with (12) and
Γk(N1) = 1, k = 1, 2, . . . , allows one to obtain

Γk(Nt) =

k−1
∑

l=0

c
(k)
k−lΓk−l

(

Λ(t)
)

, k = 1, 2, . . . . (13)

Integers c
(k)
j > 1, j = 1, 2, . . . , k, are Stirling numbers of the second kind that can

be determined, e.g., from c
(k)
k−l = k!

∑

∗∗

1

∏k
j=1(1/j!)

mj (1/mj!), l = 0, 1, . . . , k − 1,

k = 1, 2, . . ., where
∑

∗∗

1 denotes the same summation as in case of
∑

∗

1, supposing
m = k − l, 0 6 l 6 k − 1.

If 0 < bt 6 1, then substituting (11) into (13) leads to (Lt), due to
∑k−1

l=0 c
(k)
k−l(k−

l − 1)! 6 (k − 1)!2k−1, k = 1, 2, . . . .

Proposition 2. If for the r.vs. X, Nt, t > 0, conditions, accordingly, (B̄γ) and (Lt)
are fulfilled, then

∣

∣Γk(S̃Nt
)
∣

∣ 6 (k!)1+γ/∆k−2
t , ∆t = bt

√

DSNt
/M̄j , j = 1, 2, k = 3, 4, . . . , (14)

as 0 < bt 6 1, where

M̄1 = 2
(

2|µ| ∨
(

1 ∨ σ/
(

2|µ|
))

M
)

as µ 6= 0, M̄2 = 2Mas µ = 0. (15)

Here M > 0, DSNt
are defined, accordingly, by (5), (8).

Proof of Proposition 2. Let us consider the case when µ 6= 0. The application of (9)
together with (5), (Lt) leads to

∣

∣Γk(SNt
)
∣

∣ 6(k!)1+γMk−2αtσ
2 + k!nt

∑∗

2

(m̃− 1)!

m1!· · · · ·mk−1!

2m̃−1

bm̃t

× |µ|m1

k−1
∏

j=2

(

(j!)γM j−2σ2
)mj

, k = 2, 3, . . . , (16)

where
∑

∗

2 denotes a summation over all non-negative integer solutions 0 6 m1, . . . ,
mk−1 6 k, of the equation m1 +2m2 + · · ·+(k− 1)mk−1 = k, m1 + · · ·+mk−1 = m̃.
Here 1 6 m̃ 6 k.

Clearly, nt/b
m̃
t < β2

t /b
m̃−2
t as, certainly, β2

t > β̂2
t . Here βt, β̂

2
t are defined by (4).

Consequently, by
∑

∗

2 m̃!/(m1!· · · · ·mk−1!) = 2k−1 − 1, |µ|m1

∏k−1
j=2 (M

j−2σ2)mj 6

|µ|m̃((1 ∨ σ/(2|µ|))M)k−m̃,
∏k−1

j=1 (j!)
mj 6 (k − 1)!, k = 2, 3, . . . (for more details see

(22)–(24) in [2, p. 261]) and inequality (16), we arrive at
∣

∣Γk(SNt
)
∣

∣ 6 (k!)1+γ
DSNt

(M̄1/bt)
k−2 as 0 < bt 6 1, k = 2, 3, . . . . (17)

Here DSNt
, M̄1 are defined by (8), (15), respectively.

Now let us consider the case when µ = 0 and suppose that 00 = 1. Equality (9)
and inequalities (5), (Lt) ensure

∣

∣Γk

(

SNt

)
∣

∣ 6 k!αt

∑∗

3

(m̄− 1)!

m2! · · · · ·mk!

(

2

bt

)m̄−1 k
∏

j=2

(

(j!)γσ2M j−2
)mj

(18)
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for k = 2, 3, . . . . Here
∑

∗

3 denotes a summation over all non-negative integer solutions
0 6 m2, . . . ,mk 6 k of the equation 2m2 + · · · + kmk = k, m2 + · · · + mk = m̄,
1 6 m̄ 6 k.

In accordance with
∏k

j=2(M
j−2σ2)mj 6 σ2m̄Mk−2m̄,

∑

∗

3 m̄!/(m2!· · · · ·mk!) 6

2k−2,
∏k

j=2(j!)
mj 6 k!, k = 2, 3, . . . (for more details see (21), (22) in [3, p. 140]) the

estimate of (18) is

∣

∣Γk(SNt
)
∣

∣ 6 (k!)1+γ
DSNt

(M̄2/bt)
k−2 as 0 < bt 6 1, k = 2, 3, . . . . (19)

Here DSNt
, M > 0 stand with µ = 0, and M̄2 is defined by (15). To com-

plete the proof, it is sufficient to use (17), (19) and by noticing that Γk(S̃Nt
) =

Γk(SNt
)/(DSNt

)k/2, we arrive at (14).

2 Large deviation theorems

Since the majorating upper estimate for Γk(S̃Nt
), k = 3, 4, . . . is derivered, we can

assert that theorem on large deviations and exponential inequalities follow directly
from Theorems 1, 3 in [3, pp. 134–135] with the parameters Z̃N := S̃Nt

, ∆∗ := ∆t,
where S̃Nt

and ∆t are defined, accordingly, by (7), (14).
Set Φ(x) as the standard normal distribution function and assume that ntbt → ∞

as t → ∞.

Theorem 1. Suppose that the r.vs. X, Nt satisfy conditions (B̄γ) and (Lt), respec-

tively. Then
1− FS̃Nt

(x)

1− Φ(x)
→ 1,

FS̃Nt
(−x)

Φ(−x)
→ 1 (20)

in both cases: µ 6= 0, µ = 0, hold for x > 0, x = o((ntbt)
ν(γ)/2) as t → ∞. Here

ν(γ) = (1 + 2(1 ∨ γ))−1, γ > 0.

The proof of Theorem 1. The proof almost immediately follows from Theorem 2 in
[3, p. 135], considering the instance when aj ≡ 1, p = 0, and N := Nt, t > 0 is mixed
Poisson process with the probability (3).

Following the proof of Theorem 2 it is obvious that we must to show: ∆t → ∞
as t → ∞. Recall the definitions of DSNt

, ∆t by (8), (14), respectively, and let’s

notice that β2
t > 2αt as β̂2

t > αt, 0 < bt 6 1. Accordingly, ∆t = bt
√

DSNt
/M̄j >

Cj(ntbt)
1/2, C1 =

√

2µ2 + σ2/M̄1, C2 = σ/M̄2 > 0. Thus, assuming that ntbt → ∞
as t → ∞, we achieve that ∆t → ∞.

Theorem 2. If for considered r.vs. X, Nt, t > 0, conditions, accordingly, (B̄γ) and

(Lt) are fulfilled, then for all x > 0

P(±S̃Nt
> x) 6

{

exp{−x2/4}, 0 6 x 6 (2(1+γ)2
∆t)

1/(1+2γ),

exp{−(x∆t)
1/(1+γ)

/4}, x > (2(1+γ)2
∆t)

1/(1+2γ).

Example 1. Assume that nt = n ∈ N and bt is fixed. Then relations (20) hold for
x = o(nν(γ)/2) as n → ∞.



✐

✐

“LMD13_tik_Kas_Delt” — 2013/11/16 — 11:04 — page 21 — #6
✐

✐

✐

✐

✐

✐

On large deviations for compound mixed Poisson process 21

Example 2. If bt = 1/t 6 1, and parameters nt, bt > 0 of gamma distribution are
related by nt = (nt2(1−ǫ))1/ǫ, n ∈ N, where 0 < ǫ 6 1, then it can be proved
that Lemma 1 (on regularity condition for the kth order cumulants of the sum of the
random number of summands of i.i.d. weighted r.vs.) in [3, p. 131] in case µ 6= 0 holds
with N := Nt, aj ≡ 1, j = 1, 2, . . . , K1 := 2/

√
n, p := ǫ/2. Suppose that n is fixed.

Thus in this instance relations (20) hold for x > 0 such that x = o(tν(γ)(2−3ǫ)/(2ǫ)), 0 <
ǫ 6 2/3 as t → ∞. Assuming that parameters nt, bt are related by nt = (nt1−ǭ)1/ǭ,
0 < ǭ 6 1, we have that Lemma 1 in [3, p. 131] in case µ = 0 stands with N := Nt,
aj ≡ 1, j = 1, 2, . . . , K2 := 2/n, p := ǭ. Then (20) hold for x = o(tν(γ)(1−2ǭ)/(2ǭ)),
0 < ǭ < 1/2 as t → ∞.
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REZIUMĖ

Didieji nuokrypiai mišriam sudėtiniam Puasono procesui
A. Kasparavičiūtė, D. Deltuvienė

Šiame darbe yra nagrinėjama sudėtinio mišraus Puasono proceso normalioji aproksimacija didžiųjų
nuokrypių Kramero ir laipsninėse Liniko zonose, taikant kumuliantų metodą.

Raktiniai žodžiai: kumuliantai, didieji nuokrypiai, sudėtinis mišrus Puasono procesas, eksponentinės
nelygybės.
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