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of the Sturm—Liouville problem
with a nonlocal integral condition

Agné Skucaité!, Arturas Stikonas'?

! Institute of Mathematics and Informatics, Vilnius University
Akademijos 4, LT-08663 Vilnius

2 Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 4, LT-03225 Vilnius

E-mail: agne.skucaite@mii.vu.lt; arturas.stikonas@mif.vu.lt

Abstract. This paper presents some new results on the spectrum for the second order dif-
ferential problem with one integral type nonlocal boundary condition (NBC). We investigate
how the spectrum of this problem depends on the integral nonlocal boundary condition pa-
rameters v, £ and the symmetric interval in the integral. Some new results are given on the
complex spectra of this problem. Many results are presented as graphs of real and complex
characteristic functions.
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Introduction

Problems with an integral nonlocal boundary condition (NBC) arise in various fields
of mathematical physics, biology, biotechnology, etc. At present the investigation of
problems with various types of NBCs is a topical problem. J. Cannon investigates an
integral type NBC [1]. A problems of complex eigenvalues for differential operators
with NBCs are less investigated than the real cases. Some results of this problem
about real and complex eigenvalues are published in [4, 5]. Also complex eigenvalues
were investigated in [3]. Some results of investigation of a similar problem with the
symmetric interval in the nonlocal integral BC were presented in [2].

1 Differential Sturm—Liouville problem with integral type NBC
Let us consider the Sturm-Liouville problem with one classical BC
—u" = Au, u(0) =0, te(0,1), (1)

and other integral NBC when 0 < £ < 1/2:

1-¢
u(l) = 7/5 u(t) dt, (2)
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with the parameters v € R and £ € (0,1/2). If vy = 0 or £ = 1/2, then we obtain a
problem with the classical BC and its eigenvalues and eigenfunctions are well-known:

A ug(t) = sin(rkt), ke N:={1,2,3,...}. (3)

The case £ = 0 was invesigated in paper [4]: Ay = 47%k%, k € N.

We get the eigenvalue A = 0 of problem (1)-(2) iff v = 1_—225
only one negative eigenvalue as v > 2/(1 — 2£). We use bijection A = 72¢?, where
geCq:={¢qeC:Reg>0orImg=>0for Req =0}. Then a solution of problem (1)
is of the form u = esin(wqt)/(7q), ¢ € C,. Substituting this solution into the second
BC we derive equatity

There exists

rqsin(rq) +7( cos(x(1 — €)g) — cos(rEq)) = 0. (4)

A root ¢, € C, of this equation we call an eigenvalue point. In general, the eigen-
value point depends on v and A\, = 72¢? is eigenvalue of problem (1)—(2). Constant
etgenvalues are defined as the eigenvalues that do not depend on the parameter ~.
If constant eigenvalues exist for all £ € (0,1/2), then such eigenvalues we call the
first type constant eigenvalue, and we have the second type constant eigenvalues on
contrary.

Lemma 1. The first type constant eigenvalues are N\, = wci, cp, = 2k, k € N. The

second type constant eigenvalues exist only for rational & = =, n = 2(2ny + 1),

n1 € N (m and n are coprime numbers), and these eigenvalue are equal to Ny, = 72¢3,

Cr, = %(2k+ 1) = (27L1 + 1)(2k+ 1), k € N.
Remark 1. If m = 0 then constant eigenvalues are of the first type.

All nonconstant eigenvalues points are v-points of characteristic function (CF)

v(q) := mqcos(mq/2)/sin (mq(1 — 2¢)/2). (5)

If we take g only in the rays ¢ =z > 0, ¢ = —wz, z < 0 instead of ¢ € C; we obtain
positive eigenvalues in case the ray ¢ = x > 0 and negative eigenvalues if the ray
q = —x, x < 0. The point ¢ = x = 0 corresponds to the eigenvalue A = 0. In this
case, for complex function (5), the real CF is:

mx cos(mx /2) 0. (6)

sin(mwz(1-2€)/2)°

'ﬂzcosh(ﬂ'm/2) z <0
")/(SC) — {smh(ﬂ'z(12£)/2) i

WV

The graphs of this real CF for some values of the parameter £ are presented in Fig. 1.
Generalized real CF we get, if we add vertical lines in the constant eigenvalue points.

Zero points z of the meromorphic CF ~y(q) are of the first order and they are equal
to zs := 2s+ 1, s € N. Pole points are the first order and they can be calculated by
the formula:

p=21/(1—2€), leN. (7)

Since p;+1 — pr > 2 there exists zero point between the two poles. If in the interval
(p1, pr+1) exist exactly n + 1 zero points zo, ..., z,, then in this interval there are n
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critical points ks € (z5-1,2s): 7' (ks) = 0. We define the sign of the critical point
k € R for real CF by the formula sign(k) = —sign(y”(k)). ¢ = 0 is critical point ko,
too. If the sign is zero then we have second order critical point. If we change the value
of £ from 0 to 1/2, then the poles (7) are moving from left to right. All poles are to
the right of zero z; = 2s + 1 for & > (2s — 1)/(2s + 1)/2. Fig. 3 shows a qualitative
view of real CF v(g) in the neighborhood of the first type constant eigenvalue point.
In Fig. 5, we see how pole passes zero point and creates the second type constant
eigenvalue point.

Lemma 2. Let £ = m/n. Pole point p;, | = (n —2m)t/ged(n,2), t € N is coincident
with the first type constant eigenvalue points ci, k = nt/ged(n,2). In the case n =
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Fig. 5. Generalized real CFs in the neighborhood of the second type constant eigenvalue point.

2(2n1 + 1), n1 € N pole point p;, I = (n — 2m)(2t +1)/4, t € N, is coincident with
zero zs, s = n(2t +1)/2 and we have the second type constant eigenvalue points cy,
kE=n(t+1/2)—-1)/2.

2 Complex eigenvalues

A complex spectrum of similar nonlocal problems was investigated in [3, 5] and a
subset N := v 1(R) := {q € C;: Im~(q) = 0} of C, was introduced. We get C-R
CF v : N = R as restriction of CF 7(q) : C, — C. We present some results of
investigation of this domain for problem (1)—(2).

We can see a qualitative view of dependence of a complex part of the spectrum
on some values of the parameter ¢ in Fig. 2. At the critical point (7/(¢) = 0) two
real eigenvalues collide (in this point we do not have simple eigenvalue) and leave the
real axis. In our problem most of the critical points are of the first order and the
eigenvalues points move to (or from) infinity (Im ¢ = 00).

In the neighborhood of the first type constant eigenvalue point the pole passes
constant eigenvalue point (see Fig. 4). In this case, the eigenvalues remain positive.
We have simple PC' — C'P bifurcation.

Fig. 6 shows, the domain N in the neighborhood of the second type constant eigen-
value point. If the value of £ is increasing, the pole passes zero thus forming constant
eigenvalue at that point and then there appears a loop type curve in the complex
plane with a pole and a zero inside (PZK — CK — KZP(—K)K bifurcation).



Investigation of the spectrum of the Sturm—Liouville problem 71

Himg 1mg 1Himg
1 1 1
0.5] bz " 05| p=z,=8, " 0.5
\/ VN
22 24 2.6 28 30 32 34 3. Req 22 24 26 28 30 32 34 .6 Req 22 24 26 28
0,51 0.5 0,5
! i I
1,57 1,57 1.5
(a) £ =0.165 (b) £ =0.1(6) (c) £ =0.167
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Fig. 8. C-R CFs in the neighborhood of critical point of the second order.

This curve intersects the real line at two critical points of the first order. The sign
of the new left critical point is the same as the sign of the first critical point before
this bifurcation, the sign of the new right critical point is opposite. If £ = 0.168(3),
then this loop type curve joins the other complex curve (see Fig. 7) and two critical
points of the first order form the critical point of the second order (v”(¢) = 0). This
loop type curve disappears, as £ > 0.168(3) ((—K)K — K; — & bifurcation). In
Fig. 8, we see the sketch of C-R CF.
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3 Conclusions

There exist constant eigenvalues of two types. Eigenvalues of the first type do not
depent on parameters ¢ and . Eigenvalues of the second type do not depend only
on the parameter v and exist only for some rational &.

CF has countable number of zeros and poles periodically located on the positive
real axis. Zeros are fixed but poles depend monotonically on £ € [0,1/2) and tend to
infinity as £ — 1/2.

Pole passes the point of the eigenvalue of the first type without qualitatively
changing its spectrum. On the other hand it creates two new critical points as it
passes the zero. Then we have critical points of the opposite sign to the right of the
pole. As the pole moves it causes those critical points to cancel each other. As a
result, critical point that was to the right of the zero appears to the left.

If the first pole p; > z, then all curves to the left of the zero zs_1 constituting N
in complex part of C, go from the critical point to infinity. On the other hand, loop
type curves can only start at critical points k > z5_1.
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REZIUME

Sturmo ir Liuvilio uzdavinio su integraline nelokaligja salyga spektro tyrimas
A. Skucaité, A. Stikonas

Straipsnyje pateikiami nauji rezultatai, gauti tiriant diferencialinj Sturmo ir Liuvilio uzdavinj su viena
nelokaligja integraline krastine salyga spektra. Istirta spektro priklausomybé nuo nelokaliyjy salygu
parametry v ir £ nuo integralo simetriniame intervale. Daugelis rezultaty pateikiama charakteristiniy
funkcijy grafikais.

Raktiniai ZodZiai: Sturmo ir Liuvilio uzdavinys, nelokaliosios krastinés salygos, kompleksinés tikrines
reiksmes.
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