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Abstract. This paper is designated for normal approximation to the distribution function
of the compound mixed Poisson process taking into consideration large deviations both in
the Cramér and power Linnik zones.
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Introduction

Let us consider a special Cox process — mixed Poisson process IV; := le(t), t >0,
where the mean value function A(¢) is a general random process with non-decreasing
sample paths, independent of the standard Poisson process N’ (for more details see,
e.g., [5, 7]). Such processes have proved useful, for example, in medical statistics
where every sample path represents the medical history of a particular patient which
has his/her own mean value function.
By a mixed Poisson distribution with the mixing distribution Fyq(z) =
P(A(t) < x) we will mean (see, e.g., [6, 5])
1 o0
gs =P(N; =s) = y/ e "x® dF @) (z), s € Np. (1)
- Jo
The most well-known and most widely used mixed Poisson distribution is the negative
binomial distribution which is generated by the mixing Gamma distribution. To
elaborate on, assume that A(t) is distributed according to the gamma law with positive
parameters (n, b;) and density function

b
—t_gmTlemhim s, (2)

pa)(T) = ) ;

where I'(nt) = fooo ™~ le~% dr is gamma function. Obviously, considering on (1)
and (2), N; is distributed according to the negative binomial law with the following
probability ¢ and parameters 0 < p < 1, ny > 0:

I'(ne + s)
I'(s+ 1)I'(ny)

by
146’

qs = ﬁnt(l _ﬁ)sa p= RS NO- (3)
Ny process is called negative binomial or Pélya process and is often used in insurance

and other dynamic population models. If n; is positive integer, then negative binomial
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distribution is called Pascal distribution, and in case ny = 1 — geometric distribution.
In virtue of (2), (3), the mean and the variance of Ny and A(t) are

ENt:Oét, Bf:DNt:at+3t2:at(1+at/nt)>at, (4)

where EA(t) = ay = n; /by, DA(t) = 32 = n;/b2. The property 52 > oy for any t > 0
is well-known and is called over-dispersion.

Suppose that {X, X;, j = 1,2,...} is a family of independent identically dis-
tributed (i.i.d) random variables (r.vs.) with mean y = EX, finite, positive variance
0? = DX < oo and having a distribution function Fx(z) = P(X < z) for all z € R.
The kth order cumulants and the characteristic function (ch.f.) of the random vari-
able (r.v.) X will be denoted by I'x(X), k=1,2,..., fx(u) = Eexp{iuX}, u € R,
respectively (for definitions see [9, pp. 6-8]). Furthermore, we say that the centered
moments of the r.v. X with 02 < oo satisfy generalized S.N. Bernstein’s condition
(Bernstein’s condition is placed, e.g., in [9, p. 42]): if there exist v > 0 and K > 0
such that

[E(X — )" < ()" KF20%, k=3.4,.... (B,)

Taking into consideration that I'y(X) = I.(X — p), k = 2,3,... and according to
Lemma 3.1 in [9, p. 42], we take up the position that

|1 (X)| < ()™M 202, M =2max{c, K} :=2(cVK), k=3,4,.... (5)
In this paper we consider the compound mixed Poisson process

Ny

Sn,=>_X;, So=0, (6)

Jj=1

where we suppose that N, for each ¢ > 0 is independent of {X, X;, j = 1,2,...}.
Since in most cases the accurate distribution for the sum (6) is not available, derivering
asymptotic relationship for it’s tail probability becomes important. Such asymptotic
results often appear in actuarial situations, see, e.g., [5, 7].

The aim of this paper is to consider an instance of large deviation theorems for
a distribution function of a sum of a random number of summands of i.i.d, weighted
r.vs., considered in the papers [3, 2]. That is, to obtain large deviation theorems both
in the Cramer and power Linnik zones for a distribution function of standardized
compound mixed Poisson process

5 Sy, —ES
Sy, = 2 2N (7)
DS,
where with reference to (8) in [2, p. 2],
ESNt, = MO, DSN, = 6?,“/2 + CYtO'Q. (8)

Here oy, 7 are defined by (4). To achieve the purpose of this paper, the cumulant
method that was offered by V. Statulevicius (1966) and generalized by R. Rudzkis,
L. Saulis, V. Sataulevicius (1978) (for references see [9]), is used.

There is a very extensive literature on the asymptotic behavior of (6) (see, e.g.,
[1, 4, 6, 5, 7]). For example, general theorems presenting necessary and sufficient
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conditions for the convergence of the distributions of (6) with non-zero and zero
mean have been proved, e.g., in [6, 5]. In [1] logarithmic asymptotic for probabilities
of large deviations for compound Cox processes have been derivered. Large deviation
results for generalized compound negative binomial risk models, in case considered
ii.d. r.v. have heavy-tailed distribution function, have been extended and improved
in [4]. However, between the huge amount of literature authors have not found any
published results on considered problem in case when cumulant method is employed,
although it is a powerful method that permits the systematic investigation of large
deviations for the distributions of sums of a random number of summands.

1 The upper estimates for the cumulants

Since we are interested in a more accurate asymptotic analysis F Sy (x), at first we
t

must find the accurate upper estimates for the kth order cumulants Fk(g N,), k =
3,4,.... Considering the following relation (for more details see [3, p. 136])

k m;
Fk(SNt):k!Z%H(lF(X)) L k=12, )

it becomes obvious in order to obtain upper bounds for Fk(g N,), we must impose
conditions not only for the kth order cumulants of the r.v. X but for N;, too. Here
ZT denotes a summation over all non-negative integer solutions 0 < my,...,mi < k
of the equation m; +2mo+ -+ kmp =k, my+---+mp=m, 1 <m < k.

Proposition 1. Assume that A(t) > 0, t > 0, is distributed according to the gamma
law with the parameters ny > 0, 0 < by < 1 and density function (2). Then for the
kth order cumulants of the mized Poisson process Ny the upper estimate (L) holds:

k
Fk(Nt)g(k;—U!%(b%) L k=1,2,.... (L)

Proof of Proposition 1. Pursuant to (2),
Fae (@) = Ee™ = (1 —iu/b,) ™", ueR. (10)
Wherefore, the definition of the kth order cumulants leads to

1 d*
Fk(/l(t)):i—kwlnf,l(t)(u) =(k—1)n/bF, k=1,2,.... (11)
u=0

Further, in view of (3) together with (10) the ch.f. of IV is

frni(w) = (L= @ =p)e™)/p) " = faw (In f, (uw)/1), (12)

where 0 < p < 1 is defined by (3), and Nj is distributed according to the Poisson law
with unit parameter. It is easy to make sure that In fy, (u) = exp{iu} — 1.
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Now let us derive the kth order cumulants of N;. Based on Lemma 1 in [8, p. 135],
taking into account the definition of the kth order cumulants together with (12) and
I'v(N1)=1,k=1,2,..., allows one to obtain

k—

Z VL (A), k=1,2,.... (13)

1=0
Integers c;k) > 1,5 =1,2,...,k, are Stirling numbers of the second kind that can
be determined, e.g., from ¢\, = kIS0 HJ L(1/30m(1/mgl), 1= 0,1,...,k — 1,
k =1,2,..., where >.|" denotes the same summation as in case of ) ], supposing

m=k—1,0<I<Fk_1.
If 0 < by < 1, then substituting (11) into (13) leads to (L¢), due to f 01 cék)l(k:
D)< (k—1)128 1 k=1,2,....

Proposition 2. If for the r.vs. X, Ni, t >0, conditions, accordingly, (B.) and (L)
are fulfilled, then

|Tu(Sn)| < (R /AF72, Ay =bi/DSN, /M;, j=1,2, k=3,4,..., (14)
as 0 < by < 1, where
My =22|u|v (1Va/(2lu))M) asp#0, My =2Mas p=0. (15)
Here M > 0, DSy, are defined, accordingly, by (5), (8).

Proof of Proposition 2. Let us consider the case when u # 0. The application of (9)
together with (5), (L;) leads to

* n—1)! gm—l
‘Fk(SN,,)‘ g(k!)1+7Mk*2at0'2 + klng ZQ ml!(m ) - =

..... mi 1! b';n
k—1
< ™ TT(GYMI726%)™ k=2,3,..., (16)
j=2

where > denotes a summation over all non-negative integer solutions 0 < my,.. .,
mi—1 < k, of the equation mq +2mao+ -+ (k—1)mg_1 =k, m1 + -+ mg_1 = m.
Here 1 <m < k.

Clearly, ne /b7 < B2/b72 as, certainly, 52 > 2. Here f;, 2 are defined by (4).
Consequently, by > 5 m!/(ml----- my_1!) = 281 — 1, |u/™ H;:;(MFQUQ)’”J' <
L™ (1 a/(2|u])M)kE=™ H?;ll(j!)mf < (k—1)!, k=2,3,... (for more details see
(22)—(24) in [2, p. 261]) and inequality (16), we arrive at

|Tk(Sn,)| < (K)™DSy, (M /b,)F72 as0<b, <1, k=23,....  (17)

Here DSy,, M; are defined by (8), (15), respectively.
Now let us consider the case when u = 0 and suppose that 0° = 1. Equality (9)
and inequalities (5), (L) ensure

= m—1 k
|Fk(SNt)| < k!atz %(%) j]_:_‘[2((j!)70—2Mj72)mj a8)
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for k =2,3,.... Here Z; denotes a summation over all non-negative integer solutions
0 < ma,...,mi < k of the equation 2mg + -+ + kmyp = k, mao + -+ + my = m,
1<m<k.

In accordance with HfZQ(Mj_QJQ)mf < o?mMEEm Nl (ml my!) <

2k=2 H?ZQ(j!)mf < kl, k=2,3,... (for more details see (21), (22) in [3, p. 140]) the
estimate of (18) is

[Tk (Sn,)| < (B)" DSy, (M2 /b)*"2 as0<b <1, k=2,3,....  (19)

Here DSy,, M > 0 stand with © = 0, and M, is defined by (15). To com-
plete the proof, it is sufficient to use (17), (19) and by noticing that I'x(Sw,) =
I(Sn,)/ (DS, )*/2, we arrive at (14).

2 Large deviation theorems

Since the majorating upper estimate for Iy (S’Nt)7 k = 3,4,... is derivered, we can
assert that theorem on large deviations and exponential inequalities follow directly
from Theorems 1, 3 in [3, pp. 134-135] with the parameters Zy = SYN” A, = Ay,
where Sy, and A; are defined, accordingly, by (7), (14).

Set @(x) as the standard normal distribution function and assume that niby — oo
as t — oo.

Theorem 1. Suppose that the r.vs. X, Ny satisfy conditions (B,) and (L), respec-
tively. Then
1 —Fg, (2) Fg,, (=)

Tl —1, yE —1 (20)

in both cases: u # 0, u = 0, hold for x > 0, x = o((nsb)""/?) as t — co. Here
v(7) = (1+2(1V), 7 > 0.

The proof of Theorem 1. The proof almost immediately follows from Theorem 2 in
[3, p. 135], considering the instance when a; = 1, p =0, and N := Ny, ¢t > 0 is mixed
Poisson process with the probability (3).

Following the proof of Theorem 2 it is obvious that we must to show: A; — oo
as t — oo. Recall the definitions of DSy,, A; by (8), (14), respectively, and let’s
notice that 82 > 2ay as 2 > oy, 0 < by < 1. Accordingly, A, = bir/DSn,/M; >
C’j(ntbt)l/Q, Cy = \/2u? +02/M;, Cy = 0/Ms > 0. Thus, assuming that n:b; — oo
as t — oo, we achieve that A; — oc.

Theorem 2. If for considered r.vs. X, N, t > 0, conditions, accordingly, (Bv) and
(L) are fulfilled, then for all x >0

exp{—22/4}, 0 <z < (2040 A1/ (1+2),
Tz

P(£Sy, > 2) < >
( Ny 1') {exp{(zAt)l/(1+'y)/4}, 2(1+'y) At)l/(l+2'y)'

Ezample 1. Assume that n, = n € N and b; is fixed. Then relations (20) hold for
x = o(n*/?) as n — oco.



On large deviations for compound mized Poisson process 21

Ezample 2. 1f by = 1/t < 1, and parameters ny, by > 0 of gamma distribution are
related by n, = (nt?(=9)1/¢ n € N, where 0 < e < 1, then it can be proved
that Lemma 1 (on regularity condition for the kth order cumulants of the sum of the
random number of summands of i.i.d. weighted r.vs.) in [3, p. 131] in case u # 0 holds
with N :== Ny, a; =1, j=1,2,..., K1 :=2/\/n, p:= €/2. Suppose that n is fixed.
Thus in this instance relations (20) hold for z > 0 such that z = o(t*(7)(2=39/29)) ( <
€ < 2/3 as t — oo. Assuming that parameters ny, b; are related by n, = (nt'=¢)'/¢,
0 < € < 1, we have that Lemma 1 in [3, p. 131] in case p = 0 stands with N := N,
aj=1,7=1,2,..., Ky := 2/n, p := & Then (20) hold for z = o(t*(")(1=26)/(29)
0<e<1/2ast— occ.
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REZIUME
Didieji nuokrypiai misriam sudétiniam Puasono procesui
A. Kasparaviciuté, D. Deltuviené

Siame darbe yra nagrinéjama sudétinio misraus Puasono proceso normalioji aproksimacija didziujy
nuokrypiy Kramero ir laipsninése Liniko zonose, taikant kumulianty metoda.

Raktiniai Zodziai: kumuliantai, didieji nuokrypiai, sudétinis misrus Puasono procesas, eksponentinés
nelygybés.
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