A joint limit theorem for zeta-functions of newforms

Gintautas Misevičius

Department of Mathematics and Informatics, Vilnius University Naugarduko 24, LT-03225 Vilnius E-mail: gintautas.misevicius@mif.vu.lt

Abstract. In the paper a joint limit theorem for zeta-functions of newforms on the complex plane is proved.

 ${\bf Keywords:}\ {\rm limit}\ {\rm theorem},\ {\rm zeta-function},\ {\rm newform}.$

Let $SL(2,\mathbb{Z})$ be the full modular group, and for $q \in \mathbb{Z}$,

$$\Gamma_0(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in S(2\mathbb{Z}) \text{: } c \equiv o(\text{mod } q) \right\}$$

be its Hecke subgroup.

Suppose that F(z) is a holomorphic function on the upper half plane $\operatorname{Im} z > 0$, for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(q)$ satisfies the functional equation

$$F\left(\frac{az+b}{cz+d}\right) = (cz+d)^k F(z), \quad k \in 2\mathbb{N},$$

and is holomorphic and vanishing at cusps. Then F(z) is called a cusp form of weight k and level q, and has the following Fourier series expansion at infinity

$$F(z) = \sum_{m=1}^{\infty} c(m) e^{2\pi i m z}.$$

Denote the space of all cusp forms of weight k and level q by $S_k(\Gamma_0(q))$. For every d|q, the element of the space $S_k(\Gamma_0(d))$ can be also considered as an element of the space $S_k(\Gamma_0(q))$. The form $F \in S_k(\Gamma_0(q))$ is called a newform if it is not a cup form of level less than q, and if it is an eigenfunction of all Hecke operators. Then we have that $c(1) \neq 0$, therefore, we may assume that F is a normalized newform, i.e.,

$$F(z) = \sum_{m=1}^{\infty} c(m)e^{2\pi i m z}, \quad c(1) = 1.$$

Let $s = \sigma + it$ be a complex variable. To a newform F, me attach the L-function L(s, F) defined, for $\sigma > \frac{k+1}{2}$, by

$$L(s,F) = \sum_{m=1}^{\infty} \frac{c(m)}{m^s}.$$

Moreover, L(s, F) has, for $\sigma > \frac{k+1}{2}$, the Euler product over primes

$$L(s,F) = \prod_{p|q} \left(1 - \frac{c(p)}{p^s}\right)^{-1} \prod_{p\nmid q} \left(1 - \frac{c(p)}{p^s} + \frac{1}{p^{2s+1-k}}\right)^{-1},$$

is analytically continuable to an entire function and satisfies the functional equation

$$q^{s/2}(2\pi)^{-s}\Gamma(s)L(s,F) = \varepsilon(-1)^{k/2}q^{(k-s)/2}(2\pi)^{s-k}\Gamma(k-s)L(k-s,F),$$

where $\varepsilon = \pm 1$.

A. Laurinčikas, K. Matsumoto and J. Steuding [1] obtained a limit theorem for the function L(s, F) and applied it for the investigation of the universality of L(s, F). Let $D = \{s \in \mathbb{C}: \frac{k}{2} < \sigma < \frac{k+1}{2}\}$, and H(D) denote the space of analytic functions on D equipped ewith the topology of uniform convergence on compacta. Let $\mathcal{B}(S)$ stand for the class of Borel sets of the space S. Define

$$\varOmega = \prod_p \gamma_p,$$

where $\gamma_p = \{s \in \mathbb{C}: |s| = 1\}$ for all primes p. With the product topology and pointwise multiplication, the torus Ω is a compact topological Abelian group, therefore, on $(\Omega, \mathcal{B}(\Omega))$ the probability Haar measure m_H can be defined. This gives the probability space $(\Omega, \mathcal{B}(\Omega))$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_p , and define on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$ the H(D)-valued random element $L(s, \omega, F)$ by

$$L(s,\omega,F) = \prod_{p|q} \left(1 - \frac{\omega(p)c(p)}{p^s}\right)^{-1} \prod_{p\nmid q} \left(1 - \frac{\omega(p)c(p)}{p^s} + \frac{\omega^2(p)}{p^{2s+1-k}}\right)^{-1}.$$

Let P_L be the distribution of $L(s, \omega, F)$, i.e.,

$$P_L(A) = m_H(\omega \in \Omega: L(s, \omega, F) \in A), \quad A \in \mathcal{B}(H(D)).$$

Denote by meas{A} the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the following statement holds.

Theorem 1. (See [1].) The probability measure

$$\frac{1}{T}\max\left\{\tau\in[0,T]\colon L(s+i\tau,F)\in A\right\},\quad A\in\mathcal{B}\big(H(D)\big)$$

converges weakly to P_L as $T \to \infty$.

Our aim is a joint limit theorem for newforms. For j = 1, ..., r, let F_j be a new form of weight k_j and level q_j , and $L(s, F_j)$ be the corresponding *L*-function given, for $\sigma > \frac{k_j+1}{2}$, by

$$L(s,F_j) = \sum_{m=1}^{\infty} \frac{c_j(m)}{m^s} = \prod_{p|q_j} \left(1 - \frac{c_j(p)}{p^s}\right)^{-1} \prod_{p \nmid q_j} \left(1 - \frac{c_j(p)}{p^s} + \frac{1}{p^{2s+1-k_j}}\right)^{-1},$$

Liet. mat. rink. LMD darbai, 53:84-89, 2012.

where

$$F_j(z) = \sum_{m=1}^{\infty} c_j(m) e^{2\pi i m z}, \quad c_j(1) = 1.$$

On the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define \mathbb{C}^r -valued random element $\underline{L}(\underline{\sigma}, \omega, \underline{F})$ by the formula

$$\underline{L}(\underline{\sigma}, \omega, \underline{F}) = (L(\sigma_1, \omega, F_1), \dots, L(\sigma_r, \omega, F_r)),$$

where

$$L(\sigma_j, \omega, F_j) = \prod_{p|q_j} \left(1 - \frac{\omega(p)c_j(p)}{p^{\sigma_j}} \right)^{-1} \prod_{p \nmid q_j} \left(1 - \frac{\omega(p)c_j(p)}{p^{\sigma_j}} + \frac{\omega^2(p)}{p^{2s+1-k_j}} \right)^{-1},$$

and $\underline{\sigma} = (\sigma_1, \ldots, \sigma_r), \underline{F} = (F_1, \ldots, F_r)$. Denote by $P_{\underline{L}}$ the distribution of $\underline{L}(\underline{\sigma}, \omega, \underline{F})$. Then we have the following theorem.

Theorem 2. Suppose that $\sigma_j > \frac{k_j}{2}$, j = 1, ..., r. Then the probability measure

$$P_T(A) \stackrel{\text{def}}{=} \frac{1}{T} \max\left\{t \in [0,T] \colon \left(L(\sigma_1 + it, F_1), \dots, L(\sigma_r + it), F_r)\right) \in A\right\},\$$
$$A \in \mathcal{B}(\mathbb{C}^r),$$

converges weakly to $P_{\underline{L}}$ as $T \to \infty$.

A generalization of Theorem 2 to the space of analytic functions is also possible.

We will give only a sketch of the proof of Theorem 2. Let \mathbb{P} denote the set of all prime numbers.

Lemma 1. The probability measure

$$Q_T(A) \stackrel{\text{def}}{=} \frac{1}{T} \operatorname{meas} \left\{ t \in [0, T] \colon \left(p^{-it} \colon p \in \mathbb{P} \right) \in A \right\}, \quad A \in \mathcal{B}(\Omega),$$

converges weakly to the Haar measure m_H on $(\Omega, \mathcal{B}(\Omega))$ as $T \to \infty$.

Proof of the lemma is given in [1].

Now let $\sigma_1 > \frac{1}{2}$ be fixed, and, for $m, n \in \mathbb{N}$,

$$v_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}.$$

For $j = 1, \ldots, r$ define

$$L_n(s, F_j) = \sum_{m=1}^{\infty} \frac{c_j(m)v_n(m)}{m^s},$$

and, for $\widehat{\omega} \in \Omega$,

$$L_n(s,\widehat{\omega},F_j) = \sum_{m=1}^{\infty} \frac{c_j(m)\widehat{\omega}(m)v_n(m)}{m^s}$$

Then the series for $L_n(s, F_j)$ and $L_n(s, \omega, F_j)$ converge absolutely for $\sigma > \frac{k_j}{2}$.

Lemma 2. Suppose that $\sigma_j > \frac{k_j}{2}$, $j = 1, \ldots, r$. Then the probability measures

$$P_{T,n}(A) \stackrel{\text{def}}{=} \frac{1}{T} \max\left\{t \in [0,T]: \left(L_n(\sigma_1 + it, F_1), \dots, L_n(\sigma_r + it, F_r)\right) \in A\right\},\ A \in \mathcal{B}(\mathbb{C}^r),$$

and

$$\tilde{P}_{T,n}(A) \stackrel{\text{def}}{=} \frac{1}{T} \max\left\{t \in [0,T] : \left(L_n(\sigma_1 + it, \widehat{\omega}, F_1), \dots, L_n(\sigma_r + it, \widehat{\omega}, F_r)\right) \in A\right\},\ A \in \mathcal{B}(\mathbb{C}^r),$$

both converge weakly to the same probability measure on $(\mathbb{C}^r, \mathcal{B}(\mathbb{C}^r) \text{ as } T \to \infty)$.

Proof. The lemma easily follows Lemma 1, continuity of mappings $\tilde{h}_n : \Omega \to \mathbb{C}^r$ and $h_n : \Omega \to \mathbb{C}^r$ given by the formulae

$$h_n(\omega) = \left(L_n(\sigma_1, \omega, F_1), \dots, L_n(\sigma_r, \omega, F_r)\right)$$

and

$$\hat{h}_n(\omega) = \left(L_n(\sigma_1, \omega \widehat{\omega}, F_1), \dots, L_n(\sigma_r, \omega \widehat{\omega}, F_r) \right)$$

respectively, and of Theorem 5.1 from [2]. The limit measure in both the cases is of the form $m_H h_n^{-1}$. This follows from the invariance of the Haar measure m_H .

To pass from the functions $L_n(s, F_j)$ to $L(s, F_j)$, the following approximation is used. Let, for $\underline{z}_1 = (z_{11}, \ldots, z_{1r})$ and $\underline{z}_2 = (z_{21}, \ldots, z_{2r})$,

$$\varrho(\underline{z}_1, \underline{z}_2) = \left(\sum_{k=1}^r |z_{1k} - z_{2k}|^2\right)^{1/2},$$

$$\underline{L}_n(\underline{\sigma} + it, \underline{F}) = \left(L_n(\sigma_1 + it, F_1), \dots, L_n(\sigma_r + it, F_r)\right),$$

$$\underline{L}_n(\underline{\sigma} + it, \omega, \underline{F}) = \left(L_n(\sigma_1 + it, \omega, F_1), \dots, L_n(\sigma_r + it, \omega, F_r)\right),$$

$$\underline{L}(\underline{\sigma} + it, \underline{F}) = \left(L(\sigma_1 + it, F_1), \dots, L(\sigma_r + it, F_r)\right).$$

Lemma 3. Suppose that $\sigma_j > \frac{k_j}{2}$, $j = 1, \ldots, r$. Then

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \varrho(\underline{L}_n(\underline{\sigma} + it, \underline{F}), \underline{L}(\underline{\sigma} + it, \underline{F})) dt = 0$$

and, for almost all $\omega \in \Omega$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \varrho \left(\underline{L}_n(\underline{\sigma} + it, \omega, \underline{F}), \underline{L}(\underline{\sigma} + it, \omega, \underline{F}) \right) dt = 0.$$

Proof of lemma follows from the corresponding one-dimensional statements, and from the definition of the metric ρ .

Define one more probability measure

$$\tilde{P}_T(A) \stackrel{\text{def}}{=} \frac{1}{T} \max\left\{t \in [0,T] : \underline{L}(\underline{\sigma} + it, \omega, \underline{F}) \in A\right\}, \quad A \in \mathcal{B}(\mathbb{C}^r).$$

Liet. mat. rink. LMD darbai, 53:84-89, 2012.

Lemma 4. Suppose that $\sigma_j > \frac{k_j}{2}$, j = 1, ..., r. Then the measures P_T and \tilde{P}_T both converge weakly to the same probability measure P on $(\mathbb{C}^r, \mathcal{B}(\mathbb{C}^r))$ as $T \to \infty$.

Proof. Let θ be a random variable defined in a certain probability space $(\widehat{\Omega}, \mathcal{F}, \mu)$ and uniformly distributed on [0, 1]. Define

$$\underline{X}_{T,n}(\underline{\sigma}) = \underline{L}_n(\underline{\sigma} + i\theta T, \underline{F})$$

Then, by Lemma 4,

$$\underline{X}_{T,n} \xrightarrow[n \to \infty]{\mathcal{D}} \underline{X}_n, \tag{1}$$

where \underline{X}_n is the random element with the distribution P_n , and P_n is the limit measure in Lemma 4. After this, it is proved that the family of probability measures $\{P_n: n \in \mathbb{N}\}$ is tight. Hence, by the Prokhorov theorem, it is relatively compact. Thus, there exists a sequence $\{P_{n_k}\} \subset \{P_n\}$ such that P_{n_k} converges weakly to a certain probability measure P. In other words,

$$\underline{X}_{n_k} \xrightarrow{\mathcal{D}}_{k \to \infty} P. \tag{2}$$

Define

$$\underline{X}_T(\underline{\sigma}) = \underline{L}(\underline{\sigma} + i\theta T, \underline{F}).$$

Then, in view of Lemma 5, for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \mu \left(\varrho \left(\underline{X}_T(\underline{\sigma}), \underline{X}_{T,n}(\sigma) \right) \ge \varepsilon \right) \\ \leqslant \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{\varepsilon T} \int_0^T \varrho \left(\underline{L}(\underline{\sigma} + it, \underline{F}), \underline{L}_n(\underline{\sigma} + it, \underline{F}) \right) dt = 0.$$

This, (1), (2) and Theorem 4.2 of [2] show that

$$\underline{X}_T(\underline{\sigma}) \xrightarrow[T \to \infty]{\mathcal{D}} P.$$

Thus, P_T converges weakly to P as $T \to \infty$.

Repeating the above arguments for the random elements

$$\underline{\tilde{X}}_{T,n}(\underline{\sigma}) = \underline{L}_n(\underline{\sigma} + itT, \omega, \underline{F})$$

and

$$\underline{\tilde{X}}_{T}(\underline{\sigma}) = \underline{L}(\underline{\sigma} + i\theta T, \omega, \underline{F}),$$

we obtain that \tilde{P}_T also converges weakly to P as $T \to \infty$.

Proof of Theorem 2. In view of Lemma 4, it suffices to prove that P coincides with $P_{\underline{L}}$. For this, elements of the ergodic theory is applied.

References

- [1] K. Matsumoto A. Laurinčikas and J. Steuding. The university of *L*-functions associated with newforms. *Izv. Math.*, **67**(1):77–90, 2003.
- [2] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

REZIUMĖ

Jungtinė ribinė teorema najųjų formų dzeta funkcijoms

G. Misevičius

Straipsnyje įrodyta jungtinė ribinė teorema kompleksinėje plokštumoje naujųjų formų dzeta funkcijoms.

Raktiniai žodžiai: dzeta funkcija, naujoji forma, ribinė teorema.