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Investigation of matrix nullity for the second order
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Abstract. In this paper we investigate the relation between the matrix nullity of the second
order discrete boundary value problem and nonlocal boundary conditions. The obtained
classification and examples are also presented.
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1 Introduction

Let us investigate the second order differential equation with nonlocal boundary con-
ditions (NBC)

_u//(x) = f(l‘), T e (Oa 1)7 (1)
(Lj,u) = (kj,u) — v (3,u) =0, j=12, (2)

where L1, Ly are linear functionals, (k;,u), j = 1,2, are classical parts and (s, u),
j = 1,2, are nonlocal parts of boundary conditions (BC). We introduce the mesh
@' = {x; = ih: i € X,,, nh = 1}, where X,, := {0,1,2,...,n}. Then the problem
(1)—(2) can be approximated by a discrete problem

Lu = —Ujgo + 2Uip1 — U; = fl’hQ, 1€ X9, (3)
(L ug) = ZL?uk =0, j=1,2, (4)
k=0

where f; = f(x;41), 1 € X,—2. In [1], S. Roman presented the necessary and sufficient
existence condition of the unique solution for the discrete problem (3)—(4), which is
given by

<L17 1) <L27 1)

<L15$> <L25$> 7&0

In this paper we investigate the matrix nullity of the discrete problem (3)—(4) and
its dependence on NBC when D(L)[u] = 0.
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2 Investigation of nullity

The problem (3)—(4) is equivalent to the linear system of equations Au = f. Then the
solution of the kernel ker A = {u € R"*!: Au = 0} is equivalent to the homogeneous
problem

Au=0. (5)

Let u} = 1 and u? = z; be the fundamental system of the homogeneous equa-
tion (3). This system of solutions satisfies the first n — 1 equations of (5), that corre-
spond to the operator £. Then the linear combination u; = cju} + cau?, c1,c2 € R,
also satisfies the first n — 1 equations of (5) and the last two equations of (5) satisfy
equalities

<L1, 1>Cl + <L1,SC>CQ = 0, <L2, 1>Cl + <L2, ZL'>CQ = 0,

<L1a1> <L1,SC> C1 . 0
(Lo, 1) (Lg,z) ) \ea) \0O)°

In this case, the condition det A = 0 is equivalent to the condition

or

<L1’1> <L2’1>

DIl = ‘<L1,z> (L)

~0. (6)

If D(L)[u] # 0, then the problem (5) has a unique solution u = 0 and dimker A = 0.
Moreover, the first n — 1 equations of (5), that correspond to the operator L, are
linearly independent. Therefore, dim ker A € {0, 1, 2}.

Thus, generally the classification can be given:

1. dimker A = 0 if and only if D(L)[u] # 0.
2. dimker A = 1. In this respect, two cases are possible:

2.1. The only one row of matrix A that corresponds to the functional L; is
a linear combination only of the first n — 1 rows, that correspond to the
operator £; the row of A, that corresponds to the functional L3_;, and the
first n — 1 rows of A are linearly independent if and only if

<Lj7 1> - <Lja1'> =0, ’<L3fja 1>‘ + ’<L37]‘,1'>’ 7é 0, (7)

where j =1, 2.

2.2. The row that corresponds to the functional L;, j = 1,2, is a linear com-
bination of the row, that corresponds to the functional L3_;, necessarily,
and the first n — 1 rows; the row, that corresponds to the functional L3_;,
and the first n — 1 rows are linearly independent if and only if

3. dimker A = 2 if and only if

<Ll7 1) = <L1,ZE> = <L2, 1> = <L2,l‘> =0. (9)
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Remark 1. Property 2.2 is obtained for both rows that correspond to the first and the
second boundary conditions, respectively, because the condition

Vin—14j = CoVo + C1V1 + -+ Ch—oVp—2 + Cno14kVn—1+k, Cn—14k 7 0,
implies

1 Co Cn—2
Vn—l+] _— VO —_ . e e —
Cn—1+k Cn—1+k Cn—1+k

Vn—1+k = Vn—2, k=3 _,7

Here v;, i € X,,, corresponds to the i-th row of A. Therefore, in this respect, we can
choose the row, which will be considered a linear combination of other rows of the
matrix A. The row, that corresponds to the other functional, and the first n — 1 rows
are linearly independent.

Remark 2. Property 3 means the both rows of A that correspond to boundary con-
ditions are linear combinations of the first n — 1 rows of A.

Remark 3. The investigation of matrix nullity for any second order discrete nonlocal
problem

Lu:= a?uHQ + a}ui_ﬂ + a?ui =fi, 1€ Xn_o,
n
k k .
(L¥up) = Lhup =0, j=1,2,
k=0

where dimim £ = n — 1, is absolutely analogous.

Ezample 1. Let us consider Eq. (1) with NBC »(0) = 0, u(1) = yu(§), 0 < £ < 1. It
can be approximated by a discrete problem

Lu = —Uj2 + 2ui+1 —U; = fih2, 1€ Xp_a,

10
(L1, u) :==up =0, (Lo, u) :==uy, —yus =0, where £ = sh. (10)

According to (6), we get v& = 1. Then we observe that
(Li. D]+ [{Li, )| #0,  [(L2, 1) + [{L2, )| # 0,
because
(Ly,1) =1, (L2,1) =1—~#0, since 0<£<1and7:%>1,
(Ly,z) =0, (Lo,z) =1 —~£ =0, since v¢ = 1.
Corollary 1. For the problem (10) dimker A =1 < D(L)[u] = 0.

Corollary 2. Either row that corresponds to a boundary condition can be considered
a linear combination of all the other rows of A if and only if D(L)[u] = 0.
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Ifn=4,h=1/4,§=1/2,v=1/¢ =2 and s = 2, then the problem (10) has the
matrix

-1 2 -1 0 0 -1 2 =1 0 0
0o -1 2 -1 0 o -1 2 -1 0
A=10 0O -1 2 —-1]~10 o -1 2 -1
1 0 0 0 0 0 0 0 4 -3
0 0O -2 0 1 0 0 0 0 0
Hence we observe that vy = —vg — 2vy — vo — v3 and dimker A = 1.

Ezample 2. Let us consider Eq. (1) with NBC w(0) = you(&), u(1) = y1u(&1), where
0<¢ <1,5=1,2. It can be approximated by a discrete problem

Lu = —Uiy2 + 2ui+1 —U; = fl’hQ, 1€ X9, (11)
(L1, u) :=up — yous, =0, (Lo, u) := uy — yrus, =0,
where &; = sjh, j = 1,2. Then from (6) follows
Yo(1 — &) + &1 — 076 — &) = 1. (12)

Moreover, we have

<L17 1> =1- 7o, <L151‘> = 770505 <L27 1> =1- 1, <L27‘T> =1- ’Ylgl-

Thus, four cases are possible:

(1) (L1,1) = 0 & o = 1. Then (L1, ) # 0, since 0 < & < 1.
(2) (L1,2) = 0 < 40 = 0. Then (Ly,1) # 0, since 0 < & < 1.
(3) (La,1) =0< v, = 1. Then (Lo, x) # 0, since 0 < & < 1.
(4) (La, x) =

) (Lo,z) =0« v # 0 and 11& = 1. Then (Lo, 1) # 0, since 0 < & < 1.
Therefrom, we observe that

[(L1, 1)| + [(L1,2)| #0, (L2, 1)| 4+ |(L2,@)| #0, Vyo,71 €R.
Corollary 3. For the problem (11) dimker A =1 < D(L)[u] = 0.

Corollary 4. FEither row that corresponds to a boundary condition can be considered
a linear combination of all the other rows of A if and only if D(L)[u] = 0.

Ifn=4,h=1/4,& =1/4,& =1/2, 70 =~ = 1, then the problem (11) has the

matrix

-1 2 -1 0 0 -1 2 -1 0 0
0o -1 2 -1 0 0o -1 2 -1 0
A=1]0 0o -1 2 —-1]~|20 o -1 2 -1
1 -1 0 0 0 0 0 0 1 -1
0 0o -1 0 1 0 0 0 0 0

Hence we observe that v4 = —2vg — 2vy — vy — 2vg and dimker A = 1.
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Ezample 3. Let us consider Eq. (1) with NBC u(0) = Z] 07] u(&;), u(l) =
Z;‘n:l v;u(&;), where 0 < & < 1, j € X,,. It can be approximated by a discrete
problem

Lu = —Ujt2 + 2ui+1 —U; = fih2, 1€ Xp_a,

- (13)
(Ly,u) :==up — Z'yjusj =0, (Lo, u) := up — Z'yjusj =0,
where {; = s;jh, i € X,,. Then from (6) follows
1—1 m -1 m
D=+ &G =D > e —&) =1 (14)
=0 =1 §=0 j=l

Furthermore,

(Ly,1 7172% (L, 1 7172%
Lla 27353’ L2a =1- 27]6_7

‘We observe

-1
<L1,1 == Z’yj—l <L1,ZL'>:0 = Z’Yj&j:(),
=0
(L2,1) =0 & Z%*l (Ly,0) =0 & Y 76 =1
j=l

Corollary 5.
1. For the problem (13) dimker A = 2 if and only if the equalities are satisfied

-1 m m -1
= wu=> u5=1 > & =0 (15)
j=0 j=l j=l j=0

2. For the problem (13) dimker A = 1 if and only if the equality (14) is satisfied
and at least one equality (15) is not satisfied.

Corollary 6.

1. The row of matriz A that corresponds to the functional Ly is a linear combina-
tion only of the first n—1 rows; the row of A, that corresponds to the functional
Lo, and the first n — 1 rows of A are linearly independent if and only if the

equalities
-1

-1
Y=L Y g =0
=0
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and at least one inequality
m m
Dvi#FEL D g #1 (16)
j=l j=l

are satisfied.

2. The row of matriz A that corresponds to the functional Lo is a linear combina-
tion only of the first n—1 rows; the row of A, that corresponds to the functional
L1, and the first n — 1 rows of A are linearly independent if and only if the

equalities
m m
> =D 6 =1
=l =1

and at least one inequality

-1 -1
Yov#AL D &G #0 (17)
7=0

Jj=0

are satisfied.

3. Either row that corresponds to a boundary condition can be considered a linear
combination of all the other rows of A if and only if the equality (14) is satisfied
and at least one inequality (16) is satisfied, and at least one inequality (17) is
satisfied.

4. The both rows of A that correspond to functionals Ly, Lo are linear combina-
tions of the rows of A, that correspond to the operator L, if and only if the
equalities (15) are satisfied.

Remark 4. In the cases 1-3 dimker A = 1. In the case 4 dimker A = 2.
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REZIUME

Antrosios eilés diskreciojo uzdavinio su nelokaliosiomis krastinémis salygomis
matricos branduolio dimensijos tyrimas
G. Paukstaité, A. Stikonas

Siame darbe yra nagrinéjamas rySys tarp antrosios eilés diskrec¢iojo uzdavinio matricos defekto ir
nelokaliyjy krastiniy salygu. Darbe taip pat pateikta gauta klasifikacija bei pavyzdziai.

Raktinias ZodZiai: diskretusis krastinis uzdavinys, branduolys, defektas, nelokaliosios krastinés saly-
gos.
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