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Abstract. It is demonstrated how the Euler-Mascheroni constant v can be defined quite
simple in the school. Two approaches are considered: the first one using logarithms and
derivatives, and the second one using only elementary knowledge of sequences.
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1 Introduction. Definition using logarithm and derivative

This article can be considered as a continuation of the previous report [2]. In [2] it
was shown how the famous constants m and e and their series representations could
be treated in school using neither the limit nor the derivative concept. Here we
demonstrate how the Euler—Mascheroni constant v = 0.55721566 . . . can be presented
in school. Two approaches are discussed: one using the limit and the derivative
concepts and another one confined to elementary facts about sequences.

The constant v is the third of the most important mathematical constants. It
was originally analysed by the Swiss mathematician L. Euler (1707-1783), while the
Italian mathematician L. Mascheroni (1750-1800) computed v with the accuracy to
nineteen decimal places. The constant v came into being from computation of sums
of the reciprocal numbers (see [3])

1 1
Hy=1+-+ - +—.
2 n

For large n this sum approximately equals In n. Moreover, the sequence H,, —In(n+1)
increases while H,, —Inn decreases. Since the difference of these sequences In(n+1) —
Inn =In(1+ %) vanishes, there exists unique number x, such that

1 1 1 1
I+-+-+—-——Inh(n+)<z<l+-+---+——Inn
2 n 2 n

for all positive integers n. This number is called the Euler constant v (or the Euler—
Mascheroni constant). Using the limit concept « can be defined by

1 1
v = lim (1+——|—---+——lnn).
2 n

n— o0
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This formula means that for large n

1 1
1+=-+--+—=Ilnn+1.

2 n

Consequently, the sums of the reciprocal numbers can be approximately found
knowing the value of 7y. This connection provides an explanation why - is so commonly
occurring in various fields of mathematics: analysis, number theory, probability and
statistics. Omne need look only into internet — there are almost hundred formulas
with . By the way, the first three decimal digits are easily memorized: 0.577 are the
decimal digits of % that can be found using calculator. The phrase “gamma decimal
ciphers” can be helpful as well: the numbers of letters in the three words are 5, 7, 7.

We want to prove in a simple way comprehensible to school children that H, —Inn
decreases while H,, — In(n + 1) increases.

Let us begin with the second statement: prove that for all n

It o4 S (b 1) <1tato e In(n +2)
2 n W 2 n o ont+1l TV '
This inequality is equivalent to
1 n+2 1
1 2)—1 1 —
n(n+2) —In(n+ )<n+1’ nn+1<n+1,
1 1 1 1
In{1+ < , In(1+ - < 0.
n+1 n+1 n+1 n+1
Differentiate the function f(z) = In(1 4+ z) —a: f'(z) = HLI -1=—7%. For

0 < x < 1 this derivative is negative, so the function f(x) is decreasing in the interval
[0,1]. Since f(0) = 0, it is negative for 0 < z < 1, thereby at x = n+_1 Thus,
In(1+ —-) — n+_1 < 0 and the sequence H,, —In(n + 1) increases.

n+1
Let us prove that H,, — Inn decreases, i.e.

1 1 1 1
I+z++—-——Inn>14+ -+ +—+ —In(n +1).
2 n 2 n n+l
This is equivalent to the inequalities
1 1) —Inn > ,
n(n+1)—1Inn i
1 1 1
n— ¢ —— <0, Inf[l-—)+——<0.
n+1 n+1 n+1 n+1
The derivative of the function f(z) = In(1 — z) + z is f (z) = —1% and it is
negative in the interval (0,1). Since f(0) = 0, f(x) < 0 for 0< x < 1. Therefore,
In(1 — %_H) + n%_l < 0, so H, — Inn decreases.

2 Definition not using either logarithms or derivatives

Now we will demonstrate how one can define the Euler—Mascheroni constant not even
knowing the logarithm or the derivative.
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Consider the sequence (n > 2)

1
An:1+§+...+_____ ..... _

T4t 2 .
n—1 n (n—2)2
> 1+ ! + + ! ! !
2 n n+1 (n—1)2
Cancellation gives
1 + + 1 - 2
(n—2)2+41 (n—1)2 " n’
1 1

2
N R
712—47’L+5+ +n2—2n—|—1 n

Let us show that this inequality is true. The number of summands on the left
side, the last of which is the least one, is

(n?—2n+1)— (n®> —4n+5)+1=2n—3.

Therefore
1 P 1 - 2n — 3
nZ—4n+5 n2—2n+1" n2-2n+1
But #;lgﬂ > % for n > 2. Indeed, it is equivalent to 2n? — 3n > 2n2 — 4n + 2,
n > 2.

Now consider the sequence

1+1+ n 1 1 1 1
2 n—1 n n+l (n+1)2
<1+1+ + ! +1 ! !
2 n—1 n n+1 (n+2)2
This is equivalent to
1 1 1 2

R
n2+2n+2+n2+2n+3+ +(n+2)2 n

Here the number of summands is (n? +4n +4) — (n? 4+ 2n + 1) = 2n + 3. Therefore

1 + 1 4t 1 - 2n+3
n?+2n+2 n2+2n+3 (n+2)2 " n2+2n+2
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The right side of this inequality is less than % for all n. Thus, the sequence A,, is
decreasing and B,, is increasing. Their difference

1 1 1
A, — B, = =
n2—2n+2+n2—2n+3+ +(n+2)2
6n + 3 7 7
nt < " =0 (n— o).

n2—2n+2\n272n:n—2

This makes it clear that there is exactly one number x satistying B, < x < A,, for
all n > 3.

Definition 1. The number « such that for all n

1+ +1 ! ! <y <1+ +1 ! !
n n+l (n+2)2 7 n n+l (n—1)2

is called the Euler—Mascheroni constant (y = 0.577...).

The sequence Cp, = 1+ % +- 4 % — n+r1 ----- n—12 is trapped between A,, and B,,
(B, < C,, < A,,), therefore it also approaches number . Thus, the constant « can

be defined also by the equality
i 1 1 1 1 1
v = lim (1+—+---+————— ----- —).
n—oo 2 n 2

It has been proved [1] that v can be squeezed between two sequences that are
much more close to each other than A, and B,,:

1+1+ 1 1 1 1 -
2 n n+1 n24+n nZ4+n+1 7
<1+1+ Jrl L 1
2 n n+1 n?+n
and, moreover,
1+1+ +1 ! ! ! + ! <

2 n n+l n+2 n24+n  6n2+6n+1 v

<1+1+ +1 1 1 1 n 1
2 n n+l n+2 n2+n  6n24+6n

True, it is much harder to prove that in these inequalities the left side increases and
the right one decreases. In the last inequality the left side differs from the right by
1 1 B 1 - 1
6n2+6n 6n2+6n+1  (6n2+6n)(6n2+6n+1)  36n2(n+1)2

Consequently, the error in the approximation

1 1 1 1 1 1

n n+l  nZ n2+1 7...7n2+n+6n2—|—6n
with n = 3 is less then 0.0002.

At the end we present computational results obtained using this formula with
~v = 0.57721566490153 (error =  — approximation).
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n Approximation Error
2 0.57777TT7TT7T77778 —0.000562112876244917
3 0.5773448773448773 —0.000129212443344484
10 0.5772170612076819 —0.000001396306149007
100 0.5772156650649402 —0.000000000163407325
1000 0.5772156649015495 —0.000000000000016633
10000 0.5772156649015333 —0.000000000000000404

References

[1] J.J. Macys. On the Euler-Mascheroni constant. Math. Not., 94(5):645-652, 2013.

[2] J.J. Macys and J. Susinskas. Propedeutics of series in a school. Liet. matem. rink.: Proc.
LMS, Ser. A, 54:146-150, 2013.

[3] J.J. Macys and J. SuSinskas. Sums of reciprocal numbers. Matematika ir matematikos
déstymas, 2014, Kaunas, KTU (to appear).

REZIUME
Oilerio—Maskeronio konstanta mokykloje
J.J. Macys, J. Susinskas

Pademonstruota, kaip apie Oilerio-Maskeronio konstanta (kitaip — Oilerio konstanta ) galima
kalbéti mokykloje. Aptarti du tokio kalbéjimo budai — vienas, kai naudojamasi ribos ir logarit-
mo savokomis, ir kitas — kai naudojamasi tik elementariomis ziniomis apie sekas. Patariama, kaip
isiminti pirmuosius tris desimtainius konstantos « zenklus.

Raktiniai Zodziai: Oilerio-Maskeronio konstanta, apibrézimai, elementarus metodai.

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 17-21.



	Introduction. Definition using logarithm and derivative
	Definition not using either logarithms or derivatives
	References

