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Abstract. The objective of this work is to investigate experimentally the well-known au-
toregressive models as simplest algorithms simulating prediction processes of the stockholders
using the historical stock rates only. The “virtual” stock exchange which applies these algo-
rithms can help in testing various assumptions of investor behavior. To represent users that
prefer linear utility functions, the autoregressive moving-average model (ARMA-ABS(p, q)),
minimizing the absolute values of prediction errors is regarded, in addition to the traditional
ARMA(p, q) model which minimize the least square errors. The results of two hundred actual
financial time series and a hundred of virtual ones are discussed in short.
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Introduction

The field of time series analysis and forecasting methods has significantly changed
in the recent time due to the influence of new knowledge in non-linear dynamics.
New methods such as artificial neural networks replaced traditional approaches which
usually were appropriate for linear models only.

Nevertheless, there are still applications where estimations of linear processes,
such as autoregressive and moving average models, are desirable. This includes the
simulation of the stock exchange by some simple algorithms imitating actions of major
stockholders based on their predictions of future stock rates and expected profits.
In this setup we need prediction algorithms which are understandable for ordinary
stockholders and not to difficult for calculations. Algorithms of autoregressive models
satisfy these conditions. The common autoregressive model is AR(p). This model
reflects the opinions of risk-prone users because the squared prediction errors are
minimized. To represent risk-neutral users we regard AR-ABS (p) where absolute
errors are minimized.

Applying these models we assume that each player predicts stock prices by AR(p)
or AR-ABS (p) of order p. The scale parameters a of the model AR(p) are estimated
using the standard least squares algorithm for different p The optimization of these
parameters in AR-ABS (p) is a piece-wise linear programming problem [12, 9] which
can be formulated as the Linear Programming (LP) one.

Actual stockholders use their own ways of predicting. We regard the AR(p) and
AR-ABS (p) models as the simplest initial approximations of their prediction pro-
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cesses. The next approximations are ARMA(p, q) and ARMA-ABS (p, q)1 which cor-
rects the past errors. The AR-ABS (p) model was introduced in [12]. The ARMA-
ABS (p, q) model is a new element of this paper To optimize parameters b we have
to solve multi-modal problem using global optimization methods [8, 10, 11, 3, 4].
Traditional methods [7, 2] solved similar problems using specific statistical techniques
including sequential local optimization with no references to the inherent multimodal-
ity of errors as a function of MA parameters b.

1 Simulating stockholders predictions

The formal description of the ARMA(p, q) models is well known [2, 7]. However, we
shall describe these models in the form more convenient for discussions of this paper
and supplement them by the new ARMA-ABS (p, q) models representing linear utility
functions.

Assume that a stockholder predicts next-day stock prices Z(t+1) using the AR(p)
model [2]. Professional investors are trying to obtain additional information about the
fundamentals of the stock and use advanced mathematical models. Thus the AR(p)
of order p model can be regarded as a simplest simulator of a nonprofessional player
which is making investments based on the data observed during past p days.

The profit of the stockholder depends on the accuracy of prediction made at time
s, s = 1, . . . , t, where t denotes the present time.

Assume that the stock rates changes following this simple relation

Z(s+ 1) =

p
∑

k=1

akZ(s− k + 1) + ǫs+1. (1)

This formula describes the common autoregressive model AR(p) of order p. However,
in the contest of this paper, relation (1) reflects opinions of stockholders which are
making investment decisions based on the optimal next day predictions obtained using
the past data. It means that we replace the standard assumptions of the autoregres-
sive model by the single assumption that the relation (1) approximately represents
opinions of some stockholders. In this paper, we shall compare the prediction models
which minimize standard statistical prediction errors, such as MSE and MAE, with
the models maximizing simulated profit.

The alternative way of fitting AR(p) parameters is the likelihood maximization
which provides good mathematical results [13]. However, this approach appears more
difficult for stockholders intuitive understanding and the mathematical advantages
are not so important regarding the AR(p) model just as a tool of the virtual stock
exchange. We consider moving average model MA(q), too, to simulate more sophis-
ticated users which try to correct past errors, where

Z(s+ 1) = −

q
∑

j=1

bjǫs−j+1 + ǫs+1. (2)

Minimizing the MA(q) errors we have to minimize a polynomial function of degree t.
We can see this by expanding the recurrent expression (2). Traditional methods of

1 ARMA-ABS(p, q) minimizes absolute errors of ARMA(p, q) models where q is the number of
moving average parameters bj , j = 1, . . . , q.
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parameter estimation do not consider this problem as multimodal [2]. However, some
more recent authors apply global optimization techniques such as particle swarm
optimization [10], evolutionary and genetic algorithms [11, 3]. The investigation of
multimodality was not performed in these papers, so this work can be regarded as
the first step in this direction.

We define the ARMA(p, q) model by merging AR(p) and MA(q) into this single
expression:

Z(s+ 1) =

p
∑

k=1

akZ(s− k + 1)−

q
∑

j=1

bjǫs−j+1 + ǫs+1. (3)

To represent risk-neutral users, we may apply the ARMA-ABS (p, q) model by mini-
mizing the absolute errors instead of the squared ones.

1.1 ARMA(p) and ARMA-ABS(p, q) models

Denote by Z(s) the stock price at time s 6 t. Denote by a = (a1, . . . , ap) a vector of
auto-regression (AR) parameters, and by b = (b1, . . . , bq) a vector of moving-average
(MA) parameters. Then the prediction error (residual) at moment s 6 t is

ǫs = Z(s)−

p
∑

k=1

akZ(s− k) +

q
∑

j=1

bjǫs−j . (4)

The optimal prediction parameters a = a(b) as a function of b in the ARMA(p, q)
model, are defined by this condition

ak = argmin
ak

t
∑

s=1

ǫ2s. (5)

In the ARMA-ABS (p, q) model, we minimize absolute errors

ak = argmin
ak

t
∑

s=1

|ǫs|. (6)

To solve non-linear optimization problem (5) we use the recursive quadratic program-
ming [1]. The piece-wise linear problem (6) is posed in the following standard linear
programming terms [9]:

min
v,u

t
∑

s=1

us, (7)

us > ǫs, s = 1, . . . , t, (8)

us > −ǫs, s = 1, . . . , t, (9)

us > 0, s = 1, . . . , t, (10)

v1k, v
2
k > 0, k = 1, . . . , p, (11)

ǫs = Z(s)−

p
∑

k=1

(

v1k − v2k
)

Z(s− k). (12)

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 129–134.
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where v, u are the auxiliary variables and ǫs are residuals. The scale parameters aik
of the player i are defined by differences of auxiliary variables v.

Optimization of the b parameters is performed using the global optimization meth-
ods in both the models because the errors as a function of b ∈ [−1, 1] may have up to
t local minima where t is the length of time series.

2 Virtual stocks and historical data

Fig. 1 illustrates average profits of eight prediction models for two virtual ‘years’ equal
to 720 virtual ‘days’.

Fig. 2 shows the average MSE of 100 samples of virtual stocks generated by
USEGM.

Fig. 1. Average final profits of eight prediction models, a = 0.0.

Fig. 2. MSE of virtual stock market, average of 100 samples by USEGM, a = 0.0.
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Fig. 3. MSE of real stock market, including Matlab results, average of 200 stocks.

In all the experiments, the maximal profits were provided using the maximal
memory parameter p = 9. The minimal errors were achieved using lesser memory
p = 3 with the only exception when minimal MAE and MSE were achieved using
p = 6. This means that the prediction models which provide minimal errors do not
necessarily show the maximal profit.

Now we shall test the prediction algorithms by historical data is obtained auto-
matically from the Yahoo data base. Fig. 3 shows the average MSE of 200 stocks
using AR(p), p = 1, 3, 6, 9 including the corresponding results by the best Matlab
version of the AR model.

The Matlab prediction errors are greater. A possible explanation is that Matlab
AR model estimates an additional parameter defining the mean value of the time
series. That provides lesser ‘learning’ error but not necessarily the minimal ‘testing’
error. The USEGM AR model ignores this parameter and predicts only the stock
rate changes which are important making investment decisions.

3 Concluding remarks

While autoregressive and moving average models may be too simplistic for practical
forecasting, it can serve as a useful tool for studies of market behavior by presenting
an easy way for simulating different scenarios of stockholders strategies. For example,
simulations can explain stock market reaction to deliberately set strategies of a major
stockholder, such as manipulation of asset prices, designed to lower their value.

We have investigated the autoregressive model with 200 actual financial time series
and 100 “virtual” stock rates generated by the USEGM model [5]. The unexpected,
and practically the most important, result is that the prediction models which provide
minimal errors do not necessarily show the maximal profit. Therefore, to estimate
the expected profitability better, we have to simulate the financial markets using and
improving the corresponding market models, similar to USEGM. The algorithm and
software is on the website [6] and can be tested by a browser with Java support.

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 129–134.



i

i

“LMD12_teoin_Mockus_Katina_Katin” — 2012/12/11 — 17:56 — page 134 — #6
i

i

i

i

i

i

134 J. Mockus, J. Katina, I. Katin

References

[1] M.C. Biggs. Constrained minimisation using recursive quadratic programming: some
alternative subproblem formulations. In Towards Global Optimisation. North Holland,
Amsterdam, 1975.

[2] J.H. Cochrane. Time Series for Macroeconomics and Finance. University of Chicago,
Graduate School of Business, Chicago, U.S., 2005.

[3] C. Gaetan. Subset (ARMA) model identification using genetic algorithms. J. Time Ser.
Anal., 21:561–570, 2002.

[4] C. Hongfang and S. Rui. ARMA model parameter optimized estimate method. In Cryp-
tography, and Network Security, Data Mining and Knowledge Discovery, E-Commerce
and Its Applications, and Embedded Systems, IACIS International Symposium, pp. 22–
26, Los Alamitos, CA, USA, 2010. IEEE Computer Society. Available form Internet:
http://doi.ieeecomputersociety.org/10.1109/CDEE.2010.13.

[5] I. Katin. The Java software implementing the market simulation model USEGM. Avail-
able from Internet: http://optimum2.mii.lt/igor/index.html, 2012.

[6] J. Katina. The Java software implementing the prediction models AR(p) and AR-
ABS(p). Available from Internet: http://optimum2.mii.lt/joana/launch.html, 2012.

[7] G. Melard. Agorithm AS 197: A fast algorithm for the exact likelihood of autoregressive-
moving average models. Appl. Stat., 33:104–114, 1984.

[8] J. Mockus. A Set of Examples of Global and Discrete Optimization: Application of
Bayesian Heuristic Approach. Kluwer Academic Publishers, 2000. ISBN 0-7923-6359-0.

[9] J. Mockus. On simulation of the Nash equilibrium in the stock exchange context.
Informatica, 23:77–104, 2012.

[10] S. Rolf, J. Spravey and W. Urferz. Using particle swarm optimization and AIC criteria.
In Proceedings of the IEEE/IAFE. IEEE, 1995.

[11] M.S. Voss and X. Feng. Model identification and parameter estimation of ARMA models
by means of evolutionary algorithms. In 15th Triennial World Congress, Barcelona,
Spain. IFAC, 2002.

[12] H. Wagner. Linear programming techniques for regression analysis. J. Am. Stat. Assoc.,
54:206–2012, 1959.

[13] I. Yao and P.J. Brockwell. Gaussian maximum likelihood estimation for ARMA models
II: Spatial processes. Bernoulli, 12:403–429, 2006.

REZIUMĖ

Autoregresiniai slenkančio vidurkio modeliai kaip virtualios finansų biržos įrankis:
eksperimentinis tyrimas
J. Mockus, J. Katina, I. Katin

Darbo tikslas yra eksperimentiškai ištirti tradicinius autoregresinius modelius kaip paprasčiausius
algoritmus, imituojančius akcininkų, naudojančių vien tik istorinius duomenis, prognozių procesus.
Šie modeliai naudojami virtualioje akcijų biržoje tikrinant įvairias prielaidas apie akcininkų elgesį.
Įvertinant neutralius rizikai akcininkus, tradicinis AR modelis, minimizuojantis kvadratines pak-
laidas, papildomas modeliu AR-ABS , minimizuojančiu absoliutines paklaidas. Trumpai aptariami
200 realių akcijų ir 100 virtualių akcijų tyrimo rezultatai, minimizuojantys vidutines paklaidas.

Raktiniai žodžiai: prognozavimas, autoregresiniai modeliai, akcijų birža, laiko eilutės.
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