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Abstract. New splitting finite difference schemes for 2D and 3D linear Schrédinger prob-
lems are investigated. The stability and convergence analysis is done in the discrete Lo norm.
It is proved that the 2D scheme is unconditionally stable and conservative in the case of zero
boundary condition. The splitting scheme is generalized for 3D problems. It is proved that
in this case the scheme is only p-stable and consequently discrete conservation laws are no
longer valid. Results of numerical experiments are presented.
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Introduction

Schrédinger problems are solved in variety of areas including nonlinear optics, laser
physics and quantum mechanics. Thus fast numerical algorithms with good approxi-
mation properties are of practical importance.

We consider the following two and three dimensional (d = 2, 3) linear Schrédinger
problem

ou 4 92y
715:;6—303’ (w1,...,mq,t) € 2 x (0,77, (1)
u(xy, ..., xq4,0)|p = up(z1, ..., x4, (2)
(1, .. xa, t)|oox o) = w(w1,. .. Ta,st), (3)

in rectangular domain 2 = (ay,b1) X -+ X (aq, bgq). Hereafter spatial variables x1, xo
and x3 will be denoted as x, y and z respectively.
1 Scheme for 2D Schrodinger problem

Finite difference splitting scheme under consideration is described in [1]. Domain {2
is covered by discrete grid

Qh:{(:cj,yk)::cj:alJrjh, Yy =as +kh, j=0,..., Ng, k:O,...,Ny}.
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One time step of the discrete scheme is implemented in two sub-steps: only tridiagonal
systems of linear equations are solved:

—i(/: 52) = L, PU + L,O2UT,  (xj,u1) € D, (4)
~ T n .
]nk: <£y258§>8tujk, ]ZO,N:E, k:].,...,Nyf]., (5)
T n 7in
<£y - 71585) atUjk = Ujk’ (ijyk) € Qh, (6)

where the discrete operators are defined by the following formulas

+1 n n n
5 _ U - Ug .U — Uiy, — Uji
t ]k - - ) ]k - h )
1
LU = E(Uﬁkq + 10U, + ;fk+1)-

Herei L, is the averaging operator. Equation (5) defines artificial boundary conditions
for U7}
1.1 Stability, convergence and conservativity

We define the following discrete norms for grid functions W satisfying boundary
conditions W|ag, = 0:

N,—1Ny—1 N,—1Ny—1
Wl = Wikl?h2, Wl =] D D [Wl?h2,
j=1 k=1 j=0 k=1
Nz—1Ny—1
Wiy = Do > Wilh2, W[5 = 10:W2 + 0,W]]2,
j=1 k=0
Wle. = P L (Wikl-

Eigenproblem for operators 82 and L,
BV =-NVp, LV =V,

It is well known that for both eigenproblems in domain (0, 1)? the orthonormal eigen-
vectors are defined as V,(z) = v/2sinpra.

Theorem 1. Scheme (4)—(6) is unconditionally stable.

Proof. We write the solution of problem (4)—(6) with u = 0 as Fourier series:

Ny—1Ny—1

chvv (7)
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We put (7) into (4), (6) and obtain coefficients:

2 .
ol YpVq — TT)‘p)‘q - Z%()‘zﬁq + %)‘q)cn — ot

.
m YV — TTzAp)‘q + i%()‘zﬁq + YpAq) . P

By noting that the numerator of factor o, is complex conjugate of its denominator,

we can easily conclude, that |of, | = 1 and consequently ¢! = |ep, |.

Next we derive discrete conservation laws for solution of the scheme (4)—(6) in the
case of zero boundary condition p = 0. It is well-known that the following norms can
be calculated by using the Fourier coefficients:

»—1 Ny—1 »—1Ny—1
n 2 n
lom|” = Z Z el U = Z Z M+ Al ®)
p=1 g¢=1
Since |cp | = |cp,|, then it follows from (8) that splitting scheme satisfies discrete

analogues of charge and energy conservation laws:
RO = ol B = U7 = ol

The following convergence theorem is valid. A proof of it is similar to 3D case
analysis presented in the further section.

Theorem 2. Suppose, that exact solution u(zx,y,t) of problem (1)—(3) is sufficiently
smooth. Then solution of linear alternating direction implicit discrete scheme (4)—(6)
converges to u(x,y,t) and the following estimate is valid

T—UM| <C(TP+nY).

max ||

n=1,...,Ny
Ezample. We use Example 2 given in [1]. 2D Schrédinger problem (1)—(3) is solved
in the rectangular domain 2 = (—2.5,2.5) x (—2.5,2.5) with initial and boundary
conditions obtained from the exact particular solution

u(z,y,t) = g P [—i((z—1)*+(y — 1)* +ik(z — 1) + ik?t) /(i — 4¢)],
where k£ = 2.5. Results of computational experiments are presented in Table 1, they
show the second-order convergence in time and the fourth-order convergence in space

in both Ly and L., norms.

Table 1. Absolute errors and convergence order (t = 0.75).

h T [u™ = U™ Jju™ = U™ L Order

0.2 0.001 9.52-107%  4.78-1073 |
0.1 0.001/4  5.79-10*  3.05-10"* 4.04  3.97
0.05  0.001/16 3.60-107°>  1.89-107° 4.01  4.01

0.025 0.001/64 2.24-107% 1.19.107° 4.00  3.99
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2 Scheme for 3D Schrédinger problem

Square grid 2, = {(Ij, Yk zl)} is used for discretization of domain 2.
We propose the following 3D alternating direction implicit (ADI) scheme:

—i(ﬁ 62) T = LyL02UNy + LoL 00U + Lo L,02U7, (9)
< 82) U (10)

gkt — Yikls

1T n =,
(-~ 02 )0 = T (1)

with boundary conditions for U and U™

=~ T
Ujkl: <£y5‘9§) (ﬁ - 23)3#%1,
j=0,Ng, k=1,....Ny—1,1=1,...,N, -1, (12)

~

ﬁymz (,cz—%az)atuykl, k=0,N,, j=1,....,N,—1,1=1,...,N, — 1. (13)

2.1 Stability with respect to the initial condition

The following estimates of eigenvalues of operators 92 and £, will be needed: 8 < \;
<3<y <L
Similarly to 2D case we express the discrete solution as a sum

_1Ny IN,.—1

Z Z Z par VoVaVrrs (14)

where coefficients

n+l _ (1 4 T('Vqlzr)‘p +7p'77lji‘q +7p’7q)‘i?;) ) no_gn o (15)
i+ FA) (Vg + FA) (0 + FA)

pqr " Tpqrpgre
Since A; > 0, v; > 0, it can be verified that |O‘qu| > 1, so scheme is unconditionally
unstable. Thus we can consider the p-stability of this scheme, only.
The following estimate can be easily derived:

CPCIT

lop | <147 <§p+$—2+%)<1+1:—;. (16)
2.2 Convergence
The error ZJ”M = u?kl - Uj”kl satisfies the problem
- z'<,cz - ilai) (Ey - Ziaﬁ) <,cz - Z‘—Taf) hZ
=L,L.07 T+ Lol 82 T+ Lo L azZ]kl+R_]kl7 (17)
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Zle =0, Z;Lkl|69h =0, (18)

J

where R, is the approximation error. We write Z™ and R" as sums:

A Z 2 Vo Va Vi, R" = Z e VoVaVi. (19)

p,q,7 p,q,7

Substituting (19) into (17) after simple computations we get

n+l _ n n n n
Zpqr = OpqrZpgr T TPpgrTpgr

(20)

where 8. = = = -
ﬂpqr (o5 2p) (Vg + 5 Ag) (Ve 5 Ar)

Let us assume that |aj,,.| < d. Since v; > 2/3, we get the estimate |8, | < 27/8.
By using (20), we can express Z"*! as sum of two discrete functions, then use the
triangle inequality and finally by using the discrete Parseval’s identity we deduce the

stability estimate

27
1z < sz + gl B (21)
By using (21) and since ||[R"|| < Cy(7? + h*) we get the following estimate

o —1

. (22)

127 < %70@7(72 + h4)

If we choose 7 = Ch?T" and use inequality (16), then we obtain the estimate

|ty | <1+ Ch1 =14 Cr/@Hm =,

which is acceptable for the stability with respect to the initial condition. But by
extending inequality (22) we get

[27]] = 012+ exp (1 1/ 20,

thus controlling the error growth and getting convergence of the discrete solution can
be problematic.

Ezample 1. We solve equation (1) with d = 3 in domain (0,1) x (0,1) x (0,1) with
initial and boundary conditions (2)—(3) prescribed from the exact solution:

u(z,y,z,t) = sin(rz) sin(ry) sin(rz) exp (—3in>t). (23)

Table 2. Absolute errors and convergence order (t = 0.75).

Ny Ny lur —=U™|| |ju™—U"||g,  Order
VC6

5 313 5.18-1073  1.26-10"2
10 1252 3.20-107%  9.05-10~% 4.02
20 5008 2.40-107° 8.77-107° 3.74
icc

5 313 5.18-107%  1.26-10"2
10 1252 3.20-107% 9.05-10"% 4.02

20 5008 3.14-107° 1.17-10"% 3.35
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A code implementing ADI scheme for 3D problem was compiled by using two different
compilers (VCG, icc). Results of computations are presented in Table 2. We note
significant differences in results for different compilers which may be due to the lack
of classical stability estimates with respect to the right hand side.
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REZIUME

Skaidymo schemy dvimadiams ir trimadiams Srédingerio uzdaviniams analizé
A. Mirinavicius

Tiriamos naujos skaidymo baigtiniy skirtumy schemos dvimaciams ir trimaciams tiesiniams Srédin-
gerio uzdaviniams. Stabilumo ir konvergavimo analizé atlikta diskrecioje L2 normoje. [rodyta, kad
dvimaté schema yra nesalygiskai stabili ir konservatyvi nulinés krastinés salygos atveju. Skaidymo
schema apibendrinta trimaciams uzdaviniams. Jrodyta, kad Siuo atveju schema yra tik p-stabili ir
todeél diskretieji tvermés désniai jau nebegalioja. Pateikti skaitiniy eksperimenty rezultatai.
Raktiniai ZodZiai: baigtiniy skirtumy metodas, Srédingerio uzdavinys, kintamuyjy krypéiuy neisreiks-
tiné schema, stabilumas, konvergavimas.
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