
✐

✐

“LMD13_s_Rack_Tam” — 2013/11/16 — 11:46 — page 55 — #1
✐

✐

✐

✐

✐

✐

Lietuvos matematikos rinkinys ISSN 0132-2818

Proc. of the Lithuanian Mathematical Society, Ser. A www.mii.lt/LMR/

Vol. 54, 2013, 55–60

Modeling of gradual epidemic changes

Alfredas Račkauskas, Aurelijus Tamulis

Vilnius University, Department of Mathematics and Informatics

Naugarduko 24, LT-03225 Vilnius

E-mail: alfredas.rackauskas@mif.vu.lt, aurelijus.tamulis@gmail.com

Abstract. The article is devoted to analysis of epidemic changes, when transition between
regimes is gradual. The consistency of CUSUM, Uniform Increments (UI) and Dyadic In-
crements (DI) statistics is shown. The comparison of the size-adjusted power of the tests is
presented graphically.
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1 Introduction

Many articles analyze change with epidemic alternative, when switching between
regimes is instant. Our purpose is to expand the theory in cases, where regime
switching is gradual or of another form. We consider the following model under H0:

Xi = µ+ ǫi, ∀i ∈ [1;n]

whereas under H1:

Xi =











µ+ εi, 1 6 i 6 k∗,

ai + εi, k∗ + 1 6 i 6 k∗ + l∗,

µ+ εi, k∗ + l∗ + 1 6 i 6 n

(1)

where εi, i > 1, are i.i.d. random variables with Eεi = 0, Eε2i < ∞. The paper is
organized as follows. In Section 2, consistency of CUSUM, UI and DI statistics is
shown. In Section 3, graphical representation of power analysis is provided.

2 Consistency

We start with consistency of classical CUSUM statistics

Tn =
1

n1/2
max

16k6n

∣

∣

∣

∣

k
∑

i=1

Xi −
k

n

n
∑

i=1

Xi

∣

∣

∣

∣

. (2)

Convergence of Tn under H0 is proved by W. Ploberger and W. Krämer [2]. We
consider conditions for divergence of CUSUM statistics under H1.

By
P

−−−−→
n→∞

we denote convergence in probability.
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Theorem 1. Assume that for model (1) the following condition is satisfied:

max
{

k∗/n, 1−
(

k∗ + ℓ∗
)

/n
} ℓ∗
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1
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∣

→ ∞

as n → ∞. Then

Tn
P

−−−−→
n→∞

∞.

Proof. If k∗ > n− k∗ − ℓ∗, we have
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where

Vn =
1

n1/2
max

16k6n

∣

∣

∣

∣

∣

k
∑

i=1

εi −
k

n

n
∑

i=1

εI

∣

∣

∣

∣

∣

.

By the classical Donsker invariance principle Vn = OP (1). If k∗ 6 n − k∗ − ℓ∗, we
have

Tn >
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Finally, we complete the proof by using the assumption of Theorem.

Next we analyze uniform increments and dyadic increments statistics introduced
by A. Račkauskas and Ch. Suquet [3, 4] and [5]. For 0 6 α < 1/2, the uniform
increments statistic UI(n, α) is defined by

UI (n, α) = max
16ℓ<n

ℓ−α(1 − ℓ/n)−α max
06k6n−ℓ

∣
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.

To define dyadic increments statistics let Dj = {(2ℓ − 1)2−j , 1 6 ℓ 6 2j−1} be
the dyadic numbers of level j, j = 1, 2, . . . . Put for r ∈ Dj , j > 1, r+ = r + 2−j ,
r− = r − 2−j. Then the dyadic increments statistic DI (n, α) is defined by

DI (n, α) = max
16j6log n

2−αj max
r∈Dj
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.

Convergence of both uniform increments and dyadic increments statistics under H0 is
shown in [4]. Here we consider conditions for consistency of these statistics under H1.
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Theorem 2. Let 0 6 α < 1/2. For the model (1) assume that

lim
t→∞

t1/(1/2−α)P
(

|ε1| > t
)

= 0. (3)

If

ℓ∗(1−α)(1 − ℓ∗/n)1−α

n1/2−α

∣

∣

∣

∣

∣

1

l∗

k∗+l∗
∑

i=k∗+1

ai − µ

∣

∣

∣

∣

∣
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as n → ∞, then under H1
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Under condition (4) we have Rn = OP (n
1/2−α) (see, e.g., [4]), hence we complete the

proof of (5).

Theorem 3. Let 0 6 α < 1/2. For the model (1) assume that

lim
t→∞

t1/(1/2−α)P
(

|ε1| > t
)

= 0. (6)

and
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is satisfied then

n−1/2
DI (n, ρ)

P
−−−−→
n→∞

∞ (9)

as n → ∞.

Proof. Define

ank =

{

ak, if k = k∗ + 1, . . . , k∗ + ℓ∗,

µ, if k = 1, . . . , k∗, k∗ + ℓ∗ + 1, . . . , n.

We have

DI(n, α) = max
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.
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By triangle inequality it holds

DI (n, α) > DI
(1)(n, α)−DI

(2)(n, α),

where

DI
(1)(n, α) = max

16j6log n
2αj max
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Under condition (7) it holds that DI
(2)(n, α) = OP (n

1/2) (see, e.g., [4]). So it remains
to check, that

lim
n→∞

n−1/2
DI

(1)(n, α) = ∞

follows from (8).
Under the following configuration r−n 6 k∗ < k∗ + ℓ∗ 6 rn, where r ∈ Dj and j

is such that 2−j−1 < ℓ∗/n 6 2−j we obtain

n−1/2D(1)(n, α) >n−1/22αj
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since for configuration under investigation it holds 2j > n/(2ℓ∗). Under condition (8),
we get the result (9).

The similar result holds for the configuration rn 6 k∗ < k∗ + ℓ∗ 6 r+n:

n−1/2D(1)(n, α) > 2−αn−1/2+αℓ∗1−α

∣
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∣

∣

∣

1
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i=k∗+1

ai − µ

∣

∣

∣

∣

∣

,

Other possible configurations of k∗, k∗ + ℓ∗ with respect to dyadic number, say, r.

1. r−n 6 k∗ 6 rn 6 k∗ + ℓ∗ 6 r+n;
2. k∗ 6 r−n 6 k∗ + ℓ∗ 6 rn;
3. rn 6 k∗ 6 r+n 6 k∗ + ℓ∗;

Due to dyadic structure the interval [r−j , r
+
j ] is a half of the interval [r−j−1, r

+
j−1] and

the configuration No. 1 becomes one of previously analysed configuration of the dyadic
level j − 1. The level of dyadic number is reduced as follows:

r = (2ℓ− 1)2−j, r− = (2ℓ− 1)2−j − 2−j = (2ℓ− 2)2−j = (ℓ− 1)2−j+1
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similarly

r+ = (2ℓ− 1)2−j + 2−j = (2ℓ)2−j = (ℓ)2−j+1

ℓ or ℓ− 1 is odd number, we take this odd number and rewrite in such form: 2k − 1.

(2k − 1)2−j+1 = r, r ∈ Dj−1.

The same approach applies for the configuration No. 2. We may need apply several
times the idea of the decreasing dyadic level for configurations No. 2 until we reach
such j that for r ∈ Dj is valid r−n 6 k∗ < k∗ + l∗ 6 rn. This level j is always
reachable as for j = 0 (r ∈ D0), [r−n, rn] or [rn, r+n] covers the whole interval. The
configuration No. 3 are reduced to configuration No. 2 by changing dyadic interval of
the same level.

r0 = r + 2
(

2−j
)

= (2ℓ− 1)2−j + 2
(

2−j
)

= (2ℓ+ 1)2−j .

The configuration No. 3 becomes the configuration No. 2 in respect of dyadic num-
ber r0. This completes the proof.

3 Graphical representation of power

We use graphical representation of the size-adjusted power of the tests for comparison.
We explore the idea of visualization of power analysis developed by R. Davidson and
J.G. MacKinnon [1]. It consists of plotting two empirical distribution functions: one
empirical distribution function under H0 another one under H1. These distribution
functions are plotted on a [0, 1]× [0, 1] square. When the curve of one test is higher
than the curve of another, it shows that the size-adjusted power of first test is higher
than the power of another test.

We will analyse two computer-based modelling examples. The first example rep-
resents the gradual change that consists of three parts: increase period, stable period
and decrease period. The second example represents gradual change that consists
only of two parts: increase period and decrease period.The graph of the size-adjusted
power of the examples is presented below in Fig. 1. Now we will describe these exam-
ples in details: We have generated random values from N(1, 1). The length of total
sample is 1024 (210). The length of epidemic change is 18.75% of the total sample in
the first example and 12.5% in the second one. The epidemic change consists of three
equal parts in the first example:

a. gradual (45-degree line) increase of a mean from 1 to 1.35;

b. stable period with a mean equal to 1.35;

c. gradual (45-degree line) decrease of a mean from 1.35 to 1.

The epidemic change consists of two equal parts in the second example:

a. gradual (45-degree line) increase of a mean from 1 to 1.5;

b. gradual (45-degree line) decrease of a mean from 1.5 to 1.

The computer based modeling shows that the size-adjusted power of the CUSUM
test is smaller than the power of the UI and the DI tests in both cases. The size-
adjusted power of the UI and the DI tests is almost equal, but the DI test requires
less operations and due to this performs much faster.

Liet. matem. rink. Proc. LMS, Ser. A, 54, 2013, 55–60.
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Fig. 1. Power plot with epidemic change in mean. CUSUM – red, DI – blue, UI – green line.
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REZIUMĖ

Laipsniškų epideminių pasikeitmų tyrimas
A. Račkauskas, A. Tamulis

Straipsnis yra skirtas epideminių pasikeitimų analizei, kai perėjimas iš vienos būsenos į kitą yra
laipsniškas. Įrodytas CUSUM, Tolygių prieaugių, Diadinių prieaugių testų suderintumas. Minėtų
testų galia pavaizduota grafiškai.

Raktiniai žodžiai: pasikeitimo taškas, laipsniškas pasikeitimas, epideminė alternatyva, galios analizė.
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