The Euler–Mascheroni constant in school

Juozas Juvencijus Mačys¹, Jurgis Sušinskas²

¹Institute of Mathematics and Informatics, Vilnius University Akademijos 4, LT-08663 Vilnius

²Faculty of Medicine, Vilnius University

Čiurlionio 21, LT-03101 Vilnius

E-mail: juozas.macys@mii.vu.lt, jurgis.susinskas@mii.vu.lt

Abstract. It is demonstrated how the Euler–Mascheroni constant γ can be defined quite simple in the school. Two approaches are considered: the first one using logarithms and derivatives, and the second one using only elementary knowledge of sequences.

Keywords: Euler–Mascheroni's constant, definitions, elementary proofs.

1 Introduction. Definition using logarithm and derivative

This article can be considered as a continuation of the previous report [2]. In [2] it was shown how the famous constants π and e and their series representations could be treated in school using neither the limit nor the derivative concept. Here we demonstrate how the Euler–Mascheroni constant $\gamma = 0.55721566...$ can be presented in school. Two approaches are discussed: one using the limit and the derivative concepts and another one confined to elementary facts about sequences.

The constant γ is the third of the most important mathematical constants. It was originally analysed by the Swiss mathematician L. Euler (1707–1783), while the Italian mathematician L. Mascheroni (1750–1800) computed γ with the accuracy to nineteen decimal places. The constant γ came into being from computation of sums of the reciprocal numbers (see [3])

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

For large n this sum approximately equals $\ln n$. Moreover, the sequence $H_n - \ln(n+1)$ increases while $H_n - \ln n$ decreases. Since the difference of these sequences $\ln(n+1) - \ln n = \ln(1 + \frac{1}{n})$ vanishes, there exists unique number x, such that

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n+1) < x < 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$

for all positive integers n. This number is called the Euler constant γ (or the Euler–Mascheroni constant). Using the limit concept γ can be defined by

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right).$$

This formula means that for large n

$$1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n + \gamma.$$

Consequently, the sums of the reciprocal numbers can be approximately found knowing the value of γ . This connection provides an explanation why γ is so commonly occurring in various fields of mathematics: analysis, number theory, probability and statistics. One need look only into internet – there are almost hundred formulas with γ . By the way, the first three decimal digits are easily memorized: 0.577 are the decimal digits of $\frac{1}{\sqrt{3}}$ that can be found using calculator. The phrase "gamma decimal ciphers" can be helpful as well: the numbers of letters in the three words are 5, 7, 7.

We want to prove in a simple way comprehensible to school children that $H_n - \ln n$ decreases while $H_n - \ln(n+1)$ increases.

Let us begin with the second statement: prove that for all n

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} - \ln(n+2).$$

This inequality is equivalent to

$$\ln(n+2) - \ln(n+1) < \frac{1}{n+1}, \qquad \ln\frac{n+2}{n+1} < \frac{1}{n+1},$$

$$\ln\left(1 + \frac{1}{n+1}\right) < \frac{1}{n+1}, \qquad \ln\left(1 + \frac{1}{n+1}\right) - \frac{1}{n+1} < 0.$$

Differentiate the function $f(x) = \ln(1+x) - x$: $f'(x) = \frac{1}{1+x} - 1 = -\frac{x}{1+x}$. For $0 < x \le 1$ this derivative is negative, so the function f(x) is decreasing in the interval [0,1]. Since f(0) = 0, it is negative for 0 < x < 1, thereby at $x = \frac{1}{n+1}$. Thus, $\ln(1+\frac{1}{n+1}) - \frac{1}{n+1} < 0$ and the sequence $H_n - \ln(n+1)$ increases.

Let us prove that $H_n - \ln n$ decreases, i.e.

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > 1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} - \ln(n+1).$$

This is equivalent to the inequalities

$$\ln(n+1) - \ln n > \frac{1}{n+1},$$

$$\ln \frac{n}{n+1} + \frac{1}{n+1} < 0, \qquad \ln \left(1 - \frac{1}{n+1}\right) + \frac{1}{n+1} < 0.$$

The derivative of the function $f(x) = \ln(1-x) + x$ is $f'(x) = -\frac{x}{1-x}$ and it is negative in the interval (0,1). Since f(0) = 0, f(x) < 0 for 0 < x < 1. Therefore, $\ln(1-\frac{1}{n+1}) + \frac{1}{n+1} < 0$, so $H_n - \ln n$ decreases.

2 Definition not using either logarithms or derivatives

Now we will demonstrate how one can define the Euler–Mascheroni constant not even knowing the logarithm or the derivative.

Consider the sequence $(n \ge 2)$

$$A_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{(n-1)^2}.$$

We will show that it is decreasing, $A_{n-1} > A_n$, i.e.

$$1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \frac{1}{n} - \dots - \frac{1}{(n-2)^2}$$
$$> 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{(n-1)^2}.$$

Cancellation gives

$$\frac{1}{(n-2)^2+1} + \dots + \frac{1}{(n-1)^2} > \frac{2}{n},$$

$$\frac{1}{n^2 - 4n + 5} + \dots + \frac{1}{n^2 - 2n + 1} > \frac{2}{n}.$$

Let us show that this inequality is true. The number of summands on the left side, the last of which is the least one, is

$$(n^2 - 2n + 1) - (n^2 - 4n + 5) + 1 = 2n - 3.$$

Therefore

$$\frac{1}{n^2 - 4n + 5} + \dots + \frac{1}{n^2 - 2n + 1} > \frac{2n - 3}{n^2 - 2n + 1}.$$

But $\frac{2n-3}{n^2-2n+1} > \frac{2}{n}$ for n > 2. Indeed, it is equivalent to $2n^2-3n > 2n^2-4n+2$, n > 2.

Now consider the sequence

$$B_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{(n+2)^2}.$$

Let us show that it is increasing, $B_{n-1} < B_n$, i.e.

$$1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{(n+1)^2}$$

$$< 1 + \frac{1}{2} + \dots + \frac{1}{n-1} + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{(n+2)^2}.$$

This is equivalent to

$$\frac{1}{n^2 + 2n + 2} + \frac{1}{n^2 + 2n + 3} + \dots + \frac{1}{(n+2)^2} < \frac{2}{n}.$$

Here the number of summands is $(n^2 + 4n + 4) - (n^2 + 2n + 1) = 2n + 3$. Therefore

$$\frac{1}{n^2 + 2n + 2} + \frac{1}{n^2 + 2n + 3} + \dots + \frac{1}{(n+2)^2} < \frac{2n+3}{n^2 + 2n + 2}.$$

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 17-21.

The right side of this inequality is less than $\frac{2}{n}$ for all n. Thus, the sequence A_n is decreasing and B_n is increasing. Their difference

$$A_n - B_n = \frac{1}{n^2 - 2n + 2} + \frac{1}{n^2 - 2n + 3} + \dots + \frac{1}{(n+2)^2}$$

$$< \frac{6n+3}{n^2 - 2n + 2} \leqslant \frac{7n}{n^2 - 2n} = \frac{7}{n-2} \to 0 \quad (n \to \infty).$$

This makes it clear that there is exactly one number x satisfying $B_n < x < A_n$ for all $n \ge 3$.

Definition 1. The number γ such that for all n

$$1 + \dots + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{(n+2)^2} < \gamma < 1 + \dots + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{(n-1)^2}$$

is called the Euler–Mascheroni constant ($\gamma = 0.577...$).

The sequence $C_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} - \frac{1}{n+1} - \cdots - \frac{1}{n^2}$ is trapped between A_n and B_n $(B_n < C_n < A_n)$, therefore it also approaches number γ . Thus, the constant γ can be defined also by the equality

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2} \right).$$

It has been proved [1] that γ can be squeezed between two sequences that are much more close to each other than A_n and B_n :

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{n^2 + n} - \frac{1}{n^2 + n + 1} < \gamma$$
$$< 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{n^2 + n}.$$

and, moreover,

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2 + n} + \frac{1}{6n^2 + 6n + 1} < \gamma$$

$$< 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2 + n} + \frac{1}{6n^2 + 6n}.$$

True, it is much harder to prove that in these inequalities the left side increases and the right one decreases. In the last inequality the left side differs from the right by

$$\frac{1}{6n^2+6n}-\frac{1}{6n^2+6n+1}=\frac{1}{(6n^2+6n)(6n^2+6n+1)}<\frac{1}{36n^2(n+1)^2}.$$

Consequently, the error in the approximation

$$\gamma \approx 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{n^2} - \frac{1}{n^2+1} - \dots - \frac{1}{n^2+n} + \frac{1}{6n^2+6n}$$

with n = 3 is less then 0.0002.

At the end we present computational results obtained using this formula with $\gamma = 0.57721566490153$ (error = γ – approximation).

n	Approximation	Error
2	0.577777777777778	-0.000562112876244917
3	0.5773448773448773	-0.000129212443344484
10	0.5772170612076819	-0.000001396306149007
100	0.5772156650649402	-0.000000000163407325
1000	0.5772156649015495	-0.00000000000016633
10000	0.5772156649015333	-0.0000000000000000404

References

- [1] J.J. Mačys. On the Euler-Mascheroni constant. Math. Not., 94(5):645-652, 2013.
- [2] J.J. Mačys and J. Sušinskas. Propedeutics of series in a school. *Liet. matem. rink.: Proc. LMS, Ser. A*, **54**:146–150, 2013.
- [3] J.J. Mačys and J. Sušinskas. Sums of reciprocal numbers. *Matematika ir matematikos dėstymas*, 2014, Kaunas, KTU (to appear).

REZIUMĖ

Oilerio-Maskeronio konstanta mokykloje

J.J. Mačys, J. Sušinskas

Pademonstruota, kaip apie Oilerio–Maskeronio konstantą (kitaip – Oilerio konstantą γ) galima kalbėti mokykloje. Aptarti du tokio kalbėjimo būdai – vienas, kai naudojamasi ribos ir logaritmo sąvokomis, ir kitas – kai naudojamasi tik elementariomis žiniomis apie sekas. Patariama, kaip įsiminti pirmuosius tris dešimtainius konstantos γ ženklus.

Raktiniai žodžiai: Oilerio–Maskeronio konstanta, apibrėžimai, elementarūs metodai.