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Abstract. In this paper, generalized Green’s functions for second-order discrete boundary-
value problems with nonlocal boundary conditions are investigated, where the necessary
and sufficient existence condition of discrete Green’s function is not satisfied and nonlocal
boundary conditions are described by linear functionals.
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Introduction

In practice, problems often arise where we cannot measure data directly at the bound-
ary. Then nonlocal boundary conditions (NBCs) instead of classical boundary con-
ditions (BCs) are often formulated. During the last decade there has been a great
interest in solving problems with NBCs by numerical methods.

Let X,, := {0,1,2,...,n} and F(X,) := {ulu : X,, = C} denote the space of
complex linear functions with the basis {67: &/ = 7(i)}. We consider the space
F*(X,,) of linear functionals in the space F'(X,,). Let (0;,u) = u; = u(i).

Let us consider the second-order discrete problem with NBCs

Lu := a}

Uito + ajuipr +aju; = fi, i€ Xnoo, (1)

<Lj7u> = <H]'7u>77j<%jﬂu>:07 j:1a27 (2)
where L : F(X,,) — F(X,,—2) = imL is a linear operator and L, Lo are linear
functionals, let L = (L1, L2). Many NBCs can be written in the form (2), where

(kj,u), j = 1,2, are classical parts and (s¢j,u), j = 1,2, are nonlocal parts of BCs. If
the unique solution of the problem (1)—(2) can be given by

n—2
Ui = Z Giifi = (Gij, fi)xn o, 1€ Xn,

j=0

where (vj,w;)x, = >.[_ovjwj, v,w € F(X,), then the function G' € F(X,, x X;,—2)
is called discrete Green’s function of operator L with NBCs (2). According to S. Ro-
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man [2], the necessary and sufficient existence condition of discrete Green’s function
is

(Ly,ut)  (La,ut)

D(L)[u] - <L1 u2> <L2 u2>

#0,

where {u!,u?} is a fundamental system of homogeneous equation (1).
In this paper we consider the problem (1)—(2) and generalize its discrete Green
function when D(L)[u] = 0.

1 Moore—Penrose inverse
The problem (1)—(2) is equivalent to the linear system of equations
Au=Tf. (3)

Then the existence condition of discrete Green’s function is equivalent to the condition
det A # 0. Therefore, discrete Green’s function can be constructed by

Gij=9ijs 1€ Xn, j € Xpoay if A71 = (g3))-
If det A = 0, then discrete Green’s function doesn’t exist.

Definition 1. A matrix X € C™"*"™ is called the Moore—Penrose inverse of A € C™*"
and denoted by AT, if it satisfies all Penrose equations

AXA = A, XAX =X, (AX)" = AX, (XA)" =XA,
where A* denotes the adjoint matrix of A, C"™*™ — m x n complex matrices.

The existence and uniqueness of the Moore—Penrose inverse was proved by Urquhart
and Penrose, respectively [1]. It follows that the Moore—Penrose inverse of non-
singular matrix coincides with the ordinary inverse. According to this, we define
generalized discrete Green’s function of operator L with NBCs (2) by

Gij = Gij, 1€ Xn, j c Xn,Q, where ;&T = (gij)- (4)

Corollary 1. Let A € C™*"™ b € C™. The general solution of consistent system
Ax =Db is
X0 = ATb + PkerAC; (5)

for arbitrary ¢ € C™. Here Pyer o is the orthogonal projector on ker A.

Corollary 2. Let A € C™*"™ b € C™. A wvector x is a least squares solution of
Ax = b if and only if Ax = Pimab = AAL3p, Thus, the general least squares
solution is

x=A"¥p 4+ (I- AT A)c,

where ¢ € C™ is an arbitrary vector, 1 is the identity matriz, and A3 is any matriz,
satisfying both Penrose equations AXA = A, (AX)* = AX.
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Remark 1. Because the Moore—Penrose inverse satisfies all four Penrose equations, it
also satisfies the first and third Penrose equations. Thus, the vector (5) is always the
general least squares solution for consistent or inconsistent linear system of equations,
i.e., the vector (5) always minimizes the Euclidean norm of residual vector

|Axo —b| < |[Ax — b, V¥xeC™

According to Remark 1, we define generalized discrete Green’s functions for con-
sistent and inconsistent linear systems of equations by the same formula (4).

Theorem 1. Let A be a square singular matriz, let {y1,y2,...,¥n} and {xX1,Xa,

..., Xp} be orthonormal bases of ker A* and ker A, respectively, and let {1, aa, ..., }
be non-zero scalars. Then the matriz

n
A=A+ Z QYiX;

=1

s mon-singular and ils inverse is

"1
AaleTJrZEXiY?-

i=1 "

2 Applications to problems with NBCs

Let us denote
(Lj,u) = bhug, j=1,2.
k=0

Then the system (3) can be written in the extended matrix form

ady ay a2 0 ... 0 0 0

ug fo
0 &) al a2 ... 0 0 0 1 f
o o0 0 o0 ... a}b_3 ai_g 0 Up—3 = fr_s
o o0 0 o0 ... a?kQ a}HQ a?kQ Up—2 fn—2
O R O A e i 8
T > I A N "

Let dimker A = dimker A* = r € {1,2}. Then det A = 0. Let us suppose that
the basic (n + 1 — r)-order minor of matrix A € CTDx(+D) gatisfies M,,41_, =
det A # 0, where A = (ﬁij), i,j € Xp—r. Then the solution of ker A = {w €
Crtl; Aw = 0} basis is equivalent to the solution of the problem

Aw = glv (6)
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where w = (wo,wl,.. wn D gt =0,i€ Xppo, gt 1 = —a%_, _Wni1_p,
g = —65(al_qwn_1+a%_,w,) — 676w, It is easy to see that (6) is a restriction
of discrete problem

Lw := alwiyo + atwiyr + adw; = g}, i € Xp_o,
(li,w) == (L§,wk) = gj_1, if r =1,
<12*’l"+jaw> = Wp—r4j = 0, j = ﬁ7

where matrix determinant equals to M, 41—, # 0. Therefore, D(ly,l2)[u] # 0. Then
the solution of (6) is

n—2

w; = Z Gz]gjl + 9711_11)1-157{ = (Gij,g]l»)xn , 1€ Xn—r,

=0 o
where G;; € F(X,, x X,_2) is discrete Green’s function of operator L with NBCs
(lg,w) = 0, k = 1,2, and Gi 1 = v} = D(0;,12)[u]/D(l1,12)[u]. Let e = (8}),

i,7 € X,, be the standard basis of R"*!. Then the kernel of A is composed of the
vector

ks
Z Gij»0f) 5, €+ D Wo€™ wp gy €C k=T (7)
i=0 i=1

Taking wy 11— iwny1-j = 05, 4,5 = 1,7, we get the concrete basis of ker A.

The solution of ker A* = {v € C"*1: A*v = 0} basis is equivalent to the solution
of the problem

A*YV = g27

where A* is the adjoint matrix of (6) matrix A, v = (vo,v1,...,Vn_r)7, g]2- =

72;;:1 bé_kvnﬂ,k, je Xy Z=x+1wy =x—wy, z,y € R, + = +/—1. Simi-
larly, we can show that the basis of ker A* is composed of vectors

n—r e —
V== (G e ket k=T (8)
i=0
Let x| = w!, y; = v
orthogonalization process

Then other vectors are orthogonalised by Gram—Schmidt

1 1
2 _ (!l w2 W 2 _ (vl 2y VY
SRR T AR T

where (-, -) denotes the standard inner product. Taking a; = ||x}]| - ||y}]l, i = 1,7, and
applying Theorem 1, we get that the Moore—Penrose inverse of A is

A+ yix “—‘) xy';-
( Z Z||X’H2 lysll?
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Then generalized discrete Green’s function is
Gz] - A1]7 (RS XTH ,7 € Xn—27

and, according to (5), the general solution of (3) is given by
u= GerZ H /HQ x/xi"c,

for arbitrary ¢ € C"*!, G = (éij), f=(fo, f1,-, fa2)t.
Ezample 1. Let us consider differential equation with Bitsadze-Samarskij NBC
—u'" = f(x)a T e (Oa 1)7
u(0) =0,  w(l)=7u(f), 0<{<L

We introduce the mesh @" = {z; = ih: i € X,,, nh = 1}. Suppose ¢ coincides with a
mesh point, i.e., £ = sh. We consider such an approximation problem

Lu = —uiyy +2u; —uiy = fik?, i=Tn—1, (9)

uy = 07 Up = YUs, (10)

where fiv1 = f(xiy1), i € Xp—2. The problem (9)-(10) has a unique solution and

discrete Green’s function if v # % We consider the case, when discrete Green’s

function doesn’t exist, i.e., v = % Firstly, discrete Green’s function of operator L

with (I3, u) := up = 0 and (l2,u) :=u, =0 is

Gij=hq , 1€ Xy, JE€ Xn o
(G+Dn—1), izj+1,

Then it follows from (7) and (8) that

n—1 n
, . 1
W= Ginoe+e' =hY ie' +e" = ~(0,1,2.....n)",

1=0 1=

1 & (n+1)(2n+1)

Wi == > K= —en

n
k=0

v = z:fdeez +e" = vz Glel 4 yvle™ 1 +em.

If we take u} = 1, u? = x;, then v! = h(n — s) and

n—2
v =~h Z(erl n—s)e + Z (n—i—1)e" +(n—s)e" | +e".
szi+1 s<i+1

‘We can show that

1
Iv|? = 672h2(n —8)(2(n—s)(ns? +3) +ns) +1, s€ X,.
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Then

B ((n—|— 1)(2n+1)
“= 361

1/2
[v?h*(n — 5)(2(n — s)(ns® + 3) + ns) + 1]) .

We calculate the orthogonal projector

0O 0 O 0

T 0O 1 2 ... n

p WV 6 02 4 ... 2n
kerA ™ w2 n(n+1)(2n+1) .
0 n 2n ... n?

Then the general discrete solution of (9)—(10) is given by

67
nn+1)(2n+1)

n
chj, ¢; €R, i,j € X
§=0

n—1
u; = h? Z Gij—1f;+
=1

3 Conclusion

1. Generalized discrete Green’s function always exists and is uniquely constructed.

2. If D(L)[u] # 0, then generalized discrete Green’s function coincides with ordi-
nary discrete Green’s function.

3. If My,41—, # 0, then generalized discrete Green’s function can be described by
the discrete Green function of the same discrete equation with simpler NBCs.
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REZIUME

Apibendrintosios Gryno funkcijos antrosios eilés diskretiesiems uzdaviniams su
nelokaliosiomis krastinémis salygomis

G. Paukstaite, A. Stikonas

Straipsnyje yra nagrinéjamos apibendrintosios Gryno funkcijos antrosios eilés diskretiesiems uz-
daviniams su nelokaliosiomis krastinémis salygomis, kuomet yra nepatenkinta butinoji ir pakankamoji
diskrec¢iosios Gryno funkcijos egzistavimo salyga ir nelokaliosios krastinés salygos yra uzraSytos
tiesiniais funkcionalais.

Raktinias Zodziai: diskretusis uzdavinys, apibendrintoji Gryno funkcija, Moore ir Penrose atvirkstiné
matrica, nelokaliosios krastinés salygos.
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