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Abstract. The paper describes a computer simulation experiment of knowledge assessment
test when item’s characteristic functions are power functions and knowledge level of the
population has uniform or normal distribution. The inversions of the conditional means
were calculated and probability distributions of the numbers of inversions were simulated.
In practice of construction of knowledge tests for checking their suitability (validity) observed
values of inversions are compared with reference values obtained by Monte Carlo experiments.
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1 Introduction

In the works [3, 2, 4] of this article co-authors a mathematical model of closed type
knowledge assessment test (with multiple-choice answers) was proposed. The model
was based on the assumptions that each test taker has a certain level of knowledge
p ∈ (0, 1) and probabilities of the correct answer to j-th test item could be expressed
with nondecreasing functions of variable p – the so-called characteristic functions of
test items kj : [0, 1] → [0, 1]. Let’s us denote Mn(p) the average number of correct
answers to n items test of a test taker whose knowledge level is p: Mn ∈ {0, 1, . . . , n}.
It’s clear that Mn(p) must be nondecreasing function of the variable p, i.e. the
test takers with a higher knowledge level on average are receiving more test points
(numbers of correct items). In theory, this allows to find the inverse function M−1

n ,
to determine the knowledge level of test takers according to their received test points.
However it is difficult in practice and it requires the further study. The paper [6]
presents an empirical study of such a task when the knowledge level of test takers was
considered as a priori known information. Student’s knowledge was assessed in various
ways, then the average value of the estimates was calculated and depending on the
received value the test taker’s grade point was restored. With regard to the stochastic
nature of phenomenon sometimes the stronger student (having higher knowledge level
pi) is receiving lower test scores and vice versa, the student receiving higher test score
can have a lower level of knowledge. If such discrepancies are occurring frequently, the
test isn’t qualitative; it unreliably measures student’s knowledge, so the test hasn’t
validity property. In this article we offer the design scheme of an evaluation criteria
for such discrepancies which is realized by Monte Carlo experiments.
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2 The experiment

Some methodological assumptions were done for the experiment. There are m stu-
dents having knowledge levels distributed according to m1+m2+ · · ·+mk = m where
mi is the number of students having knowledge level pi. Theoretical assumption of
experiment – characteristic functions kj of test items are known and they are power
functions: kj(p) = pα. Depending on the parameter α ∈ (0, 1) values these functions
simulate the difficulty of the questions (test items): the greater is α the harder the
question being asked (student with the level of knowledge p answers to the question
correctly with a lower probability pα with the higher α value). The difficulties of
test questions considered to be known, so test consists of questions with known n

characteristic functions k1, k2, . . . , kn. The result of experiment is the computer sim-
ulation of student’s responses to n test items – random vectors r = (r1, r2, . . . , rn)
where rj ∈ {0, 1} consisting of zeros and ones generated by a priori distributions
P{rj = 1} = kj , Note that the characteristic function can have another form (see
[4, 7]), and it would not change design of the study.

Calculations were limited with the test length of n = 15 items. There were 5
“easy” items (α = 0.25), 5 items of “medium difficulty” (α = 0.5) and 5 “hard” items
(α = 0.75). Each of them could be responded correctly (rj = 1) or not (rj = 0).
By computer simulation (m = 50) students’ answers to such test questions have been
generated. Students’ knowledge levels were set in advance. The example of simulation
result is random zeros and ones matrix shown in Fig. 1.

After that the numbers of students with a certain knowledge level (from 0.1 to 1)
correctly responded to j (j = 0, 1, . . . , 15) test items were calculated (see Fig. 2). The
element of this matrix

F = (fij)10×(n+1),

fij – is the number of test takers having knowledge level i = 1, 2, . . . , 10 (pi =
0.1, 0.2, . . . , 1) and correctly responded to j = 0, 1, . . . , 15 test items. Note that

Fig. 1. The model matrix of test results.

Fig. 2. The matrix of processed results.
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Fig. 3. The test results probability matrix with numbers of inversions.

∑10
i=1

∑15
j=0 fij = m. Dividing each element of the frequency results matrix by the

number of tested students m we get the probability results matrix (see Fig. 3):

F = (pij)10×(n+1),

where pij = P (X = j, p = pi) – is the probability of test takers having knowledge
level i = 1, 2, . . . , 10 (pi = 0.1, 0.2, . . . , 1) and correctly responded to j = 0, 1, . . . , 15
test items.

Then conditional averages [1, 5] were calculated for each row and column of proba-
bilities matrix:

mj =

∑10
i=1 i · pij∑10
i=1 pij

, ni =

∑15
j=1 j · pij
∑15

j=1 pij
, i = 1, 2, . . . , 10, j = 0, 1, . . . , 15,

mj is the average knowledge level of students correctly responded to j test items. ni

is the average amount of correct answers for students having knowledge level i. It is
obvious that the student with the higher knowledge level at an average get more test
points (the number of correct responses). Then rows and columns inversions were
calculated. For example, number of column inversions is the number of pairs (i1, i2)
with i1 < i2 and ni1 > ni2 .

3 The results of experiment

Therefore 2 series of experiments described in previous section were conducted. In
the first experiment probability distribution of population knowledge level was consid-
ered to be uniform and in the second – Gaussian (normal). During each experiment
100 random matrices of items responses were generated. Each of experiments was
repeated for 5 times. One of the resulting probabilities matrices is shown in Fig. 3.
Numbers of columns inversions are listed in the tables in Fig. 4. In the first table of
Fig. 4 knowledge level in the population has uniform distribution (there are chosen

Liet. matem. rink. Proc. LMS, Ser. A, 54, 2013, 37–42.
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Fig. 4. Numbers of columns inversions when knowledge level in the population has uniform and
normal distributions.

Fig. 5. Normally distributed data.

50 students, each 5 students have the same knowledge level), in the second – normal
distribution (Fig. 5).

Statistical hypotheses about probability distribution of numbers of column inver-
sions were tested. According to Kolmogorov–Smirnov goodness of fit criteria for all
5 cases of uniform distribution and 5 cases of Gaussian distribution of population
knowledge level hypotheses of Poisson distribution of the number of columns inver-
sions weren’t rejected. Point estimates of parameter λ values (the average rate of
column inversions occurrences) and p-values of two tailed goodness of fit criteria are
listed in Table 1.

At an average for uniform distribution λ̂ = 2.303, for Gaussian distribution λ̂ =
1.958. As the number of column inversions has Poisson distribution we can calculate
values of cumulative distribution function which are presented in Table 2.

So, number of column inversions for uniform distribution of population knowledge
level in the case of m = 50, n = 15 (items are described in Section 2) couldn’t

Table 1. Point estimates of average rate of column inversions occurrences for uniform
and Gaussian distributions of knowledge level and p-values of goodness of fit criteria.

Uniform distribution Gaussian distribution
Experiment λ̂ p-value Experiment λ̂ p-value

1 2.27 0.491 1 2.12 0.225
2 2.23 0.428 2 2 0.622
3 2.42 0.642 3 1.8 0.664
4 2.29 0.238 4 1.99 0.188
5 2.307 0.189 5 1.88 0.358
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Table 2. Cumulative distribution function for number of column inversions
occurrences (X) for uniform and Gaussian distributions of knowledge level.

Uniform distribution Gaussian distribution

x P (X 6 x) x P (X 6 x)
3 0.796705 2 0.877311
4 0.928189 3 0.965357
5 0.979074 4 0.991991

exceed 5 and for Gaussian distribution couldn’t exceed 4, if we choose the significance
level α = 0.05. At the same manner criteria for the critical values of numbers of row
inversions could be constructed.

4 Conclusions

The purpose of this paper – to show the methodology for construction of test validity
criteria. In this study the simulated test results were presented when having a priori
information about: (1) the difficulty of the test items which are power functions,
(2) the number of test takers, (3) the number of test items, (4) probability distribution
of knowledge level in the population. If the number of experiments is sufficient, it is
possible to construct probability distributions of the number of inversions. This allows
evaluating the suitability (validity) of the test for assessment of student’s knowledge
levels. In practice, this would mean that if we have information about knowledge
level distribution in the population and for any test we can calculate the numbers of
inversions of the resulting test matrix, it is possible to compare distribution of number
of inversions with the referenced distributions obtained by Monte Carlo experiments.
If the number of inversions didn’t exceed referenced values we can say with a certain
confidence level that the test is reliable (valid). Note that the reference number of
inversion’s distributions depends on the above mentioned information and practical
application of criteria requires a number of additional studies.
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REZIUMĖ

Testų patikimumo statistinių kriterijų konstravimas kompiuterine simuliacija
O. Navickienė, A. Krylovas, N. Kosareva

Straipsnyje aprašomas kompiuterinis žinių tikrinimo testo modeliavimas, kai klausimų charakteringo-
sios funkcijos turi laipsninį pavidalą, o žinių lygis populiacijoje turi tolygųjį arba normalųjį skirstinį.
Apskaičiuojamos sąlyginių vidurkių inversijos ir modeliuojami inversijų skaičių tikimybiniai skirs-
tiniai. Praktiškai konstruojant žinių tikrinimo testus, jų tinkamumui (validumui) tikrinti stebimos
inversijų reikšmės lyginamos su etaloninėmis reikšmėmis, gautomis Monte Carlo eksperimentais.

Raktiniai žodžiai: žinių tikrinimo testai, Monte Carlo eksperimentas, matematinis modeliavimas,
statistiniai kriterijai.
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