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at the 54th LMD Conference, devoted to present a very informal and brief introduction to
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Introduction

We are interested in the asymptotic topology and geometric invariants of infinite
discrete groups: these are notions that help the understanding of the topological and
geometrical behavior at infinity of groups, or, more precisely, of universal covers of
compact spaces having a given fundamental group.

M. Dehn was the first who solved algebraic problems using topological methods
(in particular considering only groups that are fundamental groups of 2-dimensional
surfaces). Then people started generalizing these kind of methods to more general
groups acting ‘in a nice way’ on non-Euclidean geometry, culminating in a genuinely
new class of groups: Gromouv-hyperbolic groups [3].

Actually, in the 80’s, M. Gromov [4] highlighted that the large-scale (asymptotic)
geometrical and topological ‘shape’ of spaces endowed with a good group action, only
depends, in some sense, JUST on the group itself and practically not on the space.
The underlying idea one may follow is that ALL the various possible spaces associated
to a given group should share some global geometrical and topological properties (at
infinity), which are called asymptotic properties.

Other applications of geometrical methods to infinite group theory can be also
find in 3-dimensional topology, starting with the celebrated studies of W.P. Thurston
[8], where one understands that the main invariant of 3-manifolds is the fundamental
group, whose nature is influenced by the geometry associated.

Nowadays, the Geometric Group Theory is a very rich and active research field
connecting several branches of (modern) mathematics: algebra, analysis, combina-
torics, discrete mathematics, dynamics, geometry, informatics, logic and topology
(for more information see e.g. [1, 2, 5, 6, 7]).
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1 Groups and associated spaces

If one wants to do some geometry/topology with a group, the first things needed are a
metric and/or some spaces associated, somehow geometrically, to the group studied.
Is it possible to say something algebraic (on the group) starting from geometrical
properties of the metric and/or of the spaces? This is one of the key problem in
geometric group theory: relating geometric conditions of a group (i.e. of the spaces
associated to it), with its algebraic structure.

Let’s start with the basic definitions:

Definition 1. A discrete group is a countable group with the discrete topology.

o A (discrete) group I' is finitely generated if there exists a finite set S of
generators (i.e. every element of I' can be written as a product of powers of
some of these generators s; € S). [The set S will always be assumed to satisfy:
S=S81tande¢ S|

o The group is finitely presented, I' = (S | R), if, in addition, it has a finite
number of relations 1 = r; € R (words in terms of the generators).

To any finitely generated group I with generating set (S) one can associate a very
‘natural’ metric on it, called the word metric.

Definition 2. The length ls(g) of any element g of I' is the smallest integer n such
that there exists a sequence (s1, S2, . .., S, ) of generators in S for which g = s1s92 - - sp,.
The distance (with respect to S) of two elements a,b of I is

ds(a, b) =lg (ailb).

With this distance the space (I, ds) becomes a (0-dimensional) metric space, even
if this metric is discrete. One way to overcome this problem is to associate to I" a
1-dimensional metric space: a graph, called the Cayley graph of I".

Definition 3. The vertex set of the Cayley graph is identified with the elements of
the group I'. For any g € I' and s € S, the vertices corresponding to the elements g
and gs are joined by an edge (labelled by s). Equivalently, two group elements a,b
are joined by an edge if and only if their distance dg(a,b) is 1.

Considering any edge of the Cayley graph as a metric space isometric to the
interval [0,1] C R, the Cayley graph of a finitely generated group I" becomes a nice
metric space, containing (I', dg) isometrically, and acted upon by I.

Remark 1. Note that both the metric dg and the Cayley graph are constructed with
respect to S (the generating set of I"). Moreover:

o The generating set is needed to have an arc-connected (Cayley) graph, and one
needs it to be finite in order to obtain a locally-finite graph.

e The Cayley graph is infinite if and only if the group is infinite.
e An edge-loop in the Cayley graph corresponds to a word equals to the identity

in the group (and vice-versa).

Already the Cayley graph carries on several information on the group (as we will
see), but before this we want to present other spaces associated to groups.
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Whenever the group I is finitely presented, one can associate to it also a nice
2-dimensional space. Let P = (S | R) be a finite presentation for I".

Definition 4. The Cayley 2-complex of I" = (S | R) is the 2-dimensional complex
obtained by gluing a disk on all paths of the Cayley graph labelled by a relator r € R.
[Being S and R finite, the Cayley 2-complex is locally-finite.]

Remark 2. Since closed paths in the Cayley graph label words equal to 1 in I', and,
by definition, relators generate all the relations, then the Cayley complex is simply
connected.

Actually, there is another (topological) way to define and construct both the Cay-
ley graph and complex, starting from a finite presentation of the group I.

Definition 5. The standard 2-complex Xp associated to the presentation P of I’
is constructed as follows: starts with a bouquet of loops, i.e. a vertex v and one edge
loop at v for any s € S oriented and labelled by s.

Then, if I(g) denotes the length of g € I', for each relator r € R, attach an I(r)-
sides 2-cell to the bouquet using r to describe the attaching map. The resulting space
is a finite 2-complex Xp(I).

By construction, 71 (Xp) = I' (Van Kampen Theorem), and its universal covering
space Xp is precisely the Cayley 2-complex of I" (constructed topologically), while
the 1-skeleton of Xp is exactly the Cayley graph of I.

But often a (finitely presented) group comes as the fundamental group of a com-
pact n-manifold M", and hence naturally acts on M™ (by covering transformations):;
or sometimes one may just observe that a given group acts on some (nice) space in
a (nice) way (as it acts nicely on the universal cover whenever it is a fundamental
group). This motivates the following definition:

Definition 6. A geometry is a topological space endowed with a path-metric (i.e.
a metric such that the distance between any two points is realized as the length of
some path joining them) which is proper (meaning that closed metric balls of finite
radius are compact).

An action of a group I" on a geometry X is said geometric if it is isometric (i.e.
d(g - @1,9 - x2) = d(x1,22)), co-compact (i.e. with a compact quotient X/I") and
properly discontinuous (i.e. such that for any compact subset K C X, the set of the
elements {g € I" for which K N gK # (0} is finite).

Wherever a group acts geometrically on a geometry these notions reflect the fol-
lowing information: firstly, when the group acts, the metric of the space is not changed
by it; secondly, the group, though discrete, is, in some sense, ‘proportionally compa-
rable’” with the size of the space (in the sense that it has ‘enough’ elements). In this
way one can look at finitely generated/presented groups as ‘discrete models’ of the
spaces on which they act (and approximate).

1.1 Examples

The easiest (but very instructive) example of a finitely presented group is the group
of integers Z. It is obviously generated by the set S; = {1, —1}, but another set of
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generators may be Sy = {2,—2,3, —3}. In this last case, there are, obviously, also
some relations, and in particular, Z can be written as the (abstract) group Z; = {(a, b |
aaab= b=t aba=tb~1). Another way of presenting Z is the following one: Zs = (a, b |
baba~tb~1).

It is easy to show that these two groups are isomorphic to Z. Actually, for 7y,
the relation aba~'b~! implies that a and b commute, and hence, the first relation
may be written as: aaab™1b~! = aab~lab~! = a[(ba"!)(ba"1)]7!. From the second
relation aba='b~! = 1 one obtains that bab='a~! = 1, hence b[(ba=*)"'a"1] = 1, and
so bla(ba=1)]7t = 1.

In this way, the presentation (a,b | aaab='b=1 aba='b~!) is equal to (a,b |
a[(ba=1)(ba=1)] 71, bla(ba=1)]71), which is equal to the presentation (a,b,ba=! |
a[(ba=1)(ba=1)] 71, bla(ba=1)]71) (by an application of a Tietze operation of type
(Ty), see [5]). To the presentation written in this way, one can apply a Tietze
movement (75), cancelling the generator b with the second relation, and obtaining
{a,bat | a[(ba=1)(ba=1)]71). Another application of such a Tietze operation (73)
leads to the presentation Z; = (ba™! | ), namely Z; ~ Z.

For the group Zs = (a,b | baba=tb~1), the relation baba=*b~! = 1 implies that
baba~!' = b, and then aba~! = 1, i.e. ab = a and hence b = 1. Thus the group Z5 is
just the group generated by a, namely the integers Z.

Having all these different presentations for the same group Z, one can start to
draw the various Cayley graphs and 2-complexes (see Figs. 1, 2, 3).

Of course, the group Z = (a), is the fundamental group of the circle S*, whose
universal cover is the real line R; but Z may also be considered as the fundamental
group of a compact cylinder S! x [0, n], whose universal covering is the strip R x [0, n];
or as the fundamental group of S* x S2, and so on.

Fig. 3. The presentation 2-complex for the group Zs, with its universal covering space.
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This is just to say that, to a given finitely presented group (in our case Z), one can
associate several different spaces: itself with a word metric (one for any choice of the
generating set S), the Cayley graph and complex (each time different for any choice
of the presentation); or the group may be given as the m; of some compact manifold
or as a group acting on some geometry.

Question: do these spaces have something in common?

The answer is, surprisingly, YES! Even if, locally, all these spaces are very different
from each others, a group I' with any of its word metric, all the Cayley graphs and
2-complexes associated to distinct presentations of it, and any geometry on which it
acts geometrically, are ALL ‘similar’: i.e. quasi-isometric (see [1]).

For example, looking at the spaces associated to Z, one realizes that, globally, all
of them are alikes: just ‘thin and long’ in two different ‘directions’. A quasi-isometry
catches exactly these features: it is a map that ‘ignores’ the small-scale local details
of the spaces, but preserving the coarse global structure.

Definition 7. A quasi-isometry between two metric spaces (X, dx) and (Y, dy) is
amap f: X — Y s. t., for some fixed positive constants C' and \:

Aildx(l'l,l'g) —C <dy (f(acl), f(wg)) < )\dx(ml,wg) + C, and
Yy €Y, 3 x € X such that dy (y, f(x)) <C.

Since an algebraic classification of finitely presented groups is not possible (the
word problem is undecidable), Gromov’s idea was to try to classify them ‘geometri-
cally’, i.e. up to quasi-isometries. Hence, from this viewpoint, interesting properties
of groups are those that are invariants under quasi-isometries (and such a property is
called geometric or asymptotic, see [4]).

Remark 3.

e A quasi-isometry may not be continuous: real numbers R and integers Z are
quasi-isometric by the map r € R — [r] € Z.

o More generally, a group G (with a finite generating set S) is quasi-isometric to
its Cayley graph associated to S. Moreover, if S; and Sy are two generating
sets for the group G, then (G, ds, ) and (G,ds,) are quasi-isometric.

Thus, THE word metric and THE Cayley graph are (uniquely) well-defined up to
quasi-isometries.

o A metric space is quasi-isometric to a point iff its diameter is finite. In particular,
the Cayley graph of a group G is quasi-isometric to a point iff G is finite. Hence,
the quasi-isometry class of the trivial group is the set of finite groups (then, from
this viewpoint, finite groups are not relevant).

2 Topology at infinity: ends

The first asymptotic property of topological nature is the condition of being one-
ended, which means that, outside very large compacts, there is only one ‘way to go
to infinity’. More generally, for a metric space X, the number of ends of X, e(X),
is the supremum of the number of unbounded connected component of complements
of compacts. [The real line R has 2 ends.]
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Definition 8. The number of ends of a finitely generated group is the number of ends
of its Cayley graph (or, equivalently, of its Cayley 2-complex).

Theorem 1. (H. Hopf, [7].) If K is a finite simplicial complex, then the set of ends
of its universal covering only depends on w1 K.
Furthermore, the number of ends of a group belongs to the set {0, 1, 2, co}.

Thus, the number of ends of a group is well-defined (and then independent on
the presentation), may take very few values (because the existence of a group action
puts some constraints on the space), and is also a quasi-isometry invariant [2]. Now,
is it possible to say something algebraic starting from the geometrical notion of the
number of ends? One of the first results in geometric group theory relating algebraic
properties with the topology at infinity is the following one:

Theorem 2. (J.R. Stallings, [7].) A finitely generated group G has more than one
end if and only if it admits a nontrivial decomposition as an amalgamated free product
or an HNN-extension over a finite subgroup.

This theorem also implies that the (algebraic) property of having a nontrivial
splitting over a finite subgroup is a quasi-isometry (geometric) invariant of groups.
For more recent developments in Geometric Group Theory see [1, 2, 4].
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REZIUME

Grupiy geometrija ir topologija

Daniele Ettore Otera

Sis darbas yra trumpas jvadas i asimptotine geometring grupiy teorija.

Raktinias Zodziai: Diskrecios grupés, Cayley grafas, kvazi-izometrijos, galai.
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